ANAEROBIC FERMENTATION OF RICE STRAW AND CHICKEN MANURE TO CARBOXYLIC ACIDS A Dissertation by FRANK KWESI AGBOGBO Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY December 2005 Major Subject: Chemical Engineering ANAEROBIC FERMENTATION OF RICE STRAW AND CHICKEN MANURE TO CARBOXYLIC ACIDS A Dissertation by FRANK KWESI AGBOGBO Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Mark T. Holtzapple Committee Members, Richard R. Davison Mahmoud M. El-Halwagi Cady Engler Head of Department, Kenneth R. Hall December 2005 Major Subject: Chemical Engineering iii ABSTRACT Anaerobic Fermentation of Rice Straw and Chicken Manure to Carboxylic Acids. (December 2005) Frank Kwesi Agbogbo, B.Sc., University of Science and Technology, Kumasi, Ghana Chair of Advisory Committee: Dr. Mark T. Holtzapple In this work, 80% lime-treated rice straw and 20% lime-treated chicken manure were used as substrates in rotary fermentors. Countercurrent fermentation was performed at various volatile solid loading rates (VSLR) and liquid residence times (LRT). The highest acid productivity of 1.69 g/(L·d) was at a total acid concentration of 32.4 g/L. The highest conversion and yield were 0.692 g VS digested/g VS fed and 0.29 g total acids/g VS fed, respectively. The continuum particle distribution model (CPDM) was used to predict product concentrations at various VSLR and LRT. CPDM predicted the experimental total acid concentration and conversion at an average error of 6.41% and 6.55%, respectively. A fixed-bed fermentation system was designed to perform pretreatment and fermentation in the same unit. High product concentrations (~48 g/L) as well as high conversions (0.741 g VS digested/g VS fed, F4, Train B) were obtained from the same fermentor. CPDM was extended to predict product concentrations in the fixed-bed fermentation system. The model gave a good estimate of the product concentrations and retention time. After biomass fermentation, the residue can be combusted to generate heat. For pretreatment purposes, the use of ash can replace lime. A study was performed using ash as a potential pretreatment agent. Ash from raw poplar wood was effective in pretreating poplar wood; however, ash from bagasse fermentation residues was not useful in pretreating bagasse. Previous modeling studies indicate that a conversion of 95% could be achieved with bagasse using countercurrent fermentation. Because lignin constitutes 13% of the iv dry weight of bagasse, this means lignin would have to be digested to obtain a conversion of 95%. Experiments on the fermentation of enzymatically liberated lignin from both poplar wood and bagasse do not show that solubilized lignin was fermented to organic acids by using a mixed culture of marine microorganisms. Two buffer systems (ammonium bicarbonate and calcium carbonate) were used to compare product concentrations of carboxylic acid fermentations using office paper and chicken manure. It has been demonstrated that the total product concentration using ammonium bicarbonate is almost double the product concentration using calcium carbonate. v ACKNOWLEDGEMENTS I would like to thank my research advisor Dr. Mark T. Holtzapple for his guidance, supervision, and support for this research. Our conversations and brain storming sessions have generated projects we call the ‘wild cats.’ These ‘wild cats’ were investigated at the laboratory, some were successful, others were not. I would also like to thank Dr. Richard R. Davison for his interest in our research and for visiting our laboratory frequently to see if I got any new data. I had very useful discussions and learnt a lot from him. I would like to thank Dr. Mahmoud M. El-Halwagi who taught me process integration and made me always think of what will happen to the entire process when making changes in even a small part of the MixAlco process. His wise counsel has been of great help. I want to thank Dr. Cady Engler who taught me bioreactor design and has been helpful in providing useful insights and suggestions for my research. I want to thank Dr. Theresa Good for recommending me for admission and Dr. Christine Grant for getting me interested in environmentally related research. I also like to thank the engineering technicians, Randy Marek and Nathan Okonski, for their assistance in making the fermentors and teaching me how to use the machines. I am indebted to my past group members Cateryna Aiello-Mazzarri, Sehoon Kim, Piyarat Thanakoses, Wen-Ning Chan, Guillermo Coward-Kelly, Cesar Granda, and Xu Li for their assistance. Thanks to my present group members Zhihong Fu, Jonathan O’Dwyer, Li Zhu, Maxine Jones, Rocio Sierra, and Stanley Coleman. Finally, I like to thank the student workers who helped me to do the fermentations as well as the great secretaries at the Department of Chemical Engineering who were always ready to help. vi TABLE OF CONTENTS Page ABSTRACT........................................................................................................... iii ACKNOWLEDGEMENTS................................................................................... v TABLE OF CONTENTS....................................................................................... vi LIST OF TABLES................................................................................................. ix LIST OF FIGURES................................................................................................ x CHAPTER I INTRODUCTION............................................................................ 1 1.1 Biomass as a Sustainable Fuel and Chemical Source.......................... 1 1.2 Components of Cellulosic Biomass..................................................... 2 1.3 Biomass Pretreatment........................................................................... 5 1.4 Lime Pretreatment................................................................................ 5 1.5 Rice Straw Conversion Technologies.................................................. 6 1.6 The MixAlco Process........................................................................... 7 1.7 Countercurrent Fermentation and CPDM............................................ 10 1.8 Fixed-bed Fermentation....................................................................... 12 1.9 Lignin Degradation.............................................................................. 13 1.10 Buffer................................................................................................. 13 1.11 Ash Pretreatment................................................................................ 15 CHAPTER II MATERIALS AND METHODS.................................................... 16 2.1 Substrates............................................................................................. 16 2.2 Media and Nutrients............................................................................. 16 2.3 Inoculum............................................................................................... 17 2.4 Inhibitor................................................................................................ 17 2.5 Fermentors............................................................................................ 17 2.6 Analytical Methods.............................................................................. 21 2.7 Mass Balance........................................................................................ 22 2.8 Continuum Particle Distribution Model (CPDM)................................ 23 2.9 Statistical Methods............................................................................... 29 vii Page CHAPTER III RICE STRAW COUNTERCURRENT FERMENTATION......... 30 3.1 Fermentation Conditions...................................................................... 30 3.2 Model Development............................................................................. 46 3.3 Conclusion............................................................................................ 53 CHAPTER IV FIXED-BED FERMENTATION.................................................. 54 4.1 Fermentation Trains A and B............................................................... 55 4.2 Fermentation Trains C and D............................................................... 60 4.3 Modeling Fixed-bed Fermentation....................................................... 64 4.4 The Round Robin System.................................................................... 79 4.5 Conclusion............................................................................................ 85 CHAPTER V USING ASH TO PRETREAT BIOMASS..................................... 87 5.1 Poplar Wood......................................................................................... 87 5.2 Bagasse................................................................................................. 91 5.3 Conclusion............................................................................................ 93 CHAPTER VI LIGNIN FERMENTATION.......................................................... 94 6.1 Poplar Wood......................................................................................... 94 6.2 Bagasse................................................................................................. 99 6.3 Conclusion............................................................................................ 101 CHAPTER VII USING AMMONIUM BICARBONATE AS A BUFFER COMPARED TO CALCIUM CARBONATE............................. 103 7.1 Experiment 1........................................................................................ 103 7.2 Experiment 2........................................................................................ 105 7.3 Experiment 3........................................................................................ 109 7.4 Conclusion............................................................................................ 111 CHAPTER VIII CONCLUSIONS AND RECOMMENDATIONS..................... 112 REFERENCES....................................................................................................... 116 APPENDIX A........................................................................................................ 122 APPENDIX B........................................................................................................ 123 viii Page APPENDIX C........................................................................................................ 124 APPENDIX D........................................................................................................ 125 APPENDIX E......................................................................................................... 126 APPENDIX F......................................................................................................... 128 APPENDIX G........................................................................................................ 131 APPENDIX H........................................................................................................ 134 APPENDIX I.......................................................................................................... 135 APPENDIX J.......................................................................................................... 139 APPENDIX K........................................................................................................ 144 APPENDIX L......................................................................................................... 147 APPENDIX M........................................................................................................ 149 APPENDIX N........................................................................................................ 150 VITA...................................................................................................................... 209 ix LIST OF TABLES Page Table 3-1. Operating parameters for rice straw/chicken manure countercurrent fermentation with marine inoculum..................................................... 38 Table 3-2. Results for rice straw/chicken manure countercurrent fermentation with marine inoculum........................................................................... 39 Table 3-3. The values of a, b, c in CPDM for rice straw/chicken manure fermentation......................................................................................... 49 Table 3-4. Parameter values in CPDM for rice straw/chicken manure fermentation......................................................................................... 50 Table 3-5. Comparison of experimental and predicted carboxylic acid concentration and substrate conversion for rice straw/chicken manure fermentation............................................................................ 51 Table 4-1. Pretreatment conditions........................................................................ 55 Table 4-2. Fermentation results for Train A.......................................................... 58 Table 4-3. Fermentation results for Train B........................................................... 59 Table 4-4. Fermentation results for Train C........................................................... 62 Table 4-5. Fermentation results for Train D.......................................................... 63 Table 6-1. Composition of original poplar wood and residue................................ 95 Table 6-2. Composition of original bagasse and residue....................................... 99 Table 6-3. Components in the fermentors.............................................................. 100 x LIST OF FIGURES Page Figure 1-1. (a) Conformal form of cellulose (b) Cellulose microfibril.................. 3 Figure 1-2. Lignin monomers................................................................................. 4 Figure 1-3. Ultrastructural organization of cell wall components......................... 5 Figure 1-4. MixAlco process.................................................................................. 7 Figure 1-5. Major fermentation pathway in the rumen.......................................... 9 Figure 1-6. The digestion of biomass..................................................................... 10 Figure 1-7. Four-stage countercurrent fermentation.............................................. 11 Figure 1-8. Liquid transfer in fixed-bed fermentor................................................ 12 Figure 1-9. Titration curve for organic acids......................................................... 15 Figure 2-1. Centrifuge bottle bioreactor................................................................. 18 Figure 2-2. Fixed-bed fermentor............................................................................ 19 Figure 2-3. Jacketed fermentor system.................................................................. 20 Figure 2-4. Water displacement apparatus............................................................. 21 Figure 2-5. ‘Round robin’ fermentation system..................................................... 29 Figure 3-1. Total acid concentration from F1 in Train A....................................... 32 Figure 3-2. Total acid concentration from F1 in Train B....................................... 33 Figure 3-3. Total acid concentration from F1 in Train C....................................... 34 Figure 3-4. Total acid concentration from F1 in Train D....................................... 35 Figure 3-5. Total acid concentration from F1 in Train E....................................... 36 Figure 3-6. Total acid concentration from F1 in Train F....................................... 37 Figure 3-7. Correlation of total acid productivity with volatile solid loading rate...................................................................................................... 41 Figure 3-8. Correlation of yield with volatile solid loading rate............................ 41 Figure 3-9. Correlation of selectivity with volatile solid loading rate................... 42 Figure 3-10. Correlation of conversion with volatile solid loading rate................ 42 Figure 3-11. Mass balance in Train A.................................................................... 43
Description: