ebook img

Anabelian Intersection Theory I: The Conjecture of Bogomolov-Pop and Applications PDF

0.31 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Anabelian Intersection Theory I: The Conjecture of Bogomolov-Pop and Applications

ANABELIAN INTERSECTION THEORY I: THE CONJECTURE OF BOGOMOLOV-POP AND APPLICATIONS AARON MICHAEL SILBERSTEIN˚ 3 January29,2013 1 0 2 n a J 1. STATEMENT OF RESULTS 8 2 A.Grothendieckfirstcoinedtheterm“anabeliangeometry”inalettertoG.Faltings[Gro97a]asaresponse ] G toFaltings’ proofoftheMordell conjecture andinhiscelebrated Esquisse d’unProgramme [Gro97b]. The A “yoga” of Grothendieck’s anabelian geometry is that if the étale fundamental group π´etpX,xq of a variety 1 . X at a geometric point x is rich enough, then it should encode much of the information about X as a h variety;suchvarietiesX arecalledanabelianinthesenseofGrothendieck,andhavethepropertythattwo t a anabelianvarietieshaveisomorphicétalefundamentalgroupsifandonlyiftheyareisomorphic;andthatthe m isomorphismsbetweentheirétalefundamentalgroupsarepreciselytheisomorphismsbetweenthevarieties. [ Grothendieck did not specify how much extra information should be encoded, and there is currently not a 2 consensusontheanswer. Ananabeliantheorem(orconjecture)isatheorem(orconjecture)whichasserts v 8 thataclassofvarietiesareanabelian. 0 Grothendieck wrote in [Gro97a]about a number ofanabelian conjectures, one regarding the moduli of 6 curves,definedoverglobalfields(whichisstillopen);oneregarding hyperboliccurves,definedoverglobal 4 . fields;andabirationalanabelianconjecture, whichassertsthatSpecoffinitely-generated, infinitefieldsare 1 anabelian(inthiscase,wesaythefieldsthemselvesareanabelian). Theanabelian conjectureforhyperbolic 1 2 curves was proved in the 1990’s by A. Tamagawa and S. Mochizuki ([Tam97], [Moc99]). The birational 1 anabelianconjectureforfinitely-generated,infinitefieldsisavastgeneralizationofthepioneeringNeukirch- : v Ikeda-Uchida theorem forglobal fields ([Neu69], [Uch77], [Ike77], [Neu77]), and isnow atheorem due to i X F.Pop[Pop94]. r Grothendieck remarked that “the reason for [anabelian phenomena] seems...tolie in the extraordinary a rigidity of the full fundamental group, which in turn springs from the fact that the (outer) action of the ‘arithmetic’ partofthisgroup...isextraordinarily strong”[Gro97a]. F. Bogomolov had the surprising insight [Bog91] that as long as the dimension of a variety is ě 2, anabelian phenomena can be exhibited — at least birationally — even over an algebraically closed field, eveninthecompleteabsence ofthe“arithmetic”partofthegroupGrothendieck referenced. Given a field K, we let G denote the absolute Galois group of K, the profinite group of field auto- K morphisms of its algebraic closure K (see [NSW08] for more details). Given two fields F and F , we let 1 2 IsomipF ,F q denote the set of isomorphisms between the pure inseparable closures of F and F , up to 1 2 1 2 Frobenius twists. Given two profinite groups Γ and Γ , we let IsomOutpΓ ,Γ q denote the set of equiva- 1 2 1 2 lenceclassesofcontinuous isomorphisms fromΓ toΓ ,moduloconjugation byelementsofΓ . Thereisa 1 2 2 canonical map ϕ :IsomipF ,F q Ñ IsomOutpG ,G q (1) F1,F2 1 2 F2 F1 ˚UniversityofPennsylvania,Philadelphia,PA19104.Email:[email protected] 1 which,ingeneral, isneitherinjectivenorsurjective. ThebirationaltheoryofavarietyofdimensionnoverK isencodedinitsfieldofrationalfunctions,and everyfield finitely-generated overK andoftranscendence degree narises asthefield ofrational functions ofaK-variety ofdimension n. F.Pop,developing Bogomolov’s insight, conjectured ananabelian theorem for fields, finitely-generated and of transcendence degree n ě 2 over an algebraically closed field k. We completetheproofof: Theorem 1(TheConjecture ofBogomolov-Pop fork “ Q,F ). LetF and F befieldsfinitely-generated p 1 2 and of transcendence degree ě 2 over k and k , respectively, where k is either Q or F , and k is 1 2 1 p 2 algebraically closed. Then ϕ is a bijection. Thus, function fields of varieties of dimension ě 2 over F1,F2 algebraic closures ofprimefieldsareanabelian. In [Pop11b], Popproved that if G » G then F and F have the same characteristic and transcen- F1 F2 1 2 dence degree. Thus, the conjecture reduces to the case when F and F are of the same characteristic and 1 2 transcendence degree. Bogomolov and Tschinkel [BT08] provide a proof in the case of transcendence de- gree“ 2whenk “ F . PopprovedthatϕisabijectionwhenF hastranscendence degreeě 2andk “ F p 1 p [Pop12];andwhenF hastranscendence degreeě 3andk “ Q[Pop11a]. Weprovethemissingcase: 1 Theorem 2 (The Birational Anabelian Theorem for Surfaces over Q). Let F and F be fields finitely- 1 2 generated andoftranscendence degree2overQ. Thenϕ isabijection. F1,F2 The proof of Theorem2 is substantially different in structure from the other cases ofTheorem1. They bothhavethesamestartingpoint, twotheoremsduetoPopfrom[Pop11a]anddescribed inSection3: 1. GivenasubgroupΓ Ď G thereisaprofinitegroup-theoretic recipe(Theorem25)whichdetermines F whetherornotΓisadecomposition orinertiagroupofaParshinchain(Definition 14). 2. GivenacollectionS “ tT uofinertiagroupsofrank-1Parshinchains(whicharegroup-theoretically v definablebyTheorem25),thereisarecipetodeterminewhetherthereisamodelX ofF —thatis,a smoothvarietywithfunctionfieldF —forwhichS isthesetofinertiagroupsofWeilprimedivisors centered onX. Inthiscase,S iscalledageometric setofprimedivisors(Definition 24). Previous results took data such as these and reconstructed F directly, in a process which we now term birational reconstruction. However, in our approach, we instead take the pair pG ,Sq and reconstruct a F model MpSq of F for which S is the collection of inertia subgroups of all prime divisors on MpSq. We obtain a description of the geometry of MpSq without first reconstructing F, and we call this approach geometricreconstruction. Themaintoolistheabilitytointerpretintersection theoryonMpSqusingonly group theoretic recipes applied to S and G , without any knowledge of MpSq other than its existence; F this technique is the anabelian intersection theory of the title. In Section10 we show how Theorem2 follows from the geometric reconstruction results which take up the bulk of the paper. A generalization of thegeometricreconstruction techniqueintranscendence degreeě 2forarbitrarycharacteristicwillcomein asequeltothispaper. Grothendieckalsoaskedfora“purelygeometric”descriptionofthegroupG .Anabeliangeometryover Q Qgivessuchadescription.1 Let X be an irreducible, geometrically integral, algebraic variety of dimension ě 2 defined over Q so that X has no birational automorphisms defined over Q. We call such an X birationally, geometri- cally rigid. Let k be the intersection of all subfields of Q over which a variety birationally equivalent 1Infact,Y.Iharaaskedamorerefinedquestion,whichT.OdaandM.Matsumotoraisedtoaconjecture:isG exactlytheouter Q automorphismsoftheétalefundamentalgroupfunctorfromthecategoryofQ-varietiestoprofinitegroups?Popshowed[Pop11b] howbirationalanabeliantheoremsoverQcanbeusedtoprovideproofsofthisconjecture.Thus,Theorem2givesusanewproofof theQuestionofIhara/ConjectureofOda-Matsumoto. Wewillelaborateonapplicationsofgeometricreconstructiontorefinements oftheQuestionofIhara/ConjectureofOda-Matsumotoinalaterpaper. 2 to X is defined. Let QpXq be the rational function field of X. By our assumptions, QpXq is a field, finitely generated overQ. Equation27showsthat G isageometric object: itistheinverse limitofthe QpXq profinitely-completed fundamental groups ofallcomplementsofQ-divisors inX. Theorem3(TheGeometricDescription ofAbsoluteGaloisGroupsofNumberFields.). Thenatural map G Ñ Out pG q (2) k cont QpXq is an isomorphism, and the compact-open topology induces the topology onG induced by its structure as k aGaloisgroup. Theorem3answersGrothendieck’s question;thisisanalogoustoatheoremofI.BumaginandD.Wise, whichrealizesanycountable groupastheouterautomorphism groupofafinitelygeneratedgroup[BW02]. InSection12,wewritedown,foranynumberfieldk,aninfinitefamilyofexplicitvarietiesX whichsatisfy thehypotheses ofTheorem3. Any group G which satisfies the hypotheses of Theorem3 is infinitely-generated and infinitely- QpXq presented. ItisthennaturaltoaskwhetherabsoluteGaloisgroupsofnumberfieldsareouterautomorphism groupsoffinitely-generated, finitely-presented, profinite groupsofgeometricprovenance. The “smallest group” currently considered to be a candidate to give such a geometric representation is the group GT, whose study was initiated by Drinfel’d [Dri90] and Ihara [Iha91]. GT admits an injective grouphomomorphism y ρ: G Ñ GT. y (3) Q It is not known whether ρ is surjective. GT is a much-studied yet poorly-understood object; we review in y Section11thetheorywewillneed,andreferto[LS06]foramoreexhaustive survey. WedenotebyM themodulispaceyofgenus0curveswith5distinct, marked,orderedpoints. Aspart 0,5 oftheconstruction ofGT,wehaveaninjection y η :GT Ñ Outpπ1´etpM0,5qq, (4) suchthatthecomposition y η˝ρ:G Ñ Outpπ´etpM qq (5) Q 1 0,5 istheinjection induced bythetheoryofthefundamental group. WeproveanecessaryandsufficientcriterionforanelementofGT,asdeterminedbyitsimageunderη, tobeintheimageofρ. M isbirationally equivalent toP2,whichgivesthescheme-theoretic inclusion 0,5 y γ :SpecpQpx,yqq Ñ M (6) 0,5 of the generic point of M . The étale fundamental group functor then gives a continuous surjection of 0,5 profinite groups γ : G Ñ π´etpM q, ˚ Qpx,yq 1 0,5 well-defined uptoconjugation byanelementofπ´etpM q. 1 0,5 Theorem4. Letα P imη.Thenα P imη˝ρifandonlyifαsatisfies thefollowing lifting condition: there existsanautomorphism α˜ : G Ñ G (7) Qpx,yq Qpx,yq sothatthediagram 3 G α˜ // G Qpx,yq Qpx,yq γ˚ γ˚ (cid:15)(cid:15) (cid:15)(cid:15) π´etpM q α // π´etpM q 1 0,5 1 0,5 commutesuptoinnerautomorphisms. ThisisthefirstnecessaryandsufficientgeometricconditionforanelementoftheGrothendieck-Teichmu¨ller grouptolieintheimageofG . Q InSection12weprovide explicit examples of surfaces whichsatisfy thehypotheses ofTheorem3, and weconclude withtheproofofTheorem4. 2. THE GEOMETRIC INTERPRETATION OF INERTIA AND DECOMPOSITION GROUPS OF PARSHIN CHAINS Definition 5. Let F be a field finitely generated over some algebraically closed field K of characteristic zero; suchafieldwillbecalled afunctionfield. NotethatthefieldK isdetermined byF (forinstance, its multiplicativegroupisthesetofalldivisibleelementsinthemultiplicativegroupofF);itwillbedenotedby KpFq, andbecalled thefield ofconstants ofF. Thetranscendence degree ofF over KpFqwillbecalled the dimension of F. Wewill denote by G the absolute Galois group of F and F the algebraic closure of F F. For general theory of valuations, including proofs of the algebraic theorems cited without proofs, see [FJ08]. Wewillalsouseresultsfrom[Ser56]and[Gro03]withimpunity. Definition 6. A valuation v on F is an ordered group pvF,ďq, called the value group of v, along with a surjective map v :F Ñ vF Yt8u (8) whichsatisfies 1. vpxq “ 8ifandonlyifx “ 0. 2. vpxyq “ vpxq`vpyq(here,wedefine8`g “ 8forallg P vF Yt8u.) 3. vpx`yqě mintvpxq,vpyqu,whereweextendtheorderingďtovF Yt8ubyg ď 8forallg P vF. A valuation v gives rise to a valuation ring O , which is the set of all x P F such that vpxq ě 0. O is v v integrally closedinF andlocal,andwecallitsmaximalidealm . Wethendefinetheresiduefieldtobe v Fv “ O {m , (9) v v AsubringR Ď F isavaluation ringO forsomevaluation wifandonlyifforeveryx P Fˆ eitherx P R w orx´1 P R. Therefore, equivalently, wemaydefineavaluation v byitsplace p : F Ñ FvYt8u (10) v whereO ismappedtoitsreductionmodm andFzO ismappedto8. AnymapfromafieldF toanother v v v fieldLwhichisaringhomomorphism “with8”thusgivesrisetoavaluation onF. Definition7. Twovaluations willbecalledequivalentifandonlyiftheyhavethesamevaluation ring. 4 Definition8. Ifv isavaluationonF andwisavaluation onFv,thenwemaydefineavaluation w˝v on F byconsidering thecomposition p ˝p : F Ñ pFvqwYt8u (11) w v asaplacemaponF. Thisvaluation iscalledthecomposition ofwwithv. Definition 9. A model X of a function field F is a smooth, connected KpFq-scheme of finite-type with a map s : SpecF Ñ X, (12) X thestructuremapofthemodel,whichidentifiesF withthefieldofrationalKpFq-functionsonX. Anormal modelisamodelwiththerequirementofsmoothnessreplaced bynormality. Definition10. Byvirtueofthestructuremap,themodelsformafullsubcategoryofthecategoryofschemes under SpecF. We define an F-morphism of models to be a morphism of varieties under SpecF, and BirpFqthefullsubcategory ofvarietiesunderSpecF whoseobjectsareprecisely themodelsofF. Definition 11. Wesay that a valuation v on F has a center on or is centered on X if X admits an affine open subset SpecA such that A Ă O , the valuation ring of v. Let R Ă F be a subring giving an affine v openSpecR ĎX. ThenthecenterofvonSpecRistheZariskiclosedsubsetofX definedasZpm XRq; v thecenterofv onX istheunionofthecentersofv onSpecRasSpecRrangesoverallaffineopensofX. Wedenoteby|v|thecenterofv. Definition12. Aprimedivisorv onF isadiscretevaluation trivialonKpFqsuchthat tr. deg. Fv “ tr. deg. F ´1. (13) KpFq KpFq (This condition is very important in birational anabelian geometry in general, and we say that v has no transcendencedefect;see[Pop94]formoredetails.) Definition 13. A rank-1 Parshin chain for F is a prime divisor. A rank-i Parshin chain is a composite w˝v,wherev isarank-pi´1qParshinchain, andwisaprimedivisor onFv. Definition 14. We denote by Par pFq the collection of i-Parshin chains for F, where i ď tr. deg. F. i KpFq Given a rank-k Parshin chain v we denote by Par pvq the collection of rank-i Parshin chains of the form i w˝v. Par pvqisemptyifi ă k;istvuifi “ k;andisinfiniteifi ą k. IfS Ď Par pFqwedefine i k Par pSq “ Par pvq. (14) i i vPS ď Wealsolet ParpSq“ Par pSqand ParpFq “ Par pFq. (15) i i i i ď ď Example15. Todescribetherank-1ParshinchainsonF,whereF isthefunctionfieldofasurfaceoverQ, weconsider thesetofallpairspX,DqwhereX isapropermodelofF andDisaprimedivisoronX. On thiscollection, wehaveanequivalence relationgenerated bytherelation „,wherewesay pX,Dq „ pX1,D1q ifthereexistsarational map ϕ: X Ñ X1 5 respecting thestructure mapsofthemodelsX andX1 suchthatDismappedbirationally toD1 byϕ. Therank-2Parshinchainsarethenequivalence classespX,D,pqwhereD isaprimedivisoronD and pisasmoothpointonD,andtheequivalence relation „isnowgenerated bysaying pX,D,pq „ pX1,D1,p1q aslongasthereisarational map ϕ: X Ñ X1 respecting thestructure mapsofthemodelsX andX1 sothatDismappedbirationally toD1 byϕandpis mappedtop1 byϕ. Givenanalgebraic extension L|F everyvaluation extendstoL,thoughnotnecessarily uniquely. Definition16. WedefineX pL|FqtobethesetofvaluationsonLwhichrestricttovonF. IfL|F isGalois, v thenGalpL|Fqactstransitively onX pL|Fq. ForanyGaloisextensionL|F andv˜P X pL|Fqwedefinethe v v decomposition group D pL|Fq “ tσ P GalpL|Fq |σpO q“ O u. (16) v˜ def v˜ v˜ EachD pL|Fqhasanormalsubgroup, theinertiagroupT pL|Fq,definedasthesetofelementswhichact v˜ v˜ astheidentity onLv˜. Wehaveashort-exact sequence, thedecomposition-inertia exactsequence 1 Ñ T pL|Fq Ñ D pL|Fq Ñ GalpLv˜|Fvq Ñ 1. (17) v˜ v˜ Ifv˜ ,v˜ P X pL|Fqandv˜ “ σv˜ forsomeσ P GalpL|Fq,then 1 2 v 1 2 D pL|Fq “ σ´1D pL|Fqσ andT pL|Fq “ σ´1T pL|Fqσ. v˜1 v˜2 v˜1 v˜2 Thus,allD pL|FqandT pL|Fq,respectively,areconjugateforagivenv,andwhentheliftisnotimportant, v˜ v˜ we denote some element of the conjugacy class of subgroups by D pL|Fq and T pL|Fq, respectively. We v v defineD andT ,respectively, tobeD pF|FqandT pF|Fq. v v v v ForanyGaloisextensionL|F,avaluationvonF andavaluationwonFv,wemaychoosev˜P X pL|Fq v andw˜ P X pLv˜|Fvq. Thereisthenanatural shortexactsequence, thecompositeinertiasequence: w 1Ñ T pL|Fq Ñ T pL|Fq Ñ T pLv˜|Fvq Ñ 1, (18) v˜ w˜˝v˜ w˜ whereT Ď G ,foranycomposite ofvaluations. Thus,ifT pL|Fqistrivial, w Fv v˜ T » T . w˜ w˜˝v˜ Wewillusethreedifferent typesoffundamental groups, withthefollowingnotation: top 1. π will denote the topological fundamental group, the fundamental group of a fiber functor on the 1 top category oftopological covers ofatopological space; covering space theory [Hat02]showsthat π 1 can be computed using based homotopy classes of maps into S1; this is the original fundamental groupconsidered byPoincaré[Poi10]. 2. πˆ will denote the profinite completion of πtop, the fundamental group of a fiber functor on the 1 1 category offinitetopological coversofatopological space. 3. π´et willdenotetheétalefundamental group. 1 6 For a normal variety X over an algebraically closed subfield of C, one has an equivalence between the category of finite, étale covers of X and the finite, unramified covers of Xan, its corresponding analytic spaceoverC,by[GR57]. Thisleadsimmediatelytothe Theorem17(ComparisonTheorem). LetX beanormalvarietyoverCandx P XpCq.Thereisacanonical isomorphism πˆ pXan,xq» π´etpX,xq. (19) 1 1 Everyknown computation ofnonabelian fundamental groups ofvarieties factors through this compari- son theorem; in characteristic p, for instance, this is combined with Grothendieck’s specialization theorem [Gro03,X.2.4]toobtaininformation aboutfundamental groups. Let now K “ C and F be a function field over C. Then we have the following interpretation of D v whenv isaprimedivisor. First,v isthevaluationassociated toaWeilprimedivisoronsomenormalmodel X of F — that is, a normal variety with function field F, considered as a C-scheme. Given X, there is a corresponding normalanalytic spaceXan. LetX beamodelofF onwhich|v|isaprimedivisor. Example18. Theexceptional divisorE onBl pXq,theblowupatsomeclosedpointpofX,givesaprime p divisoronF butitscenteronX isnotcodimension 1andsoisnotcenteredasaprimedivisoronX. Let D1 Ď X be the nonsingular locus of |v|; notice that the underlying topological space of D1 is connected, asv isaprimedivisor. Definition19. LetN thenbeanormaldiscbundlefor(equivalently, atubularneighborhood of)D1 and T “ NzD1 thecomplementofD1 initsnormaldiscbundle N,whichadmitsthenormalbundlefibersequence 1 //F ι //T π // D1 // 1, (20) whereF isoneofthefibers. Let p be apoint on F. Note that F, like all fibers of π, isa once-punctured disk and thus is homotopy equivalent toacircle. Thereisasurjection ρ:G Ñ π´etpX,pq » πˆ pXan,pq (21) F 1 1 (proof: each normal étale cover of X gives a normal extension of its field of functions) whose kernel we willdefinetohavefixedfieldF ,andthefollowingcommutativediagram: X 1 //πˆ pF,pq ι // πˆ pT,pq π // πˆ pD1,πppqq // 1 (22) 1 1 1 LLLLLLLLLL&& (cid:15)(cid:15) π´etpX,pq. 1 Thenwehave Proposition20(TheGeometricTheoryofDecompositionandInertiaGroups). Intheshortexactsequence 22: 1. Thetoprowisacentral extension ofgroups, asthenormalbundleiscomplex-oriented. 2. Theimageofπˆ pF,pqinπ´etpX,pqisaT pF |Fq. 1 1 v X 7 3. Theimageofπˆ pT,pqinπ´etpX,pqisaD pF |Fq. 1 1 v X 4. πˆ pD1,πppqqisaquotientofG ,corresponding tocovers ofD1 pulledbackfromcovers ofX. 1 Fv Wewilldenote byt agenerator ofπtoppF,pq Ď πˆ pF,pq,aswellasanyofitsimagesinπ´etpX,pqor v 1 1 1 T pF |Fq. v X Definition21. Werefertosuchat asameridianofv. v Each meridian is almost unique — its inverse also gives a meridian of v, albeit “in the opposite direc- tion”. Thisshould beviewed asa“loop normal tooraround |v|”. Itsimagegenerates πˆ pF,pq. Ingeneral, 1 ifweareworkinginasituation inwhichwedonotspecify abasepoint, themeridianbecomesdefined only uptoconjugacy. Definition22. LetΓbeasubgroup ofagroupΠ. Thentheabelianization functorgivesamap ab : Γab Ñ πab. (23) 1 WedenotebyΓa theimageofab. Inparticular, givenv avaluation, andΠaquotientofG orπtoppXqfor F 1 some model of X, we will denote by Ta and Da the images of inertia and decomposition, respectively, in v v Πab,whichwillsometimesappearinthesequelasH . Weletta betheimageofameridianinΠab. 1 v WecanalsodefinethemeridianofavaluationvonamodelX if|v|issmooth,andextendthedefinition tonon-smooth |v|asfollows. Weresolvethesingularities of|v|onX togetabirational map η : X˜ Ñ X suchthat 1. η isanisomorphism outsideof|v|. 2. |v| Ď X˜ issmooth. Thenwedefine ameridiant onX tobe v t “ η pt q (24) v ˚ v wheret isameridian onX˜. Toseethisiswell-defined, ifwehavetwosuchmapsη,η1 asinthefollowing v diagram: X˜2 (25) B } ϕ } B ϕ1 B } ~~} B X˜ X˜1 A A | AAη η1 || A | A | A | A ~~|| X, wemayalwaysconstructϕandϕ1 birational morphismssothat: 1. Theabovediagramcommutes. 2. ϕ,ϕ1,η˝ϕ,η1 ˝ϕ1 areisomorphisms outsideof|v|. 3. |v|issmoothinX˜2. 8 Inthiscase,themeridiansinX definedbyη1andηaretheimageofameridianinX˜2 underη˝ϕandη1˝ϕ1 so,bycommutativity ofthediagram, thetwomeridians arethesame. There is also the notion of a meridian for a higher-rank Parshin chain; we give here the notion for a rank-2Parshinchain. Definition23. LetLbeanalgebraic extensionofF,w˝v arank-2ParshinchainonF,andX amodelof F on which v has a center, but on which w ˝v is not centered. Then the meridian of the rank-2 Parshin chain t for L|F is the element of AutpL|Fq induced by the inverse limit of the monodromies of a loop w˝v on |v| around the point induced by w on the normalization of |v|. As in Definition22, any image in an abelianization willbedenotedta . w˝v LetF havedimension n. Thenifv isann´1-dimensional Parshinchain, Fv isthefunction fieldofa curveoverK. Fv isequipped withafundamental, birational invariant: itsunramifiedgenusgpvq. Wecan computethisasfollows: gpvq “ rk Dva{xTva,Tay . Zˆ p pPParnpvq 3. GEOMETRIC SETS AND THE MAXIMAL SMOOTH MODEL Definition 24. We say that a set S of prime divisors of a function field F is a geometric set (of F) if and only if there exists a normal model X of F such that S is precisely the set of valuations with centers Weil primedivisors onX. Inthiscase,wewrite S “ DpXq. IfX issmooth,wesayX isamodelofS. Theorem 25 (Pop). If F is a function field with KpFq “ Q, tr. deg. F ě 2, and let Γ Ď G be a Q F closed subgroup, up to conjugacy. Then there is a topological group-theoretic criterion, given one of the representatives ofΓtodeterminewhetherthereexistsiandv P Par pFqsuchthatΓ “ T orΓ “ D ,and i v v whatthisiisifitexists. This theorem is proven with G replaced by the pro-ℓ completion of G in [Pop11a]. To see this for F F G as a whole, we may apply Key Lemma 5.1 of [Pop11b]. As the maximal length of a Parshin chain is F thetranscendence degreeofF,thisrecipeimmediatelydeterminesthetranscendence degreeofF. Popalso proved[Pop11b]: Theorem26(Pop). GivenageometricsetS ofprimedivisors onF, 1. IfS isageometricsetofprimedivisorsonF,thena(possiblydifferent)setS1 ofprimedivisorsonF isageometricsetifandonlyifithasfinitesymmetricdifference withS. 2. Thereexistsagroup-theoretic recipetorecover GeompFq “ ttpT ,D q |v P Su| S ageometricsetu. v v Definition27. IfS isanysetofprimedivisors onF,wedefinethefundamentalgroupofS tobe: ΠS “ GF{xTvyvPS. Here,xTvyvPS isthesmallestclosed, normalsubgroup ofGF whichcontains everyelementinevery conju- gacyclassineachT . IfT Ď S isasubset, thenwedenoteby v ρTS :ΠT Ñ ΠS therestriction map,anddropsubscripts whentheyareunambiguous. 9 Given ageometric setS, there are many possible X such that DpXq “ S; forinstance, any model less afinitesubsetofpointshasthesamesetofprimedivisors. Wenowdefinethemaximalmodelonwhichwe willbeabletoeffectourintersection theory. Theorem 28. LetS be a geometric set for a function field F of dimension 2. There exists a unique model MpSqofF suchthatthefollowing holds: 1. DpMpSqq “ S. 2. MpSqissmooth. 3. πˆ1pMan,pq» π1´etpMpSq,pq » ΠS. 4. If X is any other smooth model of F which satisfies S “ DpXq, then there exists a unique F- morphism X Ñ MpSq,andthisisasmoothembedding. Proof. LetU beamodelofS,andletX beasmoothcompactification ofU. Let B “ DpXqzDpUq be the collection of field-theoretic prime divisors in the boundary of U in X. This is a finite set, as the boundary divisor is itself a finite union of prime divisors. We now define a sequence of pairs pX ,B q of i i varietiesX andfinitesetsofdivisors B Ă DpXqinductively asfollows: i i 1. LetX “ X,B “ B. 1 1 2. Wenow construct pX ,B qfrom pX ,B q. First, take thecollection tv u Ď B suchthat each|v | i`1 i`1 i i j i j isa´1-curve such that noother |v1|that intersects itinthe boundary is a´1-curve, and blow down. SetX tobethisblowdown,andB “ B ztv u. i`1 i`1 i j AsB isfinite,atsomepoint, thissequence becomesstationary—let’ssayatpX ,B q. Thenwedefine 1 n n U “ X z |v|. (26) max n vďPBn Toprovethatthissatisfies property 4,letU1 beanothermodelandX1 asmoothcompactification ofit. Run the algorithm on X1 to get a pair pX1 ,B1 qThen by strong factorization for surfaces (see Corollary 1-8-4, n1 n1 [Mat02]),thereexistsaroof Y B } B } B ~~}}δ}}}} BBBδB1B X1 X , n1 n whereδ andδ1 arebothsequences ofblowups. Foranymorphism ϕ : Z Ñ Z1 ofvarieties wemaydefinetheexceptional locus Epϕq “ p P Z1 |dimpϕ´1ppqq ě 1 Letp P Epδ1qXU . Thenδ1´1ppqiscon nected, soδpδ1´1ppqqisalso(connected. Itisproper, soiseither max aunionofdivisorsorapoint. Ifitisaunionofdivisors andoneofthesedivisorswereinU1 ,thisdivisor max 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.