ebook img

Anaerobic Digestion of Poultry Manure PDF

144 Pages·2016·10.04 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Anaerobic Digestion of Poultry Manure

Anaerobic Digestion of Poultry Manure: Implementation of Ammonia Control to Optimize Biogas Yield by Cameron Farrow A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Engineering Guelph, Ontario, Canada © Cameron Farrow, May 2016 ABSTRACT ANAEROBIC DIGESTION OF POULTRY MANURE: IMPLEMENTATION OF AMMONIA CONTROL TO OPTIMIZE BIOGAS YIELD Cameron Farrow Advisors: Edward McBean, Anna Crolla, Chris Kinsley University of Guelph, 2016 Anaerobic digestion of poultry manure has been historically challenging, and infrequently implemented on a full scale, due to the high total solids (TS) and high ammonia content of the substrate. Conventional digestion processes require extensive substrate dilution in order to employ liquid-phase pumping systems and reduce the risk of ammonia accumulation. The necessary substrate dilutions result in an economically infeasible process. Anaerobic leaching bed reactors (ALBRs), coupled with a strategy for ammonia removal, provide a solution to both issues. ALBRs are utilized to maintain digester homogeneity without an active mixing regime. Struvite precipitation is employed concurrently with digestion to reduce total ammoniacal nitrogen (TAN) and prevent inhibition of methanogenic archaea. Nutrient distribution is achieved by recirculation of the percolate through the substrate, enabling the utilization of high solids feedstocks. Partitioning leachate from the bulk substrate allows ammonia removal methodologies to be employed without disturbing anaerobic archaea. Investigations reported herein characterize the influence of moisture content, TAN and temperature on biogas yield during poultry manure digestion. High solids digestion is shown to be most efficient in mesophilic temperature ranges with influent total solids (TS) between 15% and 25%. Digestion at thermophilic temperatures demonstrates increased ammonia inhibition, in contrast to mesophilic digestion. Co-digestion of poultry manure with grease and corn silage demonstrate increased biogas yields of 22% and 44%, respectively, in comparison to digestion of poultry manure alone. The impact of phosphate and magnesium additives, pH, temperature and the N:Mg:P molar ratio on struvite precipitation efficacy are quantified. Magnesium chloride (MgCl ·6H O) and monopotassium phosphate (KH PO ) are shown to be the most 2 2 2 4 efficient combination of additives for TAN reduction of poultry manure leachate under neutral reaction conditions. Precipitation is shown to progress efficiently at a pH of seven, in contrast to the commonly reported optimum of nine. Thus allowing leachate treatment without disturbing the microbial consortium. Results reported herein evidence an increase in biogas yield of 30% during batch digestion trials and an increase of 235% during semi-continuous trials, when employing struvite precipitation methodologies. Methane content of the biogas is also shown to increase significantly (p<0.05), when employing struvite precipitation. ACKNOWLEDGEMENTS This dissertation would not have been possible without the contribution of countless individuals, too many to mention by name herein. First and foremost, I would like to thank my family: • My mom, Barbara Hardy, for the continuous support in all aspects of my academic career. I would not be where I am today without her guidance, advice and encouragement. • My brother, Trevor Farrow, for always being supportive of my goals, even when they are not aligned with his (and they rarely are). • My dad, Rob Farrow, for providing assistance with all the technical problems I encountered; it’s always good to have an experienced engineer on hand. • My partner, Emily Wilkins, for being unfailingly supportive and making numerous sacrifices for my continued education. I would also to like to thank my advisory committee: Ed McBean, Anna Crolla and Chris Kinsley. All of whom provided direction and leadership throughout my doctoral studies. Their patience, motivation, knowledge and enthusiasm made this research possible. Additionally, I would like to express my appreciation to the Ontario Ministry of Agriculture and Food: Alternative Fuels Program, as well as Natural Resources Canada for the funding that enabled this research. iii TABLE OF CONTENTS 1.0 Introduction ................................................................................................................. 1 1.1 Objectives and Research Focus ........................................................................................... 2 1.2 Thesis Organization ............................................................................................................. 4 2.0 Background .................................................................................................................. 5 2.1 Renewable Energy ................................................................................................................ 5 2.2 First and Second Generation Biofuels ................................................................................ 5 2.3 Encouraging the Use of Renewable Energy Technologies: Feed-In-Tariffs (FITs) ....... 6 2.4 Current State of Farm-Scale Anaerobic Digestion ........................................................... 7 2.4.1 Economics of AD in Ontario, Canada ............................................................................ 8 2.4.2 USEPA AgSTAR Program (AD in the United States of America) ................................ 9 2.5 Anaerobic Digestion: The Fundamentals ........................................................................... 9 2.6 Utilizing Biogas as an Energy Source ............................................................................... 12 2.7 Anaerobic Digestion Technologies .................................................................................... 12 2.7.1 Upflow Anaerobic Sludge Blanket (UASB) ................................................................. 13 2.7.2 Anaerobic Filters/ Packed-Bed Reactors ...................................................................... 13 2.7.3 Anaerobic Membrane Bioreactors (AnMBRs) ............................................................. 14 2.7.4 Continuously Stirred Tank Reactors (CSTRs) .............................................................. 14 2.7.5 Plug Flow Reactors/ Continuous Tubular Reactor (CTR) ............................................ 15 2.7.6 Anaerobic Leaching Bed Reactors (ALBRs) ................................................................ 15 2.8 Operating Parameters ........................................................................................................ 17 2.8.1 Continuous vs. Batch Operation ................................................................................... 17 2.8.2 Residence Time/ Hydraulic Retention Time (HRT) ..................................................... 18 2.8.3 Attached vs. Suspended Growth ................................................................................... 18 2.8.4 Temperature .................................................................................................................. 18 2.8.5 Waste:Inoculum Ratio .................................................................................................. 20 2.8.6 Digester Scale ............................................................................................................... 20 2.9 Co-digestion ........................................................................................................................ 21 2.10 Livestock Manure: Environmental Impacts .................................................................. 23 2.11 Poultry Manure Characterization .................................................................................. 24 2.12 Current State of Poultry Manure Management ............................................................ 26 2.13 Barriers to Poultry Manure Digestion ............................................................................ 26 2.14 Dry Anaerobic Digestion .................................................................................................. 28 2.15 Fertilization Capacity of Digestate ................................................................................. 30 2.16 Poultry Manure Digestion: A review of current literature .......................................... 31 2.17 Total Ammoniacal Nitrogen (TAN): Inhibition of AD ................................................. 34 2.18 Methods of Ammonia Control ......................................................................................... 36 2.18.1 Dilution ....................................................................................................................... 36 2.18.2 Co-digestion ................................................................................................................ 37 2.18.3 Ammonia Acclimation ................................................................................................ 37 2.18.4 Ammonia Stripping ..................................................................................................... 38 2.18.5 Anaerobic Ammonium Oxidation (ANAMMOX) ..................................................... 39 2.18.6 Struvite Precipitation ................................................................................................... 40 2.19 Research Gaps and Original Contribution .................................................................... 43 3.0 Methodology .............................................................................................................. 44 3.1 Biochemical Methane Potential (BMP) ............................................................................ 44 3.2 Anaerobic Leaching Bed Reactors (ALBRs) ................................................................... 45 3.3 Sample Collection ............................................................................................................... 46 3.4 Statistical Analysis .............................................................................................................. 46 iv 3.4.1 Significance Testing ...................................................................................................... 46 3.4.2 Central Composite Designs: Response Surface Methodology ..................................... 47 3.4.3 Analysis of Variation (ANOVA) .................................................................................. 48 3.5 Struvite Precipitation ......................................................................................................... 49 3.6 Parameters and Analytical Methods ................................................................................ 50 3.6.1 Total Solids (TS) and Volatile Solids (VS) .................................................................. 50 3.6.2 Chemical Oxygen Demand (COD) ............................................................................... 51 3.6.3 pH and Alkalinity .......................................................................................................... 52 3.6.4 Total Ammonia Nitrogen (TAN) .................................................................................. 53 3.6.5 Total Kjeldahl Nitrogen (TKN) ................................................................................... 54 3.6.6 Total Phosphorous (TP) and Ortho-phosphate (O-PO ) ............................................... 54 4 3.6.7 Carbon:Nitrogen Ratio (C:N) ....................................................................................... 54 4.0 Influence of Temperature and Ammonia on the High Solids Co-Digestion of Poultry Manure ............................................................................................................... 56 4.0.1 Abstract ......................................................................................................................... 57 4.0.2 Keywords ...................................................................................................................... 57 4.1 Introduction ........................................................................................................................ 58 4.2 Materials and Methods ...................................................................................................... 62 4.2.1 Effects of Moisture Content on Biogas Yield ............................................................... 63 4.2.2 Effects of Temperature and Total Ammoniacal Nitrogen on Biogas Yield – With and Without the Use of Co-substrates .......................................................................................... 63 4.2.3 Statistical Analysis ........................................................................................................ 64 4.3 Results and Discussion ....................................................................................................... 66 4.3.1 Characteristics of Input Materials ................................................................................. 66 4.3.2 Effects of Moisture Content on Biogas Yield ............................................................... 67 4.3.3 Effects of Temperature and Total Ammoniacal Nitrogen on Biogas Yield from the Digestion of Poultry Manure Alone ....................................................................................... 70 4.3.4 Effects of Temperature and Ammoniacal Nitrogen on Biogas Yield from the Co- digestion of Poultry Manure with Corn Silage and Waste Grease ........................................ 71 4.4 Conclusions ......................................................................................................................... 76 5.0 Ammonia removal from poultry manure leachate via struvite precipitation: A strategy for more efficient anaerobic digestion ............................................................ 78 5.0.1 Abstract ......................................................................................................................... 79 5.0.2 Keywords ...................................................................................................................... 79 5.1 Introduction ........................................................................................................................ 80 5.2 Materials and Methods ...................................................................................................... 84 5.3 Results and Discussion ....................................................................................................... 87 5.3.1 Identification of Optimum Magnesium and Phosphate Amendments under Neutral Reaction Conditions ............................................................................................................... 87 5.3.2 Impact of pH and Temperature on Efficiency of Struvite Precipitation ....................... 88 5.3.3 Impact of Molar Ratio on Precipitation Efficiency ....................................................... 92 5.3.4 Composition of Precipitates .......................................................................................... 93 5.4 Conclusions ......................................................................................................................... 96 6.0 Anaerobic digestion of poultry manure: process optimization employing struvite precipitation and novel digestion technologies ............................................................. 97 6.0.1 Abstract ......................................................................................................................... 98 6.0.2 Keywords ...................................................................................................................... 98 6.1 Introduction ........................................................................................................................ 99 6.2 Materials & Methods ....................................................................................................... 103 v 6.2.1 Batch Digestion ........................................................................................................... 105 6.2.2 Semi-Continuous Digestion ........................................................................................ 106 6.2.3 Struvite Precipitation .................................................................................................. 107 6.2.4 Statistical Analysis ...................................................................................................... 107 6.3 Results and Discussion ..................................................................................................... 108 6.3.1 Batch Digestion ........................................................................................................... 108 6.3.2 Semi-Continuous Digestion ........................................................................................ 113 6.3.3 Design Feasibility ....................................................................................................... 122 6.4 Conclusions ....................................................................................................................... 123 7.0 Conclusions and Impact ......................................................................................... 124 8.0 References ................................................................................................................ 127 Appendix A – Correlation of Experimental and Predicted Biogas Yields .............. 133 vi LIST OF TABLES Table 2-1: Second generation biofuel sources 6 Table 2-2: Current FIT prices for biogas production facilities 8 Table 2-3: Current FIT program participation price adjustments 9 Table 2-4: Typical hydraulic retention times (HRT) for various animal manures 18 Table 2-5: Characteristics of solid wastes produced in poultry farming operations 25 Table 2-6: Operational and performance review of poultry manure digestion trials 32 Table 2-7: Impact of temperature and pH on the fraction (%) of free/unionized ammonia 35 Table 3-1: Box-Wilson central composite design circumscribed for two factors 48 Table 4-1: Circumscribed central composite design parameters: coded and natural design factors 64 Table 4-2: Influent substrate parameters 66 Table 4-3: C/N ratios of influent substrates. 66 Table 4-4: Digestate parameters: BMP moisture variation trials 69 Table 4-5: Parameters of BMP co-digestion trials 75 Table 5-1: Characterization of filtered leachate 87 Table 5-2: Struvite precipitation of poultry manure leachate employing various chemical amendments 88 Table 5-3: Struvite precipitation of poultry manure leachate at various pHs 89 Table 5-4: Struvite precipitation of poultry manure leachate employing various molar ratios of additives 92 Table 5-5: Characterization of precipitate obtained during struvite precipitation 95 Table 6-1: Influent substrate parameters 108 Table 6-2: Methane content (CH ) of biogas obtained under different organic loading rates (OLRs). 122 4 vii LIST OF FIGURES Figure 2-1: Distribution of farm based biogas plants in North America and the European Union 7 Figure 2-2: Fundamental anaerobic digestion processes 10 Figure 2-3: Anaerobic leaching bed reactor (ALBR) 16 Figure 3-1: Biochemical methane potential (BMP) vessel schematic 45 Figure 3-2: Struvite precipitate 50 Figure 4-1: Cumulative biogas production (L/kgVSin) vs. digestion time (days) 68 Figure 4-2: Biogas yield (L/kgVSin) vs. temperature (°C) and total ammoniacal nitrogen (TAN) (mg/L) 72 Figure 4-3: Biogas & methane yield (L/kgVSin) vs. substrate 74 Figure 5-1: Total ammoniacal nitrogen (TAN) and chemical oxygen demand (COD) reduction vs. pH 89 Figure 5-2: Mass of precipitate vs. initial total ammoniacal nitrogen (TAN) (mg/L) and pH. 91 Figure 5-3: Residual concentrations of total ammoniacal nitrogen (TAN) and orthophosphate. 92 Figure 5-4: X-ray powder diffraction (XRD) analysis of precipitate sample and struvite reference 94 Figure 6-1: Anaerobic leaching bed reactor (ALBR) 105 Figure 6-2: Cumulative biogas yield (L/kgVS ) vs. digestion time (days): batch digestion 109 in Figure 6-3: Parameters of leachate and bed samples: batch digestion 111 Figure 6-4: Biogas yield of struvite and control trials at an OLRs of 1.5, 3.0 and 4.5 kg VS/m3Ÿday 114 Figure 6-5: Parameters of leachate: semi-continuous digestion: OLR 1.5 kg VS/m3Ÿday 116 Figure 6-6: Parameters of leachate: semi-continuous digestion: OLR 3.0 kg VS/m3Ÿday 119 Figure 6-7: Parameters of leachate: semi-continuous digestion: OLR 4.5 kg VS/m3Ÿday 121 Figure A-1: Experimental vs. predicted biogas yield: poultry manure 133 Figure A-2: Magnitude of residuals: poultry manure 133 Figure A-3: Experimental vs. predicted biogas yield: poultry manure and corn silage 134 Figure A-4: Magnitude of residuals: poultry manure and corn silage 134 Figure A-5: Experimental vs. predicted biogas yield: poultry manure and waste grease 135 Figure A-6: Magnitude of residuals: poultry manure and waste grease 135 viii ABBREVIATIONS AD: Anaerobic digestion ALBR: Anaerobic leaching bed reactor AnMBR: Anaerobic membrane bioreactor ANNAMOX: Aerobic ammonium oxidation ANOVA: Analysis of variation BMP: Biochemical methane potential C:N: Carbon to nitrogen ratio CAFB: Cochran’s approximation to the Behren’s Fisher t-Test CHP: Combined heat and power CI: Confidence interval COD (sCOD): Chemical oxygen demand (soluble chemical oxygen demand) CSTR: Continuously stirred tank reactor CTR: Continuous tubular reactor FIT: Feed-in tariff GC: Gas chromatograph GHG: Greenhouse gas HRT: Hydraulic retention time HSAD: High solids anaerobic digestion IA: Intermediate alkalinity IPCC: Intergovernmental Panel on Climate Change LSAT: Land surface air temperature MAP: Magnesium ammonium phosphate hexahydrate, struvite MSW: Municipal solid waste O-PO : Ortho-phosphate 4 OMAFRA: Ontario Ministry of Agriculture, Food and Rural Affairs PA: Partial alkalinity REN21: Renewable Energy Policy Network for the 21st Century SSAD: Solid-state anaerobic digestion STP: Standard temperature and pressure (273K, 100 KPa) TA: Total alkalinity TAN: Total ammoniacal nitrogen TCD: Thermal conductivity detector TKN: Total Kjeldahl nitrogen TN: Total nitrogen TP: Total phosphorous TS: Total solids UASB: Upflow anaerobic sludge blanket USEPA: United States Environmental Protection Agency VS: Volatile solids WWTP: Wastewater treatment plant XRD: X-ray powder diffraction ix 1.0 Introduction The human population has grown rapidly in the latter half of the 21st century, from approximately 3 billion in 1960 to over 7 billion in 2015 (World Population Clock, 2015). As population rapidly increases, so does energy demand. Currently, approximately 81% of global energy demand is met with fossil fuels (REN21, 2015). Projections indicate that global energy demand will continue to increase by approximately 2.2% per year between 2015 and 2035 (IEA, 2010). Employing traditional fossil fuel-based energy solutions to meet this ever-growing demand will result in continued escalation of greenhouse gas (GHG) emissions and global warming. The Intergovernmental Panel on Climate Change (IPCC) has reported an increase in global Land Surface Air Temperatures (LSAT) of approximately 0.1°C per decade over the last century, and 0.2°C per decade since 1950 (Jones et al., 2012; Lawrimore et al., 2011; Hansen et al., 2010). In Canada, Vincent et al. (2012) reported an average increase of 1.5°C in annual mean temperature from 1950 to 2010. The atmospheric methane (CH ) 4 concentration is currently increasing at a rate above 1% per year and has more than doubled in the last 200 years (Safley et al., 1992). Methane constitutes approximately 20% of global warming due to the greenhouse gas effect (Safley et al., 1992). Renewable, carbon-neutral energy production will decrease societal reliance on fossil fuels and provide an alternative solution to meet the requirements of increasing global energy demand. In the near future, renewable energy technologies are expected to 1

Description:
removal methodologies to be employed without disturbing anaerobic archaea. Co-digestion of poultry manure with grease and corn silage demonstrate increased biogas yields of 22% and 44%, respectively, in comparison to digestion .. 3.6.6 Total Phosphorous (TP) and Ortho-phosphate (O-PO4) .
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.