ANABELIAN INTERSECTION THEORY I: THE CONJECTURE OF BOGOMOLOV-POP AND APPLICATIONS AARON MICHAEL SILBERSTEIN˚ 3 January29,2013 1 0 2 n a J 1. STATEMENT OF RESULTS 8 2 A.Grothendieckfirstcoinedtheterm“anabeliangeometry”inalettertoG.Faltings[Gro97a]asaresponse ] G toFaltings’ proofoftheMordell conjecture andinhiscelebrated Esquisse d’unProgramme [Gro97b]. The A “yoga” of Grothendieck’s anabelian geometry is that if the étale fundamental group π´etpX,xq of a variety 1 . X at a geometric point x is rich enough, then it should encode much of the information about X as a h variety;suchvarietiesX arecalledanabelianinthesenseofGrothendieck,andhavethepropertythattwo t a anabelianvarietieshaveisomorphicétalefundamentalgroupsifandonlyiftheyareisomorphic;andthatthe m isomorphismsbetweentheirétalefundamentalgroupsarepreciselytheisomorphismsbetweenthevarieties. [ Grothendieck did not specify how much extra information should be encoded, and there is currently not a 2 consensusontheanswer. Ananabeliantheorem(orconjecture)isatheorem(orconjecture)whichasserts v 8 thataclassofvarietiesareanabelian. 0 Grothendieck wrote in [Gro97a]about a number ofanabelian conjectures, one regarding the moduli of 6 curves,definedoverglobalfields(whichisstillopen);oneregarding hyperboliccurves,definedoverglobal 4 . fields;andabirationalanabelianconjecture, whichassertsthatSpecoffinitely-generated, infinitefieldsare 1 anabelian(inthiscase,wesaythefieldsthemselvesareanabelian). Theanabelian conjectureforhyperbolic 1 2 curves was proved in the 1990’s by A. Tamagawa and S. Mochizuki ([Tam97], [Moc99]). The birational 1 anabelianconjectureforfinitely-generated,infinitefieldsisavastgeneralizationofthepioneeringNeukirch- : v Ikeda-Uchida theorem forglobal fields ([Neu69], [Uch77], [Ike77], [Neu77]), and isnow atheorem due to i X F.Pop[Pop94]. r Grothendieck remarked that “the reason for [anabelian phenomena] seems...tolie in the extraordinary a rigidity of the full fundamental group, which in turn springs from the fact that the (outer) action of the ‘arithmetic’ partofthisgroup...isextraordinarily strong”[Gro97a]. F. Bogomolov had the surprising insight [Bog91] that as long as the dimension of a variety is ě 2, anabelian phenomena can be exhibited — at least birationally — even over an algebraically closed field, eveninthecompleteabsence ofthe“arithmetic”partofthegroupGrothendieck referenced. Given a field K, we let G denote the absolute Galois group of K, the profinite group of field auto- K morphisms of its algebraic closure K (see [NSW08] for more details). Given two fields F and F , we let 1 2 IsomipF ,F q denote the set of isomorphisms between the pure inseparable closures of F and F , up to 1 2 1 2 Frobenius twists. Given two profinite groups Γ and Γ , we let IsomOutpΓ ,Γ q denote the set of equiva- 1 2 1 2 lenceclassesofcontinuous isomorphisms fromΓ toΓ ,moduloconjugation byelementsofΓ . Thereisa 1 2 2 canonical map ϕ :IsomipF ,F q Ñ IsomOutpG ,G q (1) F1,F2 1 2 F2 F1 ˚UniversityofPennsylvania,Philadelphia,PA19104.Email:[email protected] 1 which,ingeneral, isneitherinjectivenorsurjective. ThebirationaltheoryofavarietyofdimensionnoverK isencodedinitsfieldofrationalfunctions,and everyfield finitely-generated overK andoftranscendence degree narises asthefield ofrational functions ofaK-variety ofdimension n. F.Pop,developing Bogomolov’s insight, conjectured ananabelian theorem for fields, finitely-generated and of transcendence degree n ě 2 over an algebraically closed field k. We completetheproofof: Theorem 1(TheConjecture ofBogomolov-Pop fork “ Q,F ). LetF and F befieldsfinitely-generated p 1 2 and of transcendence degree ě 2 over k and k , respectively, where k is either Q or F , and k is 1 2 1 p 2 algebraically closed. Then ϕ is a bijection. Thus, function fields of varieties of dimension ě 2 over F1,F2 algebraic closures ofprimefieldsareanabelian. In [Pop11b], Popproved that if G » G then F and F have the same characteristic and transcen- F1 F2 1 2 dence degree. Thus, the conjecture reduces to the case when F and F are of the same characteristic and 1 2 transcendence degree. Bogomolov and Tschinkel [BT08] provide a proof in the case of transcendence de- gree“ 2whenk “ F . PopprovedthatϕisabijectionwhenF hastranscendence degreeě 2andk “ F p 1 p [Pop12];andwhenF hastranscendence degreeě 3andk “ Q[Pop11a]. Weprovethemissingcase: 1 Theorem 2 (The Birational Anabelian Theorem for Surfaces over Q). Let F and F be fields finitely- 1 2 generated andoftranscendence degree2overQ. Thenϕ isabijection. F1,F2 The proof of Theorem2 is substantially different in structure from the other cases ofTheorem1. They bothhavethesamestartingpoint, twotheoremsduetoPopfrom[Pop11a]anddescribed inSection3: 1. GivenasubgroupΓ Ď G thereisaprofinitegroup-theoretic recipe(Theorem25)whichdetermines F whetherornotΓisadecomposition orinertiagroupofaParshinchain(Definition 14). 2. GivenacollectionS “ tT uofinertiagroupsofrank-1Parshinchains(whicharegroup-theoretically v definablebyTheorem25),thereisarecipetodeterminewhetherthereisamodelX ofF —thatis,a smoothvarietywithfunctionfieldF —forwhichS isthesetofinertiagroupsofWeilprimedivisors centered onX. Inthiscase,S iscalledageometric setofprimedivisors(Definition 24). Previous results took data such as these and reconstructed F directly, in a process which we now term birational reconstruction. However, in our approach, we instead take the pair pG ,Sq and reconstruct a F model MpSq of F for which S is the collection of inertia subgroups of all prime divisors on MpSq. We obtain a description of the geometry of MpSq without first reconstructing F, and we call this approach geometricreconstruction. Themaintoolistheabilitytointerpretintersection theoryonMpSqusingonly group theoretic recipes applied to S and G , without any knowledge of MpSq other than its existence; F this technique is the anabelian intersection theory of the title. In Section10 we show how Theorem2 follows from the geometric reconstruction results which take up the bulk of the paper. A generalization of thegeometricreconstruction techniqueintranscendence degreeě 2forarbitrarycharacteristicwillcomein asequeltothispaper. Grothendieckalsoaskedfora“purelygeometric”descriptionofthegroupG .Anabeliangeometryover Q Qgivessuchadescription.1 Let X be an irreducible, geometrically integral, algebraic variety of dimension ě 2 defined over Q so that X has no birational automorphisms defined over Q. We call such an X birationally, geometri- cally rigid. Let k be the intersection of all subfields of Q over which a variety birationally equivalent 1Infact,Y.Iharaaskedamorerefinedquestion,whichT.OdaandM.Matsumotoraisedtoaconjecture:isG exactlytheouter Q automorphismsoftheétalefundamentalgroupfunctorfromthecategoryofQ-varietiestoprofinitegroups?Popshowed[Pop11b] howbirationalanabeliantheoremsoverQcanbeusedtoprovideproofsofthisconjecture.Thus,Theorem2givesusanewproofof theQuestionofIhara/ConjectureofOda-Matsumoto. Wewillelaborateonapplicationsofgeometricreconstructiontorefinements oftheQuestionofIhara/ConjectureofOda-Matsumotoinalaterpaper. 2 to X is defined. Let QpXq be the rational function field of X. By our assumptions, QpXq is a field, finitely generated overQ. Equation27showsthat G isageometric object: itistheinverse limitofthe QpXq profinitely-completed fundamental groups ofallcomplementsofQ-divisors inX. Theorem3(TheGeometricDescription ofAbsoluteGaloisGroupsofNumberFields.). Thenatural map G Ñ Out pG q (2) k cont QpXq is an isomorphism, and the compact-open topology induces the topology onG induced by its structure as k aGaloisgroup. Theorem3answersGrothendieck’s question;thisisanalogoustoatheoremofI.BumaginandD.Wise, whichrealizesanycountable groupastheouterautomorphism groupofafinitelygeneratedgroup[BW02]. InSection12,wewritedown,foranynumberfieldk,aninfinitefamilyofexplicitvarietiesX whichsatisfy thehypotheses ofTheorem3. Any group G which satisfies the hypotheses of Theorem3 is infinitely-generated and infinitely- QpXq presented. ItisthennaturaltoaskwhetherabsoluteGaloisgroupsofnumberfieldsareouterautomorphism groupsoffinitely-generated, finitely-presented, profinite groupsofgeometricprovenance. The “smallest group” currently considered to be a candidate to give such a geometric representation is the group GT, whose study was initiated by Drinfel’d [Dri90] and Ihara [Iha91]. GT admits an injective grouphomomorphism y ρ: G Ñ GT. y (3) Q It is not known whether ρ is surjective. GT is a much-studied yet poorly-understood object; we review in y Section11thetheorywewillneed,andreferto[LS06]foramoreexhaustive survey. WedenotebyM themodulispaceyofgenus0curveswith5distinct, marked,orderedpoints. Aspart 0,5 oftheconstruction ofGT,wehaveaninjection y η :GT Ñ Outpπ1´etpM0,5qq, (4) suchthatthecomposition y η˝ρ:G Ñ Outpπ´etpM qq (5) Q 1 0,5 istheinjection induced bythetheoryofthefundamental group. WeproveanecessaryandsufficientcriterionforanelementofGT,asdeterminedbyitsimageunderη, tobeintheimageofρ. M isbirationally equivalent toP2,whichgivesthescheme-theoretic inclusion 0,5 y γ :SpecpQpx,yqq Ñ M (6) 0,5 of the generic point of M . The étale fundamental group functor then gives a continuous surjection of 0,5 profinite groups γ : G Ñ π´etpM q, ˚ Qpx,yq 1 0,5 well-defined uptoconjugation byanelementofπ´etpM q. 1 0,5 Theorem4. Letα P imη.Thenα P imη˝ρifandonlyifαsatisfies thefollowing lifting condition: there existsanautomorphism α˜ : G Ñ G (7) Qpx,yq Qpx,yq sothatthediagram 3 G α˜ // G Qpx,yq Qpx,yq γ˚ γ˚ (cid:15)(cid:15) (cid:15)(cid:15) π´etpM q α // π´etpM q 1 0,5 1 0,5 commutesuptoinnerautomorphisms. ThisisthefirstnecessaryandsufficientgeometricconditionforanelementoftheGrothendieck-Teichmu¨ller grouptolieintheimageofG . Q InSection12weprovide explicit examples of surfaces whichsatisfy thehypotheses ofTheorem3, and weconclude withtheproofofTheorem4. 2. THE GEOMETRIC INTERPRETATION OF INERTIA AND DECOMPOSITION GROUPS OF PARSHIN CHAINS Definition 5. Let F be a field finitely generated over some algebraically closed field K of characteristic zero; suchafieldwillbecalled afunctionfield. NotethatthefieldK isdetermined byF (forinstance, its multiplicativegroupisthesetofalldivisibleelementsinthemultiplicativegroupofF);itwillbedenotedby KpFq, andbecalled thefield ofconstants ofF. Thetranscendence degree ofF over KpFqwillbecalled the dimension of F. Wewill denote by G the absolute Galois group of F and F the algebraic closure of F F. For general theory of valuations, including proofs of the algebraic theorems cited without proofs, see [FJ08]. Wewillalsouseresultsfrom[Ser56]and[Gro03]withimpunity. Definition 6. A valuation v on F is an ordered group pvF,ďq, called the value group of v, along with a surjective map v :F Ñ vF Yt8u (8) whichsatisfies 1. vpxq “ 8ifandonlyifx “ 0. 2. vpxyq “ vpxq`vpyq(here,wedefine8`g “ 8forallg P vF Yt8u.) 3. vpx`yqě mintvpxq,vpyqu,whereweextendtheorderingďtovF Yt8ubyg ď 8forallg P vF. A valuation v gives rise to a valuation ring O , which is the set of all x P F such that vpxq ě 0. O is v v integrally closedinF andlocal,andwecallitsmaximalidealm . Wethendefinetheresiduefieldtobe v Fv “ O {m , (9) v v AsubringR Ď F isavaluation ringO forsomevaluation wifandonlyifforeveryx P Fˆ eitherx P R w orx´1 P R. Therefore, equivalently, wemaydefineavaluation v byitsplace p : F Ñ FvYt8u (10) v whereO ismappedtoitsreductionmodm andFzO ismappedto8. AnymapfromafieldF toanother v v v fieldLwhichisaringhomomorphism “with8”thusgivesrisetoavaluation onF. Definition7. Twovaluations willbecalledequivalentifandonlyiftheyhavethesamevaluation ring. 4 Definition8. Ifv isavaluationonF andwisavaluation onFv,thenwemaydefineavaluation w˝v on F byconsidering thecomposition p ˝p : F Ñ pFvqwYt8u (11) w v asaplacemaponF. Thisvaluation iscalledthecomposition ofwwithv. Definition 9. A model X of a function field F is a smooth, connected KpFq-scheme of finite-type with a map s : SpecF Ñ X, (12) X thestructuremapofthemodel,whichidentifiesF withthefieldofrationalKpFq-functionsonX. Anormal modelisamodelwiththerequirementofsmoothnessreplaced bynormality. Definition10. Byvirtueofthestructuremap,themodelsformafullsubcategoryofthecategoryofschemes under SpecF. We define an F-morphism of models to be a morphism of varieties under SpecF, and BirpFqthefullsubcategory ofvarietiesunderSpecF whoseobjectsareprecisely themodelsofF. Definition 11. Wesay that a valuation v on F has a center on or is centered on X if X admits an affine open subset SpecA such that A Ă O , the valuation ring of v. Let R Ă F be a subring giving an affine v openSpecR ĎX. ThenthecenterofvonSpecRistheZariskiclosedsubsetofX definedasZpm XRq; v thecenterofv onX istheunionofthecentersofv onSpecRasSpecRrangesoverallaffineopensofX. Wedenoteby|v|thecenterofv. Definition12. Aprimedivisorv onF isadiscretevaluation trivialonKpFqsuchthat tr. deg. Fv “ tr. deg. F ´1. (13) KpFq KpFq (This condition is very important in birational anabelian geometry in general, and we say that v has no transcendencedefect;see[Pop94]formoredetails.) Definition 13. A rank-1 Parshin chain for F is a prime divisor. A rank-i Parshin chain is a composite w˝v,wherev isarank-pi´1qParshinchain, andwisaprimedivisor onFv. Definition 14. We denote by Par pFq the collection of i-Parshin chains for F, where i ď tr. deg. F. i KpFq Given a rank-k Parshin chain v we denote by Par pvq the collection of rank-i Parshin chains of the form i w˝v. Par pvqisemptyifi ă k;istvuifi “ k;andisinfiniteifi ą k. IfS Ď Par pFqwedefine i k Par pSq “ Par pvq. (14) i i vPS ď Wealsolet ParpSq“ Par pSqand ParpFq “ Par pFq. (15) i i i i ď ď Example15. Todescribetherank-1ParshinchainsonF,whereF isthefunctionfieldofasurfaceoverQ, weconsider thesetofallpairspX,DqwhereX isapropermodelofF andDisaprimedivisoronX. On thiscollection, wehaveanequivalence relationgenerated bytherelation „,wherewesay pX,Dq „ pX1,D1q ifthereexistsarational map ϕ: X Ñ X1 5 respecting thestructure mapsofthemodelsX andX1 suchthatDismappedbirationally toD1 byϕ. Therank-2Parshinchainsarethenequivalence classespX,D,pqwhereD isaprimedivisoronD and pisasmoothpointonD,andtheequivalence relation „isnowgenerated bysaying pX,D,pq „ pX1,D1,p1q aslongasthereisarational map ϕ: X Ñ X1 respecting thestructure mapsofthemodelsX andX1 sothatDismappedbirationally toD1 byϕandpis mappedtop1 byϕ. Givenanalgebraic extension L|F everyvaluation extendstoL,thoughnotnecessarily uniquely. Definition16. WedefineX pL|FqtobethesetofvaluationsonLwhichrestricttovonF. IfL|F isGalois, v thenGalpL|Fqactstransitively onX pL|Fq. ForanyGaloisextensionL|F andv˜P X pL|Fqwedefinethe v v decomposition group D pL|Fq “ tσ P GalpL|Fq |σpO q“ O u. (16) v˜ def v˜ v˜ EachD pL|Fqhasanormalsubgroup, theinertiagroupT pL|Fq,definedasthesetofelementswhichact v˜ v˜ astheidentity onLv˜. Wehaveashort-exact sequence, thedecomposition-inertia exactsequence 1 Ñ T pL|Fq Ñ D pL|Fq Ñ GalpLv˜|Fvq Ñ 1. (17) v˜ v˜ Ifv˜ ,v˜ P X pL|Fqandv˜ “ σv˜ forsomeσ P GalpL|Fq,then 1 2 v 1 2 D pL|Fq “ σ´1D pL|Fqσ andT pL|Fq “ σ´1T pL|Fqσ. v˜1 v˜2 v˜1 v˜2 Thus,allD pL|FqandT pL|Fq,respectively,areconjugateforagivenv,andwhentheliftisnotimportant, v˜ v˜ we denote some element of the conjugacy class of subgroups by D pL|Fq and T pL|Fq, respectively. We v v defineD andT ,respectively, tobeD pF|FqandT pF|Fq. v v v v ForanyGaloisextensionL|F,avaluationvonF andavaluationwonFv,wemaychoosev˜P X pL|Fq v andw˜ P X pLv˜|Fvq. Thereisthenanatural shortexactsequence, thecompositeinertiasequence: w 1Ñ T pL|Fq Ñ T pL|Fq Ñ T pLv˜|Fvq Ñ 1, (18) v˜ w˜˝v˜ w˜ whereT Ď G ,foranycomposite ofvaluations. Thus,ifT pL|Fqistrivial, w Fv v˜ T » T . w˜ w˜˝v˜ Wewillusethreedifferent typesoffundamental groups, withthefollowingnotation: top 1. π will denote the topological fundamental group, the fundamental group of a fiber functor on the 1 top category oftopological covers ofatopological space; covering space theory [Hat02]showsthat π 1 can be computed using based homotopy classes of maps into S1; this is the original fundamental groupconsidered byPoincaré[Poi10]. 2. πˆ will denote the profinite completion of πtop, the fundamental group of a fiber functor on the 1 1 category offinitetopological coversofatopological space. 3. π´et willdenotetheétalefundamental group. 1 6 For a normal variety X over an algebraically closed subfield of C, one has an equivalence between the category of finite, étale covers of X and the finite, unramified covers of Xan, its corresponding analytic spaceoverC,by[GR57]. Thisleadsimmediatelytothe Theorem17(ComparisonTheorem). LetX beanormalvarietyoverCandx P XpCq.Thereisacanonical isomorphism πˆ pXan,xq» π´etpX,xq. (19) 1 1 Everyknown computation ofnonabelian fundamental groups ofvarieties factors through this compari- son theorem; in characteristic p, for instance, this is combined with Grothendieck’s specialization theorem [Gro03,X.2.4]toobtaininformation aboutfundamental groups. Let now K “ C and F be a function field over C. Then we have the following interpretation of D v whenv isaprimedivisor. First,v isthevaluationassociated toaWeilprimedivisoronsomenormalmodel X of F — that is, a normal variety with function field F, considered as a C-scheme. Given X, there is a corresponding normalanalytic spaceXan. LetX beamodelofF onwhich|v|isaprimedivisor. Example18. Theexceptional divisorE onBl pXq,theblowupatsomeclosedpointpofX,givesaprime p divisoronF butitscenteronX isnotcodimension 1andsoisnotcenteredasaprimedivisoronX. Let D1 Ď X be the nonsingular locus of |v|; notice that the underlying topological space of D1 is connected, asv isaprimedivisor. Definition19. LetN thenbeanormaldiscbundlefor(equivalently, atubularneighborhood of)D1 and T “ NzD1 thecomplementofD1 initsnormaldiscbundle N,whichadmitsthenormalbundlefibersequence 1 //F ι //T π // D1 // 1, (20) whereF isoneofthefibers. Let p be apoint on F. Note that F, like all fibers of π, isa once-punctured disk and thus is homotopy equivalent toacircle. Thereisasurjection ρ:G Ñ π´etpX,pq » πˆ pXan,pq (21) F 1 1 (proof: each normal étale cover of X gives a normal extension of its field of functions) whose kernel we willdefinetohavefixedfieldF ,andthefollowingcommutativediagram: X 1 //πˆ pF,pq ι // πˆ pT,pq π // πˆ pD1,πppqq // 1 (22) 1 1 1 LLLLLLLLLL&& (cid:15)(cid:15) π´etpX,pq. 1 Thenwehave Proposition20(TheGeometricTheoryofDecompositionandInertiaGroups). Intheshortexactsequence 22: 1. Thetoprowisacentral extension ofgroups, asthenormalbundleiscomplex-oriented. 2. Theimageofπˆ pF,pqinπ´etpX,pqisaT pF |Fq. 1 1 v X 7 3. Theimageofπˆ pT,pqinπ´etpX,pqisaD pF |Fq. 1 1 v X 4. πˆ pD1,πppqqisaquotientofG ,corresponding tocovers ofD1 pulledbackfromcovers ofX. 1 Fv Wewilldenote byt agenerator ofπtoppF,pq Ď πˆ pF,pq,aswellasanyofitsimagesinπ´etpX,pqor v 1 1 1 T pF |Fq. v X Definition21. Werefertosuchat asameridianofv. v Each meridian is almost unique — its inverse also gives a meridian of v, albeit “in the opposite direc- tion”. Thisshould beviewed asa“loop normal tooraround |v|”. Itsimagegenerates πˆ pF,pq. Ingeneral, 1 ifweareworkinginasituation inwhichwedonotspecify abasepoint, themeridianbecomesdefined only uptoconjugacy. Definition22. LetΓbeasubgroup ofagroupΠ. Thentheabelianization functorgivesamap ab : Γab Ñ πab. (23) 1 WedenotebyΓa theimageofab. Inparticular, givenv avaluation, andΠaquotientofG orπtoppXqfor F 1 some model of X, we will denote by Ta and Da the images of inertia and decomposition, respectively, in v v Πab,whichwillsometimesappearinthesequelasH . Weletta betheimageofameridianinΠab. 1 v WecanalsodefinethemeridianofavaluationvonamodelX if|v|issmooth,andextendthedefinition tonon-smooth |v|asfollows. Weresolvethesingularities of|v|onX togetabirational map η : X˜ Ñ X suchthat 1. η isanisomorphism outsideof|v|. 2. |v| Ď X˜ issmooth. Thenwedefine ameridiant onX tobe v t “ η pt q (24) v ˚ v wheret isameridian onX˜. Toseethisiswell-defined, ifwehavetwosuchmapsη,η1 asinthefollowing v diagram: X˜2 (25) B } ϕ } B ϕ1 B } ~~} B X˜ X˜1 A A | AAη η1 || A | A | A | A ~~|| X, wemayalwaysconstructϕandϕ1 birational morphismssothat: 1. Theabovediagramcommutes. 2. ϕ,ϕ1,η˝ϕ,η1 ˝ϕ1 areisomorphisms outsideof|v|. 3. |v|issmoothinX˜2. 8 Inthiscase,themeridiansinX definedbyη1andηaretheimageofameridianinX˜2 underη˝ϕandη1˝ϕ1 so,bycommutativity ofthediagram, thetwomeridians arethesame. There is also the notion of a meridian for a higher-rank Parshin chain; we give here the notion for a rank-2Parshinchain. Definition23. LetLbeanalgebraic extensionofF,w˝v arank-2ParshinchainonF,andX amodelof F on which v has a center, but on which w ˝v is not centered. Then the meridian of the rank-2 Parshin chain t for L|F is the element of AutpL|Fq induced by the inverse limit of the monodromies of a loop w˝v on |v| around the point induced by w on the normalization of |v|. As in Definition22, any image in an abelianization willbedenotedta . w˝v LetF havedimension n. Thenifv isann´1-dimensional Parshinchain, Fv isthefunction fieldofa curveoverK. Fv isequipped withafundamental, birational invariant: itsunramifiedgenusgpvq. Wecan computethisasfollows: gpvq “ rk Dva{xTva,Tay . Zˆ p pPParnpvq 3. GEOMETRIC SETS AND THE MAXIMAL SMOOTH MODEL Definition 24. We say that a set S of prime divisors of a function field F is a geometric set (of F) if and only if there exists a normal model X of F such that S is precisely the set of valuations with centers Weil primedivisors onX. Inthiscase,wewrite S “ DpXq. IfX issmooth,wesayX isamodelofS. Theorem 25 (Pop). If F is a function field with KpFq “ Q, tr. deg. F ě 2, and let Γ Ď G be a Q F closed subgroup, up to conjugacy. Then there is a topological group-theoretic criterion, given one of the representatives ofΓtodeterminewhetherthereexistsiandv P Par pFqsuchthatΓ “ T orΓ “ D ,and i v v whatthisiisifitexists. This theorem is proven with G replaced by the pro-ℓ completion of G in [Pop11a]. To see this for F F G as a whole, we may apply Key Lemma 5.1 of [Pop11b]. As the maximal length of a Parshin chain is F thetranscendence degreeofF,thisrecipeimmediatelydeterminesthetranscendence degreeofF. Popalso proved[Pop11b]: Theorem26(Pop). GivenageometricsetS ofprimedivisors onF, 1. IfS isageometricsetofprimedivisorsonF,thena(possiblydifferent)setS1 ofprimedivisorsonF isageometricsetifandonlyifithasfinitesymmetricdifference withS. 2. Thereexistsagroup-theoretic recipetorecover GeompFq “ ttpT ,D q |v P Su| S ageometricsetu. v v Definition27. IfS isanysetofprimedivisors onF,wedefinethefundamentalgroupofS tobe: ΠS “ GF{xTvyvPS. Here,xTvyvPS isthesmallestclosed, normalsubgroup ofGF whichcontains everyelementinevery conju- gacyclassineachT . IfT Ď S isasubset, thenwedenoteby v ρTS :ΠT Ñ ΠS therestriction map,anddropsubscripts whentheyareunambiguous. 9 Given ageometric setS, there are many possible X such that DpXq “ S; forinstance, any model less afinitesubsetofpointshasthesamesetofprimedivisors. Wenowdefinethemaximalmodelonwhichwe willbeabletoeffectourintersection theory. Theorem 28. LetS be a geometric set for a function field F of dimension 2. There exists a unique model MpSqofF suchthatthefollowing holds: 1. DpMpSqq “ S. 2. MpSqissmooth. 3. πˆ1pMan,pq» π1´etpMpSq,pq » ΠS. 4. If X is any other smooth model of F which satisfies S “ DpXq, then there exists a unique F- morphism X Ñ MpSq,andthisisasmoothembedding. Proof. LetU beamodelofS,andletX beasmoothcompactification ofU. Let B “ DpXqzDpUq be the collection of field-theoretic prime divisors in the boundary of U in X. This is a finite set, as the boundary divisor is itself a finite union of prime divisors. We now define a sequence of pairs pX ,B q of i i varietiesX andfinitesetsofdivisors B Ă DpXqinductively asfollows: i i 1. LetX “ X,B “ B. 1 1 2. Wenow construct pX ,B qfrom pX ,B q. First, take thecollection tv u Ď B suchthat each|v | i`1 i`1 i i j i j isa´1-curve such that noother |v1|that intersects itinthe boundary is a´1-curve, and blow down. SetX tobethisblowdown,andB “ B ztv u. i`1 i`1 i j AsB isfinite,atsomepoint, thissequence becomesstationary—let’ssayatpX ,B q. Thenwedefine 1 n n U “ X z |v|. (26) max n vďPBn Toprovethatthissatisfies property 4,letU1 beanothermodelandX1 asmoothcompactification ofit. Run the algorithm on X1 to get a pair pX1 ,B1 qThen by strong factorization for surfaces (see Corollary 1-8-4, n1 n1 [Mat02]),thereexistsaroof Y B } B } B ~~}}δ}}}} BBBδB1B X1 X , n1 n whereδ andδ1 arebothsequences ofblowups. Foranymorphism ϕ : Z Ñ Z1 ofvarieties wemaydefinetheexceptional locus Epϕq “ p P Z1 |dimpϕ´1ppqq ě 1 Letp P Epδ1qXU . Thenδ1´1ppqiscon nected, soδpδ1´1ppqqisalso(connected. Itisproper, soiseither max aunionofdivisorsorapoint. Ifitisaunionofdivisors andoneofthesedivisorswereinU1 ,thisdivisor max 10