ANAEROBIC MEMBRANE BIOREACTOR TECHNOLOGY FOR SOLID WASTE STABILIZATION By Antoine Prandota Trzcinski A thesis submitted for the degree of Doctor of Philosophy and for the Diploma of Imperial College Department of Chemical Engineering and Chemical technology Imperial College London London SW7 2AZ May 2009 It is declared that the work presented in the thesis is the candidate’s own. Signature of Candidate 1 ABSTRACT In this study, a simulated Organic Fraction of Municipal Solid Waste (OFMSW) was treated in an anaerobic two-stage membrane process. The OFMSW feedstock was fed to a ten litre hy- drolytic reactor (HR) where solid and liquid fractions were separated by a coarse mesh, while the leachate was fed to a three litre submerged anaerobic membrane bioreactor (SAMBR) with in-situ membrane cleaning by biogas sparging beneath a flat sheet Kubota membrane. The aim was to develop and optimize this two-stage process where the use of a membrane in both reactors to uncouple the Solid and Liquid Retention Times (SRT and HRT) would allow us to improve the current performances obtained with single stage designs. The Denaturing Gradient Gel Electrophoresis (DGGE) technique was used to monitor the microbial population in the re- actors and have a better understanding of the archaeal and bacterial distribution in a two-stage process. Itwasfoundthatmesheswithporesizesof≤10micronsand≥150micronswereinappropriate to uncouple the SRT and HRT in the HR. In the former case, the mesh became clogged, while in the latter case, the large pore size resulted in high levels of suspended solids in the leachate thatbuiltupintheSAMBR.ThemostimportantparameterforVolatileSolids(VS)removalinthe HRwastheSRT.MaximumVSremovalsof70-75%couldbeachievedwhentheSRTwasequal toorgreaterthan50-60days. ThiswasachievedataHRTof9-12daysandanOrganicLoading Rate (OLR) of 4-5 g VS.l-1.day-1.Increasing the SRT to beyond 100 days did not significantly increase the VS removal in the HR. However, at an OLR of 10 g VS.l-1.day-1 in the HR the SRT had to be reduced due to a build up of TS in the HR that impeded the stirring. Below 20 days SRT,theVSremovalreducedtobetween30and40%. Withkitchenwasteasitsmainsubstrate, however, an OLR of 10 g VS.l-1.day-1 was achieved with 81% VS removal at 23 days SRT and 1.8 days HRT. The SAMBR was found to remain stable at an OLR up to 19.8 g COD.l-1.day-1 at a HRT of 0.4 day and at a SRT greater than 300 days, while the COD removal was 95%. However, the performance at such low HRTs was not sustainable due to membrane flux limitations when the Mixed Liquor Total Suspended Solids (MLTSS) went beyond 20 g.l-1 due to an increase in viscosity and inorganics concentration. At 35˚C the SAMBR was found to be stable (SCOD removal ≥ 95%) at SRTs down to 45 days and at a minimum HRT of 3.9 days. The SAMBR could achieve 90% COD removal at 22˚C at an OLR of 13.4 g COD.l-1.day-1 and 1.1 days HRT (SRT = 300 days). The DGGE technique was used to monitor the archaeal and bacterial diversity and evolution in the HR and SAMBR with varying SRTs, HRTs, OLRs and temperatures in the biofilm and in suspension. Overall, it was found that stable operation and high COD removal correlated with a high bacterial diversity, while at the same time very few species (2-4) were dominant. Only a few dominant archaeal species were sufficient to keep low VFA concentrations in the SAMBR at 35˚C, but not at ambient temperatures. It was found that some of the dominant species in the HR were hydrogenotrophic Archaea such as Methanobacterium formicicum and Methanobrevibacter while the other dominant species were from the genus Methanosarcina 2 or Methanosaeta. The presence of hydrogenotrophic species in the HR could be fostered by reinoculating the HR with excess sludge from the SAMBR when the SRT of the SAMBR was greater than 45 days. Among the bacterial species Ruminococcus flavefaciens, Spirochaeta, Sphingobacteriales,Hydrogenophaga,Ralstonia,PrevotellaandSmithellawereassociatedwith good reactor performances. 3 ACKNOWLEDGEMENTS First of all, I would like to deeply thank my supervisor Professor David Stuckey for his inspiring and motivating guidance throughout this research. His passion for anaerobic wastewater treat- ment and his commitment to sustainable development encouraged me to start and go on with the long and painstaking process of doing a PhD thesis on this subject. IwouldliketothanktheDepartmentofEnvironment,FoodandRuralAffairs(DEFRA)forfinanc- ing this project under the Technologies Research and Innovative Fund (TRIF). I would like to acknowledge all members of the laboratory for interesting discussions both in group meetings and in more social environments. Finally, from the depth of my heart, many thanks to Flora, my mother, father and brother for encouraging me all the way. 4 NOTATIONS AD Anaerobic Digestion AF Anaerobic Filter AOB Ammonia-Oxidising Bacteria ATA Anaerobic Toxicity Assay BET Brunauer-Emmett-Teller BMP Biochemical Methane Potential BSI British Standard Institution BVS Biodegradable Volatile Solids C:N Carbon to Nitrogen Ratio COD Chemical Oxygen Demand (mg/L) CP Concentration Polarisation CSTR Continuously Stirred Tank Reactor dm dry matter DO Dissolved Oxygen EGSB Expanded Granular Sludge Bed EPS Extracellular Polymeric Substances EC European Commission FA Free Ammonia FF Fixed-Film reactor FS Flat Sheet FSS Fixed Suspended Solids FWC Fresh Water Consumption FYV Fruits, Yard and Vegetables waste GAC Granular Activated Carbon GPR Gas Production Rate GW Garden Waste HF Hollow Fibers HOA Hydrogen-Oxidising Acetotrophs HOM Hydrogen-Oxidising Methanogens HR Hydrolytic Reactor HRT Hydraulic Retention Time IPW Industrial Potato Waste k bacterial decay rate constant d k Hydrolyis constant h K Half-saturation coefficient for substrate utilization s KW Kitchen Waste LB Leach-Bed LCFA Long-Chain Fatty Acids LMH Litre.m-2.hr-1 LPM Litre per Minute MBR Membrane Bioreactor MBT Mechanical-biological treatment 5 MF Microfiltration MLTSS Mixed Liquor Total Suspended Solids MLVSS Mixed Liquor Volatile Suspended Solids MS-OFMSW Mechanically-Sorted Organic Fraction of Municipal Solid Waste MSW Municipal Solid Waste MTBE Methyl Tertiary-Butyl Ether MW Molecular Weight µ Maximum growth rate max NHOA Non-Hydrogen Oxidising Acetotrophs NOB Nitrite-Oxidising Bacteria OFMSW Organic Fraction of Municipal Solid Waste OHPA Obligate Hydrogen Producing Acetogenic bacteria OLR Organic Loading Rate PAC Powdered Activated Carbon PB Packed Bed reactor PS Primary Sludge PSD Particle Size Distribution PW Paper Waste RPM Revolutions per Minute ROS Refractory Organic Substances SAMBR Submerged Anaerobic Membrane Bioreactor SAMBR-MABR Submerged Anaerobic Membrane Bioreactor - Membrane aerated Bioreactor SBR Sequencing Batch Reactor SCOD Soluble Chemical Oxygen Demand SEBAC Sequential Batch Anaerobic Composting reactor SEC Size Exclusion Chromatography SGP Specific Gas Production SMP Soluble Microbial Products SMY Specific Methane Yield SPE Solid Phase Extraction SRT Solid Retention Time SS Sidestream SS-OFMSW Source-Sorted Organic Fraction of Municipal Solid Waste STP Standard Temperature and Pressure T Tubular TMP Transmembrane Pressure TS Total Solids TSS Total Suspended Solids U Specific Substrate utilization rate UASB Upflow Anaerobic Sludge Blanket UF Ultrafiltration VFAs Volatile Fatty Acids VS Volatile Solids VSS Volatile Suspended Solids WAS Waste Activated Sludge 6 Contents 1 INTRODUCTION 23 2 LITERATURE REVIEW 26 2.1 ANAEROBIC DIGESTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.1.1 Hydrolytic Bacteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.1.2 Fermentative Bacteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.1.3 Acetogenic Bacteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.1.4 Methanogenic Bacteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.1.5 Protein Degradation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.1.6 Ammonia Degradation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.2 MUNICIPAL SOLID WASTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2.2 Composition of the Organic Fraction of Municipal Solid Waste . . . . . . . . 34 2.2.3 Biodegradability of the Organic Fraction of Municipal Solid Waste . . . . . . 36 2.2.4 Kinetics of the Anaerobic Digestion of MSW . . . . . . . . . . . . . . . . . . 37 2.3 FACTORS AFFECTING THE AD OF MSW . . . . . . . . . . . . . . . . . . . . . . 39 2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.3.2 Inoculum/Substrate Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.3.3 Pretreatments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.3.4 Particle Size Distribution (PSD) . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.3.5 pH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.3.6 Alkalinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.3.7 Solid Retention Time (SRT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.3.8 Total Solid Content (TS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.3.9 Organic Loading Rate (OLR) . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.3.10 Volatile Fatty Acids Inhibition . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.3.11 Effect of Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 7 CONTENTS CONTENTS 2.3.12 Ammonia Inhibition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.3.13 Struvite Precipitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.3.14 Calcium Salts Precipitation . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.3.15 Nutrient Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.3.16 Phase Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.3.17 Recirculation of the Effluent . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.3.18 Stability of the Digestate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.3.19 Solid Waste Anaerobic Processes . . . . . . . . . . . . . . . . . . . . . . . 56 2.4 ANAEROBIC MEMBRANE BIOREACTORS . . . . . . . . . . . . . . . . . . . . . . 58 2.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.4.2 Concentration Polarisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.4.3 Nominal Pore Size and Flux . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.4.4 Fouling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 2.4.5 AnaerobicMembraneBioreactorsforHighStrengthWastewaterandLeachate Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 2.5 PHYSICO-CHEMICAL TREATMENT OF STABILISED LEACHATE . . . . . . . . . 69 2.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 2.5.2 Activated Carbon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 2.5.3 Coagulation-Flocculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 2.5.4 Ultrafiltration (UF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 2.5.5 Ion Exchange Resins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 2.6 SUMMARY OF LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . 73 2.7 OBJECTIVES OF THE STUDY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3 MATERIALS AND METHODS 77 3.1 EXPERIMENTAL SETUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.1.1 Hydrolytic Reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.1.2 Methanogenic Reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.2 ANALYTICAL METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.2.1 pH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.2.2 Oxido-Reduction Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.2.3 Biogas Composition and Production Rate . . . . . . . . . . . . . . . . . . . 79 3.2.4 Volatile Fatty Acids (VFAs) . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.2.5 Gas Chromatography - Mass Spectrometry (GC-MS). . . . . . . . . . . . . 79 8 CONTENTS CONTENTS 3.2.6 Particle Size Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.2.7 Heavy Metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.2.8 Ion Chromatography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.2.9 Size Exclusion Chromatography (SEC) . . . . . . . . . . . . . . . . . . . . 82 3.2.10 Scanning Electron Microscope - Energy Dispersive X-ray (SEM-EDX) . . . 82 3.2.11 Surface Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.3 PHYSICO-CHEMICAL METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.3.1 Alkalinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.3.2 Total Solids, Volatile Solids and Fixed Solids . . . . . . . . . . . . . . . . . 83 3.3.3 Total Suspended Solids and Volatile Suspended Solids . . . . . . . . . . . 83 3.3.4 COD Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.3.5 Ammonia Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.3.6 Total Nitrogen Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.3.7 Total Phosphorus Measurement . . . . . . . . . . . . . . . . . . . . . . . . 84 3.3.8 Carbohydrates Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.3.9 Protein Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.3.10 Ultrafiltration Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.3.11 Biochemical Methane Potential Test . . . . . . . . . . . . . . . . . . . . . . 86 3.3.12 Microbial Respiration Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 3.3.13 Adsorption Isotherms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 3.3.14 Adsorption Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 3.4 MOLECULAR BIOLOGY METHODS: Denaturing Gel Gradient Electrophoresis (DGGE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 3.5 FEEDSTOCK COMPOSITION AND PROPERTIES . . . . . . . . . . . . . . . . . . 91 3.5.1 Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.5.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4 EFFECT OF ACETIC ACID ON THE CHEMICAL HYDROLYSIS OF THE OFMSW 98 4.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.2 EXPERIMENTAL AND ANALYTICAL DETAILS . . . . . . . . . . . . . . . . . . . . 100 4.2.1 Chemical hydrolysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.2.2 Enzymatic hydrolysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.3 RESULTS AND DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.3.1 Chemical hydrolysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 9
Description: