ebook img

An XMM-Newton search for X-ray sources in the Fornax dwarf galaxy PDF

1.2 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview An XMM-Newton search for X-ray sources in the Fornax dwarf galaxy

Astronomy&Astrophysicsmanuscriptno.ms˙20152 (cid:13)c ESO2013 December11,2013 An XMM-Newton search for X-ray sources in the Fornax dwarf galaxy A.A.Nucita1,2,L.Manni1,2,F.DePaolis1,2,D.Vetrugno1,2,andG.Ingrosso1,2 1 DipartimentodiMatematicaeFisica“EnnioDeGiorgi”,Universita`delSalento,CP193,I-73100Lecce,Italy 2 INFN,Sez.diLecce,viaPerArnesano,CP193,I-73100,Lecce,Italy Received,;accepted, 3 1 ABSTRACT 0 2 Wereport the resultsof adeep archive XMM-Newton observation of theFornax spheroidal galaxy that weanalyzed withtheaim of fully characterizing the X-ray source population (in most of the cases likely to be background active galactic nuclei) detected n towardsthetarget.Acrosscorrelationwiththeavailabledatabasesallowedustofindasourcethatmaybeassociatedwithavariable a starbelongingtothegalaxy.WealsosearchedforX-raysourcesinthevicinityoftheFornaxglobularclustersGC3andGC4and J foundtwosourcesprobablyassociatedwiththerespectiveclusters.ThedeepX-rayobservationwasalsosuitableforthesearchof 2 theintermediate-massblackhole(ofmass≃ 104 M )expectedtobehostedinthecenterofthegalaxy.InthecaseofFornax,this ⊙ searchisextremelydifficultsincethegalaxycentroidofgravityispoorlyconstrainedbecauseofthelargeasymmetryobservedinthe ] opticalsurfacebrightness.SincewecannotfirmlyestablishtheexistenceofanX-raycounterpartoftheputativeblackhole,weput E constraintsonlyontheaccretionparameters.Inparticular,wefoundthatthecorrespondingupperlimitontheaccretionefficiency, H withrespecttotheEddingtonluminosity,isaslowasafew10−5. . h Keywords.X–rays:individual:FornaxdSph–blackholephysics p - o r 1. Introduction valuesobtainedbyextrapolationoftherelevantquantitiesfrom t spiralgalaxies. s Diffusedwarfgalaxies(DDGs)arelow-luminositygalaxiesthat a ThedSphgroupisalsointerestingsinceitprovidesanopti- [ seem to be characterized by structural parameters (luminosity, stellarscalelength)fundamentallydifferentfromthosefoundin mallaboratorytostudytheevolutionofaparticularstellarpopu- 1 lation(ofknownmetallicityandage)withoutsufferingextreme spiral and elliptical galaxies (Kormendy 1985) with the dwarf v crowdingconditionsasoftenhappensinglobularclusters.Inthis spheroidalgalaxies(dSphs)attheextremeendofthissequence. 0 respect,thehigh-energyviewofthesegalaxies,suchasthatof- 9 Inparticular,dSphsarethoughttobesatellitegalaxiesinthe fered by deep XMM-Newton observations, allows the study of 1 Local Group (see e.g., Mashchenkoetal. 2006), have approx- the faint end of the X-ray luminosity function of an old stellar 0 imately spheroidal shapes (sometimes typical of irregular and population.Furthermore,bystudyingthelowmassX-raybinary . late-typespiralgalaxies),and are usuallyatleast two ordersof 1 (LMXB)populationcharacteristicsindSphsandglobularclus- magnitudelessluminousthanthefaintestknownspiralgalaxies. 0 ters,itispossibletogetinformationabouttheformationhistory 3 Thesesystemshavestellarcontentsin therange3×103 M⊙ to (still challenging,see e.g. Maccarone2005b) of such systems. 1 2×107 M⊙ (Martinetal. 2008) on length scales of a few kpc SinceanypersistentlybrightLMXBwouldentirelyconsumethe : or less. Additionally, they show evidence of being dark-matter v mass of the companionvia accretion in a few hundredmillion dominated at all radii (for a review see Mateo 1997) as shown i years(seee.g.thediscussionontheLMXBformationhistoryin X by the measurementsof the centralvelocitydispersionthat are Maccarone2005b),thepresenceofbrightX-raybinariesinold r muchlargerthantypicalvalues(seeMateo1998a,Kleynaetal. stellarsystemsrepresentsaproblemthatisyettobesolved.An a 2001,Kleynaetal.2002andreferencestherein).Thecentralve- exampleofthesechallengingtargetsistheSculptordSphgalaxy. locitydispersionallowsthemass-to-lightratiostobeestimated. When studying a deep Chandra survey of this dwarf galaxy, Thedifferencesbetweenthe normalgalaxiesandthedSphs Maccarone (2005b) found at least five X-ray sources with op- familiesprobablycomefromadifferentformationhistorywith tical counterparts hence pushing towards alternative formation the most favored theory being that dSphs have low mass den- theoriesofthelocalLMXBpopulation.Apushinthisdirection sity since past supernova winds removed large amounts of gas wouldbetheobservationoftargetswithnoglobularclustercon- (Silketal. 1987). Despite being verydifferentin their physical tamination(liketheSculptorgalaxy)and,possibly,withashort propertiesfrom spirals and ellipticals, dSphsshow kinematical epochofstarformation. properties that can be modeled using dark matter (DM) halos Basedontheextrapolationtoglobularclustersofthefunda- with the same mass profiles as those which reproduce the ro- mental M − M relation derived from the study of super tation curves of spirals (Saluccietal. 2012). Thus, the derived BH Bulge massiveblackholesingalacticnuclei(seee.g.Magorrianetal. centraldensitiesandcoreradiifordSphsareconsistentwiththe 1998),oneexpectstofindintermediatemassblackholes(here- afterIMBHs)inglobularclusters,i.e.,sphericalsystemsofstars Sendoffprintrequeststo:A.A.Nucita([email protected]) which survived the interactions with the surroundings objects 1 A.A.Nucitaetal.:TheXMM-NewtonviewoftheFornaxdSph andnoworbitthecenterofthehostinggalaxy.Sinceitiscom- with known catalogs, and the identification of a few objects as monly accepted that the galaxies and associated globular clus- genuine X-ray sources in Fornax dSph. We further discuss the tersformedatthesametime(seee.g.Ashman&Zepf1998and IMBHhypothesisandaddressourconclusionsinSect.4. Westetal.2004),itisnaturaltoexpectthatatleastsomeofthese sphericalsystemsmayhostanIMBH. ApartfromtheDMandstellarpopulationissues,dSphsare 2. X-rayobservationsanddataprocessing intriguingplacestosearchforIMBHs,i.e.,collapsedobjectsin The Fornaxdwarf galaxy(at J2000coordinatesRA = 02h 39m themassrange102-105M whichareconsideredtobethemiss- ⊙ 59s.3 and Dec = −34◦ 26′ 57.1′′) was observed on August 8, inglinkbetweentheobservedstellarmassblackholes(ofafew 2005for≃ 100ks(ObservationID0302500101)withthethree tensofsolarmasses)andthesupermassiveones(106−108M ) ⊙ EuropeanPhotonImagingCameras(EPICMOS1,MOS2,and residingatthecenterofmostgalaxies.Oneofthereasonswhy pn)(Stru¨deretal.2001,Turneretal.2001)onboardtheXMM- theexistenceofsuchobjectsisexpectedistheymightplayacru- Newtonsatellite.Thetargetwasobservedinimagingmodewith cialroleintheformationofthesupermassiveobjectswhichare thefull-framewindowandmediumfilter. thoughtto growfromapopulationofseed objectswithmasses in the IMBH range (see e.g. Ebisuzakietal. 2001). Obviously, those seeds that did not accrete a substantial amount of matter 2.1.Datareductionandscreening and/ordidnotmergetoformacentralsupermassiveblackhole remainasIMBHs. The observation data files (ODFs) were processed using the XMM-ScienceAnalysisSystem(SASversion11.0.01) withthe WeexpecttofindIMBHsindSphsaswell(Maccaroneetal. latest available calibration constituent files. The event lists for 2005).Forexample,Reinesetal.(2011)reportedthatthenearby thethreecameraswereobtainedbyprocessingtherawdatavia dwarf starburst galaxy Henize2-10 harbors a compact radio thestandardemchainandepchaintools. source at its dynamical center spatially coincident with a hard X-ray source (possibly an ≃ 106 M accreting black hole). We followed standard procedures in screening the data. In ⊙ particular, for the spectral analysis we rejected time intervals Farrelletal.(2009)foundthebrightestknownultra-luminousX- affected by high levels of background activity. These time in- raysourceHLX-1(seee.g.vanderMarel2004forareview)in tervals (particularly evident in the energy range 10–12 keV) thehalooftheedge-onS0agalaxyESO243-49,possiblyasso- wereflagged,strictlyfollowingtheinstructionsdescribedinthe ciated with an IMBH whose mass was initially evaluatedto be >9×103 M (Servillatetal.2011)andthenbetterconstrained XRPSUser’sManual2byselectingathresholdof0.4countss−1 ∼ ⊙ and0.35countss−1 forthe pnandMOScameras,respectively. to the range 9×103-9×104 M (Webbetal. 2012). A further ⊙ This allowed us to compile lists of good time intervals (GTIs) step towards the IMBH hypothesis was given by Farrelletal. which were used to discard high background activity periods. (2012) who detected evidence for a young (< 200 Myr) stellar Theresultingexposuretimesforthetwo MOSandpncameras cluster of total mass ∼ 106 M⊙ around the putative black hole were ≃ 82 ks and ≃ 62 ks, respectively. We screened the data andconcludedthatHLX-1islikelytobethestrippedremnantof by using the filter expressions #XMMEA EM (for MOS) and anucleateddwarfgalaxy. #XMMEA EP (for pn). We also added the FLAG==0 selec- InthecaseoftheFornaxdSph,vanWassenhoveetal.(2010) tion expression in order to reject events close to CCD gaps or assumed that an IMBH of mass MBH ≃ 105 M⊙ is hosted in badpixels,takingintoaccountallthevalidpatterns(PATTERN the galactic core and suggested that measuring the dispersion in[0:12])forthetwoMOScamerasandonlysingleanddouble velocity of the stars within 30 pc from the center would allow events(PATTERNin[0:4])forpn. that hypothesisto be tested. Jardel&Gebhardt(2012) recently constructedaxisymmetricSchwarzschildmodelsinordertoesti- matethemassprofileoftheFornaxdSphand,oncethesemodels 2.2.Sourcedetection weretested versusthe availablekinematicdata,it waspossible For each camera, the list of events was divided into 5 energy toputa1-σupperlimitof M = 3.2×104 M ontheIMBH BH ⊙ bandschosenaccordingto those used in the 2XMM catalogof mass. serendipitousX-raysources(Watsonetal.,2009),i.e.,B :0.2− 1 In this work, we concentrate on the Fornax dSph re- 0.5keV, B : 0.5−1.0keV, B : 1.0−2.0keV, B : 2.0−4.5 2 3 4 analyzing a set of XMM-Newton data previously studied by keV, and B : 4.5−12.0 keV. For the three EPIC cameras, we 5 Orioetal.(2010)whosearchedfortheX-raypopulationinthe producedone image for each energyband and a mosaic image LeoI and FornaxdSphs.Inourwork,we used the mostrecent inthe0.3−10keVenergybandforinspectionpurposesonly. analysissoftwareandcalibrationfiles.Apartfromthecharacteri- We then performed the source detection using the SAS zationofthehigh-energypopulationdetectedtowardsthegalaxy task edetect chain. For each camera and input image, the tool and the cross correlation with the available databases, we dis- first evaluates the corresponding exposure map (via the task cuss the possible identificationof a few genuineX-raysources eexpmap)takingintoaccountthecalibrationinformationonthe belonging to the Fornax dSph. We also considered the possi- spatialquantumefficiency,filtertransmission,andvignetting.In ble existence of an IMBH in the galaxy core as suggested by the next step, we producedimage masks that delimited the re- vanWassenhoveetal.(2010)andJardel&Gebhardt(2012)and gionswherethesourcesearchingwasperformed. showthatoneofthedetectedX-raysourcescoincideswithone Thesourcesidentifiedwith the localandmapsearchingal- of the possible Fornax dSph centers of gravity. We then con- gorithms3werethenusedbythetaskemldetectwhichperforms strained the black hole accretionparametersand notedthatad- ditional importantinformationmay be obtained by moderately 1 http://xmm.esa.int/sas/ deepradioobservationsandhigh-angularresolutionX-raydata. 2 http://xmm.esac.esa.int/external/xmm user support/ The paper is structured as follows: in Sect. 2 we describe /documentation/rpsman/index.html theX-raydataanalysisandinSect.3wereportourfindingson 3 Formoredetails,thereaderisaddressedtotheon-linethread: theX-raypopulationobservedtowardsthegalaxy,itscorrelation http://xmm.esac.esa.int/sas/current/documentation 2 A.A.Nucitaetal.:TheXMM-NewtonviewoftheFornaxdSph a point spread function (PSF) fitting in each of the EPIC cam- smoothedwith a 3-pixelGaussiankernel)of theMOS1,MOS erasfor the five energybandssimultaneously.In particular,for 2, and pn exposuresin the 0.3-10 keV energyband is given in anyofthedetectedsources,thelocationandextentwerefixedto Figure 1. Here, each of the identified sources is indicated by a thesamevaluesinallbandswhileleavingthecountratesfreeto 35′′ radiuscircle(containing(cid:27)90%ofenergyat1.5keVinthe varyamongthedifferentenergybands. pncamera,seee.g.theXRPSUser’sManual2008),labeledwith After the task completion, three lists of sources remained asequentialnumberandwithacolordependingonwhichcam- (onepercamera),eachcontainingtherefinedcoordinates,count era(orsetofcameras)thesourcewasdetectedby:yellow(pn), rates,hardnessratios,andmaximumdetectionlikelihoodofthe magenta(pnandMOS1),red(pnandMOS2),black(pn,MOS sourcecandidates. 1,andMOS2),blue(MOS1andMOS2),cyan(MOS1),and Foreachof thedetectedsources,we derivedthe X-rayflux green (MOS 2). The red-dashedellipse indicates the extension (inunitsofergs−1 cm−2)inagivenbandas of the galaxy which is characterized by semi-major and semi- minoraxesof≃ 17′and≃ 13′(seetheNASA/IPACextragalac- B F = i , (1) ticdatabase7 -NED-)andamajor-axispositionangleof≃ 480 i ECF i (Mateo1998b). where B is the countrate in the i bandand ECF is an energy In Table 1 we summarize our source analysis, ordering the i i conversionfactorwhich hasbeencalculatedusingthe mostre- list by increasing X-ray flux in the 0.2-12 keV energy band. centcalibrationmatricesfortheMOS1,MOS2,andpn.ECFs Here,wegiveasequentialnumber(Scr)foreachsource,alabel for each camera, energy band, and filter are in units of 1011 (#)indicatingwhichEPICcamera(orsetofcameras)identified counts cm2 erg−1. In particular, we used the ECFs4 obtained thesource,i.e.,A(pnonly),B(pnandMOS1),C(pnandMOS assuming a power-law model with photon index Γ = 1.7 and 2),D(pn,MOS1,andMOS2),E(MOS1andMOS2),F(MOS a Galactic foreground absorption of N ≃ 3.0 × 1020 cm−2 1),andG(MOS2).WealsogivetheJ2000coordinateswiththe H (Watsonetal., 2009). Note also thatthe adoptedhydrogencol- associatederrors(Column3-5),thehigh-energyhardnessratios umn density is of the same order of magnitude as the average HR andHR (seenextsection)(Columns6-7),the0.2−12keV 1 2 valueestimatedtowardsthetargetbyusingthe“N ”onlinecal- absorbedflux(Column8)andthecrosscorrelations(Column9- H culator5,i.e.,2.7×1020cm−2(Kalberlaetal.,2005). 10). We refined the absolute astrometry by matching the candi- We used the Two Micron All-Sky Survey (2MASS), date source lists to the USNO-B1 catalog (Monetetal., 2006). the Two Micron All-Sky Survey Extended objects (2MASX) Fromthiscatalog,weextractedasub-sampleofstarswithcoor- (Skrutskieetal.,2006),theUnitedStatesNavalObservatoryall- dinateswithin20′fromtheFornaxcenterandusedtheSAStask sky survey (USNO-B1) (Monetetal., 2006), and the variable eposcorr(withparameterofmaximumdistanceof1′′)toobtain starcatalogintheFornaxgalaxy(Bersier&Wood,2002)tocor- thecoordinatecorrectionwhichwas(onaverage)−0.56′′±0.50′′ relatetheX-raysourcecatalogwithopticalcounterparts.Indo- in RA and −1.77′′ ± 0.34′′ in Dec. We purged the candidate ingthis,weassociatedwiththecoordinatesofeachoftheiden- source lists (one per EPIC camera) by accepting only sources tifiedX-raysourceanerrorasresultingfromthequadraturesum withamaximumlikelihooddetection(asprovidedbythesource oftheXMM-Newtonpositionalaccuracy(≃2′′at2σconfidence detectionalgorithm)largerthan10 (equivalentto 4σ) andthen level, see Kirsch 2004, and Guainazzi 2010) and the statistical cross correlated the source lists via the IDL routine srcor.pro6 errorasdeterminedbytheedetect chaintool8.Similarly,theer- by requiring a critical radius of 1′′ outside which the correla- rorassociatedwiththeopticalcounterpartwasderivedfromthe tionswererejectedandobtainedthesourceparameters(i.e.,co- relevantcatalog. ordinates,countrates,fluxes,andhardnessratios)byweighting WhenanX-raysourceisfoundtobewithin1σfromanopti- (withtheerrors)thevaluesofinterestassociatedwiththesources calcounterpartinagivencatalog,wereportinTable1thecorre- identifiedinthethreecameras. spondingdistanceinarcsecondsintherelevantcolumn.We re- Afterremovingafewspurioussources(i.e.,thosepositioned mindthereaderthattheFornaxdSphgalaxywasalreadythetar- at the borders of the cameras and those not appearing as such getofaROSATX-rayobservation(seeGizisetal.1993forde- inthe0.2-12kevband),ourcatalogresultedin107sourcesde- tails)withthepurposeofcharacterizingtheX-raypopulation(if tected towards the Fornax dSph galaxy with, in particular, 32 any)inthegalaxyandofconstrainingtheextendedgascompo- sources identified contemporarily in MOS 1, MOS 2, and pn, nent.TheanalysisoftheROSATdataresultedinthecompilation of a catalog (hereinafter GMD093) listing 19 discrete sources 4 sources only in MOS 1 and MOS 2, 7 sources only in MOS congruous with the expected number of sources in the extra- 1 and pn, 18 sources only in MOS 2 and pn, 30 sources only galacticbackground.InTable2wegivetheGMD093labelsand in pn, 2 sources only in MOS 1, and 14 sources only in MOS coordinates (columns 1-3) of the sources observed by ROSAT 2.Notethatthenumberofdetectedsourcesagreesveryclosely andthelabelsofthecorrespondingsourcesinourcatalog(col- withthe104sourcesfoundbyOrioetal.(2010)whenanalyzing umn4).Thedistancebetweenthesourcesinthe GMD093cat- thesamedataset,thediscrepancyprobablyarisingfromslightly alogandthe correspondingsourcesfoundin theXMM-Newton differentchoicesinthedatascreeningprocedureandthedetec- list is given in the fifth column with the error evaluated as the tionthresholdused.Amosaicimage(logarithmicallyscaledand sum in quadraturebetween the XMM-Newton and ROSAT po- sitionalaccuracies9.Finally,apossibleclassification(basedon 4 For details on the adopted ECFs, see Saxton (2003). Please note that,since2008,improvementsinthecalibrationofEPICcameraslead tochangesintheECFs.Thus,thequotedECFsmustbemultipliedby 7 http://ned.ipac.caltech.edu/ acorrectionfactortogetabetteragreementamongthefluxesevaluated 8 Sincetheresultingpositionaluncertaintyisofafewarcseconds,we ineachcamera(Stuhlingeretal.,2006).TheECFsandassociatedcor- donotover-plotthesourceerrorcirclesinanyofthefiguresappearing rectionfactorsarereportedintheUser’sGuideofthe2XMMcatalog inthepaper. ofserendipitoussourcesavailableat 9 Becauseofthelackofanypositionaluncertaintyonthesourcesre- http://xmmssc-www.star.le.ac.uk/Catalogue/2XMMi-DR3. portedinGizisetal.(1993),weassociatedeachoftheROSATdetected 5 Availableinthetoolsectionofhttp://heasarc.nasa.gov sourceswithanerrorof≃15′′onboththecelestialcoordinates:weare 6 http://idlastro.gsfc.nasa.gov awarethatthiserrormaybeunderestimatedsincethepositionalaccu- 3 A.A.Nucitaetal.:TheXMM-NewtonviewoftheFornaxdSph 0 120.0 0. 0 5: 0 60.2 0 0. 0 10: 10094 71 10396 30.2 0 0. 15:0 45 18 44 7352 41 2371970219555 15.0 Dec -34:20:00.025:00.030:00.0 7786679270164262163556844273657134908114653564123272798973493561662912755118407348586936074115284507015181360222024754173599338833439018518 89896268844099 137...875 35:00.0 173685 107 38 102 2960 0.8 106 0.0 29 0 40: 0.4 0 0. 0 5: 0.1 4 30.0 41:00.0 30.0 2:40:00.0 30.0 39:00.0 38:30.0 RA 0.0 Fig.1.AmosaicimageoftheMOS1,MOS2,andpnexposuresinthe0.3−10keVenergyband(seetextfordetails). the SIMBAD10 and NED web sites) is attempted in the sixth following the convention used in Ramsay&Wu (2006) in studying column(QSO-quasar-,EmG-emissionlinegalaxy-,H2G-HII the Sagittarius and Carina dwarf galaxies and first introduced by galaxy-,SyG-Seyfertgalaxy-):whenasourceisnotcrosscor- Prestwichetal.(2003)andSoria&Wu(2003)S,M,andHcorrespond relatedwithSIMBADand/orNED,thisissimplylabeledasXrs tothecountratesin0.3-1keV,1-4keV,and4-10keVenergybands. (X-raysource).Notethat,amongthe19sourcesbelongingtothe GMD093catalog,6 are outof the XMM-Newtonfield of view. Furthermore,fromtheL -L relation(L beingtheFornaxdSph Since we expect that the detected X-ray sources are mainly ac- X B B Bbandluminosity),Gizisetal.(1993)estimatedthatatleastone creting compact objects such as background AGN (Active Galactic accretingbinaryshouldbepresentinthefieldofview.Forcom- Nuclei), X-raybinaries, and thebrighter end of cataclysmic variables pleteness, we mention that as far as the extended component (CVs),wecomparedthesourcemeasuredhardnessratios(redsquares) is concerned, the ROSAT data did not show any diffuse emis- with two spectral models (power-law, for simulating AGN and X- sion different from the normalX-ray backgroundand no trend ray binaries, and bremsstrahlung, for CVs) which may be used to withradiuswasevident.Here,weconcentrateonthepoint-like haveanoverall,although simplified,descriptionof thesource spectra sourcesidentifiedintheXMM-NewtonobservationoftheFornax (see e.g. Ramsay&Wu 2006 for a similar analysis made on the Sgr dSph. and Car dSphs). The model tracks, appearing in the color-color dia- gram, were obtained by simulating synthetic spectra within XSPEC (An X-Ray Spectral Fitting Package, Arnaud 1992), version 12.0.0. In particular, we give the expected set of color-color contours for bremsstrahlung (grey region) and power-law (black region) compo- nents.Inbothcases,theequivalenthydrogencolumndensityN varies 3. Thehigh-energyviewoftheFornaxdSph H intherange1019cm−2to1022cm−2:eachofthealmosthorizontallines 3.1.X-raycolorsandX-ray-to-NIRfluxratios correspondstomodelswithequal NH whichincreasesfrombottomto top. The temperature kT of the bremsstrahlung models (taken in the Using the results presented in the previous section and with the pur- range0.1-3keV)andthepower-lawindexΓ(intherange0.1-3)is poseofatentativeclassificationofallthesourcesidentifiedtowardsthe associatedwithprimarilyverticallines:thevaluesofkTandΓincrease FornaxdSph,weconstructedthecolor-colordiagraminFigure2.Here, fromlefttorightandfromrighttoleft,respectively. Arepresentative weconsideredthecolors error bar, obtained by averaging all the data point error bars, is also given.Mostofthedetectedsourceshavecolorsconsistentwiththoseof HR = H−M and HR = M−S , (2) theabsorbedpower-laworabsorbedbremsstrahlungmodels,although 1 S +M+H 2 S +M+H afewofthemmayrequirecombinedspectra.Mostofthesourcesap- peartohavespectraconsistentwiththatofatypicalAGN(whichinthe racyofROSATPSPCdecreaseswithincreasingoffsetfromthedetector hardnessdiagramofFigure2wouldcorrespondtoadotlyingcloseto axis. theharder color-color tracks,seee.g.Ramsay&Wu2006).However, 10 http://simbad.u−strasbg.fr/simbad/ becausethelargeerrorbarsaffectthehardnessratiodata,aclassifica- 4 A.A.Nucitaetal.:TheXMM-NewtonviewoftheFornaxdSph GMD093 RA Dec Src Distance Type Ref. ID (J2000) (J2000) (arcsec) 1 24015.7 -341323.1 100 27±15 Xrs – 2 23914.7 -341504.8 – – Xrs – 3 23912.2 -341818.2 101 3±15 Xrs – 4 23908.5 -341838.1 95 19±15 Xrs – 5 23950.0 -342010.9 104 18±15 QSO/EmG 1,2 6 23934.8 -342201.9 82 15±15 Xrs – 7 23933.5 -342539.0 105 16±15 QSO 1,2 8 24034.2 -342711.0 84 8±15 Xrs – 9 23820.8 -343017.6 – – Xrs – 10 23926.2 -343246.7 93 23±16 Xrs – 11 24008.1 -343425.3 97 6±15 QSO 2,3 12 23915.9 -343532.3 102 8±15 Xrs – 13 23903.7 -343646.4 90 8±15 Xrs – 14 23848.8 -343659.9 – – Xrs – 15 24019.0 -343727.1 107 7±15 QSO/H2G 1,2,4 16 24038.9 -343906.2 106 8±15 QSO/SyG 2,3 17 24208.1 -344006.8 – – Xrs – 18 23855.5 -344052.4 – – QSO 1,2 19 24039.1 -344810.7 – – Xrs – Table 2. List of the detectedX-raysourcescross-correlatedwith the catalog GMD093(Gizisetal. 1993). TheGMD093sources labeledas2,9,14,17,18,and19areoutoftheXMM-NewtonFOV. References. (1)Tinney(1999);(2)Veron-Cetty&Veron(2006);(3)Tinneyetal.(1997);(4)Jonesetal.(2006). tedblacklineinFigure3)and F /F < 3×10−2,respectively11.For X J the sources of our sample which correlate with2MASS counterparts, wegiveinTable3the0.2-2.4keVbandflux,theNIRJbandfluxand theJandKmagnitudes.Notethatthe0.2-2.4keVbandfluxhasbeen obtained from that in the 0.2-12 keV band (given in Table 1) assum- ing in webPIMMS a power-law model witha spectral index Γ = 1.7 and an absorption column density N = 3 × 1020cm−2. In Figure3, H wegivethecolor-colordiagram(X-raytoJbandfluxratioagainstJ-K) forthesourceslistedinTable3.Thesourceslyingabovethehorizon- taldashedlineareconsistentwithbackground AGN,whiletheothers seem to have characteristics similar to X-ray active stars and binary sources:threeofthem(19,41,and82)havemeasuredpropermotions in thePPMX catalog (seealso Table 1), confirming the stellar nature of theseobjects. Note that the X-raysource labeled as 107 correlates (within1.0′′)withasourceinthe2MASXand,accordingtoourcolor- colordiagram,ispossiblyassociatedwithabackgroundAGN(seealso Mendezetal.2011whereitisusedasareferencebackgroundAGNfor propermotionestimates),whileitwasprobablyreportedinthePPMX catalogbymistake(sourcelabeledas024019.0-343719):thisconfirms thepredictivepowerofthiscolor-colordiagram. Fig.2. The color-color diagram of the sources detected by the EPICcamerastowardstheFornaxdSphgalaxy.Thesolid lines represent the theoretical tracks expected for different emitting 3.2.BackgroundsourcesfromthelogN-logSplot models(seetextfordetails).Arepresentativeerrorbar(obtained Weestimatedthenumberofbackgroundsourcesexpectedtowardsthe averagingalldatapointerrorbars)isalsoshown. FornaxdwarfgalaxythroughthelogN-logSdiagram(Hasingeretal., 2005) and by using the minimum absorbed flux in the 0.2-12 keV band among the sources of our analysis, i.e., FAbs = 2.24 × 0.2−12 10−15ergs−1cm−2. Using webPIMMS v3.912 and assuming a power- tionbasedonlyonthehardnessratiocannotconstrainthenatureofthe law model with a spectral index Γ = 1.7 and an absorption column objectsinoursample. density N = 3 × 1020cm−2, we obtained an unabsorbed flux in A better diagnostic tool was found by Haakonsen&Rutledge H (2009) when studying the cross associations of the ROSAT All-Sky SurveyBrightSourceCatalog(RASS/BSC)withtheinfraredcounter- 11 NotethatabetterdiagnosticwouldusetheunabsorbedX-rayflux partsfoundin2MASS.Inparticular,theseauthorsfoundthatacolor- inthe0.2-2.4keVbandandtheextinction-correctedNIRmagnitudes: colordiagram(basedontheratiobetweenthe0.2−2.4keVflux(F ) intheproposedcolor-colordiagramofHaakonsen&Rutledge(2009), X andtheNIRfluxinJband(F )versustheJ-Kcolor)isusefulinstudy- thegalaxiesarepositionedintheregiondescribedby(J−K) > (J− J ingthecharacteristicsofthesources.Inthisplane,thegalaxies(Quasars K)0 > 0.6 and (FX/FJ)0 > FX/FJ > 3×10−2. On the contrary, the andSeyfert1objects)andthecoronallyactivestars(includingpre-main coronally active starssatisfy the relations (J−K)0 < (J−K) < 1.1 sequenceandmain-sequencestars,highproper-motionobjects,andbi- and(FX/FJ)<(FX/FJ)0<3×10−2,withthesubscript0indicatingthe nary stars) occupy distinct regions in such a way that galaxies have resultofthede-reddeningprocedure(seeHaakonsen&Rutledge2009 (J−K) > 0.6and F /F > 3×10−2 (dashed redlinesinFigure3), fordetails). X J whilealmostalltheobjectsinthesecondclasshave(J−K)<1.1(dot- 12 http://heasarc.gsfc.nasa.gov/Tools/w3pimms.html 5 A.A.Nucitaetal.:TheXMM-NewtonviewoftheFornaxdSph Src F F J K Annulus R R #Exp #Obs X J in ex (×10−14cgs) (×10−13cgs) (arcmin) (arcmin) 6 0.14±0.12 1.82±0.20 16.12±0.11 15.18±0.20 1 0.00 0.76 0.4±0.1 0 10 0.18±0.16 10.90±0.32 14.17±0.03 13.35±0.04 2 0.76 3.60 10.2±1.7 6 19 0.34±0.16 17.11±0.43 13.68±0.03 13.14±0.04 3 3.60 6.50 24.2±4.0 21 40 0.57±0.28 1.77±0.16 16.15±0.10 15.32±0.19 4 6.50 9.00 32.1±5.0 29 41 0.59±0.45 102.71±2.30 11.74±0.02 11.30±0.02 5 9.00 16.00 144.5±20.0 51 46 0.69±0.28 8.86±0.43 14.40±0.05 13.42±0.10 Table4.ListofsourcesexpectedthroughthelogN-logSdia- 48 0.74±0.28 1.53±0.20 16.30±0.15 14.10±0.15 gramandobservedinannuliaroundFornaxcenter.Here,R and 75 1.42±0.47 1.50±0.21 16.33±0.15 15.14±0.18 in R representtheinteriorandexteriorannulusradii,respectively. 82 1.75±0.26 76.42±1.70 12.06±0.02 11.47±0.02 ex 84 1.87±0.25 54.25±1.10 12.43±0.02 11.58±0.02 86 2.03±0.38 1.32±0.22 16.46±0.17 14.95±0.20 102 4.25±0.93 2.10±0.19 15.97±0.10 15.32±0.20 3.3.HintofalocalvariablesourceassociatedwithanX-ray 107 9.84±1.22 6.97±0.48 14.66±0.10 13.43±0.10 source Table 3. A few sources of the X-ray sample detected towards the FornaxdSph correlate with the 2MASS catalog. Following WhensearchingforopticalcounterpartstothedetectedX-raysources Haakonsen&Rutledge (2009), we can try to constrain the na- (seeTable1)intheavailablecatalogs,wefoundthatsourcenumber61 ispossiblyassociated,within2”,withonesource(J023941.4-343340) tureofthesourcesbyusingtheX-ray(inthe0.2-2.4keVband) belongingtoacatalogofvariablestars(Bersier&Wood,2002),making and NIR (J and K bands) fluxes (see text and Figure 3 for de- it a good candidate for a genuine X-ray source in the Fornax galaxy. tails). TheangularsensitivityofXMM-Newton,however,makesitdifficultto separate this source from the one labeled 80 (see Figure 1) which is only≃22”apart.Onesolutionistoreducethecontaminationfromthe nearbysourcebyreducingthesourceextractionradiusandbyselecting suitable background regions. In the particular case of source 61, we usedasourceextractioncirclewitharadiusof≃11”(correspondingto ≃50%ofthesourceencircledenergy,seeXRPSUser’sManual2008) and extracted the background from acircular region having the same radius as the source extraction area and localized at a distance of ≃ 22” from source 80. The latter choice allowed us to properly remove thebackground noiseaswellasanypatternhiddeninthedatacaused by the proximity of source 80. Wethen extracted the pn spectrum of source61(whichconsistedofonly≃ 200counts)andfitteditwithan absorbedpower-lawmodelwithhydrogencolumndensityfixedtothe value2.7×1020cm−2(seeSection2.2).Thebestfit,whichconvergedto apower-lawindexΓ≃2.0,correspondedtoafluxinthe0.2−12keV energybandof≃2.0×10−14ergs−1cm−2consistentwiththatobtained fromtheanalysisdiscussedinSection2(seealsoTable1). Using the extraction regions previously described, we generated source and background pn light curves (with a bin-size of 500 sec- onds) from the cleaned event files and used the SAS task epiclccorr toaccountforabsoluteandrelativecorrectionsandforthebackground subtraction.TheresultinglightcurvewasthenanalyzedwiththeLomb- Scarglemethod(Scargle1982)tosearchforperiodicitiesintherange Fig.3.Thecolor-colordiagramfortheX-raysourcesofoursam- 1000−10000secondsandthesignificanceofanypossiblefeaturesap- ple with a counterpart in the 2MASS catalog (see text for de- pearingintheLomb-Scargleperiodogramwasevaluatedbycomparing tails). thepeakheightwiththepowerthresholdcorrespondingtoagivenfalse alarmprobabilityinwhitenoisesimulations(Scargle,1982).Whenap- pliedtothepresentlyavailabledata,thismethoddidnotdetectanyclear periodicity. 3.4.TheFornaxglobularclusters the same band FUnabs = 2.47 × 10−15ergs−1cm−2, hence FUnabs = 6.95 × 10−16ergs0−.12−c1m2−2inthe0.5-2keVband. 0.5−2 AmongalltheotherdSphswhicharesatellitesoftheMilkyWay,the FornaxdSphhasthepeculiarcharacteristicofhostingfiveglobularclus- We used this value as an input parameter of the Hasingeretal. ters(GCs) whose (J2000) coordinates and main structural parameters (2005) method, obtaining a theoretical number of AGN asa function (mass M, core radius r , projected distance R from the galaxy cen- c p of the angular distance fromthe galactic center. Then wedivided the ter, tidal radius r, and maximum radius r ) are reported in Table 5. t M Fornaxfieldofview(FOV)intofiveringsandcomparedthenumberof Apartfromthepuzzlingquestionofwhydynamicalfrictionhasnotyet sourcesobservedineachannulustotheexpectednumberusingthelog draggedanyoftheFornaxGCstowardsthecenterofthegalaxy(seee.g. N-logSrelation(Hasingeretal.,2005),seeTable4.Thenumber of Coleetal.(2012)foranintroductiontothisintriguingproblemandto sourcesdetectedineachannulusisconsistentwiththeexpectednumber Goerdtetal.2006forapossiblesolution13),asearchforX-raysources exceptintheexternalannulus,astheexpectedvaluedoesnotaccount associated withtheGCsisalsointeresting.Weperformed thissearch forbordereffectsalthoughallthedetectedsourcesintheFornaxFOV towardsthefiveFornaxdSphGSsandfoundthatafewX-raysources maybebackgroundobjects,becauseoftheintrinsicstatisticalmeaning ofthelogN-logSdiagram,itcannotberuledoutthatsomeofthem 13 Goerdtetal.(2006)haveshownthatdynamicalfrictioncannotdrag actuallybelong tothegalaxy itself.Thisconclusion issomehow sup- globularclusterstothegalaxycenter inthecaseofcoreddark-matter ported by Figure3 where theX-ray sources in thebottom-left region halodistributions.Inthiscasethedragisstoppedatthepointwherethe aremostlikelyoflocalorigin. dark-matterdensityremainsconstant,i.e.,≃200pc. 6 A.A.Nucitaetal.:TheXMM-NewtonviewoftheFornaxdSph GC RA Dec M r R r r c p T M (J2000) (J2000) (pc) (kpc) (pc) (pc) 12 2233780424 --334414180310 01..48 150.8.0 11..70 3479..10 4590..74 9:59.9 37 2 3 23948 -341530 3.6 1.6 0.4 51.0 50.4 2 5 4 2407.7 -343211 1.3 1.7 0.2 28.5 42.4 5 24221 -340606 1.8 1.4 1.4 49.0 50.4 28 28GC4 Table 5. The coordinates of the Fornax globular clusters are 7.9 26 etracak,cehanncdfluropstmreorjtewhceetegNdiAvdeSistAthae/nImPcAeaCsRspeMxftr(roiamngautlnhaicetstigcoafdl1aax0tay5bMcaes⊙ne)t,(ecNroEarseDrf)ao.duFinuodsr Dec -34:31:4 46 232011141519542211117386607121311829224 27 in Coleetal. (2012), while the valuesof the tidal radiusr and 29 t 25 maximumradiusr (expressedinparsecforadistanceof0.138 M 9 Mpc) were derivedfrom MacKey&Gilmore (2003) and refer- 5. 3 encestherein. 3: 3 20.0 15.0 10.0 05.0 2:40:00.0 39:55.0 RA arelocatedclosetoGC3andGC4(seethezoomedviewsoftheXMM- Fig.4.AzoomedviewoftheregionaroundtheFornaxglobular NewtonfieldaroundthetwoclustersinFigures4and5. clusterGC4(seetextfordetails). ForGC4,thethreegreendashedconcentriccirclesarecenteredon theGCcoordinatesandhaveradiiof2.6′′,43′′,and64′′,corresponding tothe cluster core radius, tidal radius, and maximum radius (seealso Table5)asgiveninColeetal.(2012)andMacKey&Gilmore(2003). 6_ V49021 InthecaseofGC3,forclarity,wehaveplottedonlythecircleshavinga 71 radiusequaltothecoreradius(2.4′′)andtidalradius(77′′).Alltheother 7.9 103 96 cthirecXle-sra(wyistohuarcsseoscdiaetteedcteraddiiniooufr3a5n′′a)lyaspipse(asreiengSeinct.th2e.2fi).guresindicate 13:4 NGC 1049 (GC3) 6_V44543 InthecaseofGC4,weidentifiedoneX-raysource(labeledas28 inthesourcelistappearinginTable1)whichisatadistanceof≃ 37′′ 5.9 fromtheglobularclustercenter14.Consequently,consideringtheGC4 Dec 15:3 6_V40765 structuralparametersreportedinTable5,oneobservesthatsource28is 6_V369_1V5318 8 75 67_3V38403 waseslolcwiaittehdinwtihtehtiitd,aaslraalrdeiaudsy(≃no4t3ed′′)boyfOthrieogeltoablu.l(a2r0c1l0u)stwerhaenndanpaolsysziibnlgy 7:23.9 44 6_ V37637 6_V3547197 thesameXMM-Newtondataset. 34:1 52 6_V33971 In the case of GC 3, two variable Sx Phe sources15 (6 V40765 - 7_V21373 and6 V38403)wereidentifiedbyPorettietal.(2008)asbelongingto 9 theglobular cluster.Bothsourcesappear tobeatadistanceof≃ 30′′ 1. 1 and ≃ 78′′ from the globular cluster center and, therefore, are possi- 19: 05.02:40:00.0 55.0 50.0 45.0 40.0 35.0 39:30.0 25.0 bly associated with GC 3. As one can see from a close inspection of RA Figure5,thereisnoclearassociationofanyofthevariablestars(blue crosses)observedinGC3withthedetectedX-raysources.Moreover, one X-ray source (labeled as 103 at ≃ 72′′ from the globular cluster center) and identified intheXMM-Newton fieldof view iswithinthe Fig.5.AsinFigure4,butthecirclesarecenteredonthecoordi- globularclustertidalradius(≃ 77′′)and,therefore,maybeassociated natesoftheglobularclusterGC3. with it (as already claimed by Orioetal. 2010). Finally, we note that for an estimated distance of 0.138 Mpc to the Fornax dSph, the ob- served 0.2-12 keV band luminosities associated with the sources 28 and 103 are ≃ 2.3×1034 erg s−1 and ≃ 2.6×1035 erg s−1, respec- 3.5.Anintermediate-massblackholeintheFornaxgalaxy: tively. While the source possibly associated with GC 4 has a lumi- high-energyconstraints nosity comparable to that of a typical CV, the source possibly resid- When the galactic globular clusters were identified in X-rays, ing in GC3has a luminosity well within the typical ranges (although Bahcall&Ostriker(1975)andSilk&Arons(1976)suggestedthatthe towards the lower limit) for LMXBs and high-mass X-ray binaries observedemissionwasduetothepresenceofIMBHsinthemassrange (HMXBs)(seee.g.Fabbiano&White2006,Kuulkersetal.2006,and ∼102M –105M accretingmaterialfromtheintraclustermedium. Tauris&vandenHeuvel2006). ⊙ ⊙ The discovery of ultra-luminous compact X-ray sources (ULXs, withluminositygreaterthan∼ 1039 ergs−1)initiallypushedthecom- munitytointerpretsuchobjectsasIMBHs.Notehoweverthatthecur- 14 We checked that none of the X-ray sources of our sample has a rent accepted sceario is that all the ULXs (with the exception of the counterpartinthecatalogofvariablestars(indicatedasbluecrossesin highestluminosityobjectsstillcontainanIMBH)arestellar-sizedblack Figure4)asreportedbyGrecoetal.(2007). holeswhichaccreteatsuper-Eddingtonrates(Miller&Colbert2003). 15 ASxPheobjectisavariablepulsatingstarwhosemagnitudecan Moreevidencecomesfromthestudyofthecentralvelocitydispersion varyfromafew0.001magtoseveral0.1magwithtypicalperiodsof of starsinspecificglobular clusters(asG1intheAndromeda galaxy, P<∼0.10daysandisoftenusedasadistanceestimator.Foradescription seee.g.Gebhardtetal.2002,butalsoPooleyetal.2006,orM15and onthemainpropertiesofthisclassofvariablestarswereferthereader ωCentauri intheMilkyWay,seee.g. Gerssenet al.2002, 2003,and toPychetal.(2001)andreferencestherein. Miocchi 2010, respectively ) which may contain central IMBHs. As 7 A.A.Nucitaetal.:TheXMM-NewtonviewoftheFornaxdSph far as M15 is concerned, milli-second pulsar timing studies have al- lowed us to put an upper limit of ≃ 3×103 M on the IMBH mass ⊙ (DePaolisetal.1996).Finally,compactobjectsofIMBHsizearealso predictedbyN-bodysimulations(seee.g.PortegiesZwartetal.2004) asaconsequenceofmergingofmassivestars.Asnotedbyseveralau- thors(seee.g.Baumgardtetal.2005,andMiocchi2007),photometric studiesmayprovideafurtherhintfortheexistenceofIMBHsinglob- ular clusters. It is expected that the mass density profile of a stellar systemwithacentralIMBHfollowsacuspyρ ∝ r−7/4 law,sothatthe projecteddensityprofile,aswellasthesurfacebrightness,shouldalso haveacuspprofilewithslope−3/4. AsshownbyMiocchi(2007),theglobularclustersthatmostlikely hostacentralIMBHarethosecharacterizedbyaprojectedphotometry wellfittedbyaKingprofile,exceptinthecentralpartwhereapower- law deviation (α ≃ −0.2) from a flat behavior is expected. However, theerrorswithwhichtheslopesofcentraldensitiescanbedetermined areapproximately0.1−0.2(Noyola&Gebhardt2006),sothatoptical surface densityprofilesdonot give clearevidence of theexistenceof IMBHinglobularclusters. It isthen natural to expect that observations in different bands of the electromagnetic spectrum, such as radio and X-ray bands, would Fig.6.A zoomedviewaroundthe FornaxdSphcenter. Thedi- permitfurtherconstraintsontheIMBHparameters.Thisissuewascon- amondsindicatethe globalcentroidsof the galaxyobtainedby sideredbyseveralauthors.Forexample,Grindlayetal.(2001)provided thecensusofthecompactobjectsandbinarypopulationsintheglobu- several authors. In particular, the green diamonds (with labels larcluster47TucandobtainedanupperlimittothecentralIMBHof SHS98 500 pxl and SHS98 2000 pxl) correspond to the galaxy afewhundredsolarmasses;Nucitaetal.(2008)showedthatthecore centers obtained by Stetsonetal. (1998), the red and black di- of the globular cluster NGC 6388 harbors several X-ray sources; and amonds indicate the centroids as derived by Hodge&Smith Csehetal.(2010)refinedtheanalysisputtinganupperlimittothecen- (1974)andDemers&Irwin(1987),respectively(seetextforde- tralIMBHmassofafewthousandsolarmasses(seealsoBozzoetal. tails). 2011,andNucitaetal.2012). One expects to find IMBHs in dSph as well (Maccaroneetal. 2005). Inthe specificcase of theFornax dSph, vanWassenhoveetal. sources(labeled2)detectedinouranalysis,thusallowingustoestimate (2010) assumed that an IMBH of mass MBH ≃ 105 M⊙ exists in the theX-rayluminosityfromaputativeIMBH.Inalltheothercases,the galactic core and suggested that measuring the dispersion velocity of centroidsfallinaregionapparentlyfreeofsources,sothatonlyanup- thestarswithin30 pcfrom thecenter would allow ustotest that hy- perlimitontheIMBHfluxcanbeobtained.Asareferenceforthiscase pothesis. Furthermore, Jardel&Gebhardt (2012) recently constructed weuseSHS98500pxlasthepositionofthecentroid. axisymmetricSchwarzschildmodelsinordertoestimatethemasspro- Inthefollowingparagraphs wespeculate about thepossibleexis- file of the Fornax dSph. These models were tested versus the avail- tenceofanIMBHintheFornaxdSphandwhetheritisintheposition able kinematic data allowing the authors to put a 1-σ upper limit of labeledSHS982000pxlorcoincidentwiththecentroidSHS98500pxl. MBH =3.2×104M⊙ontheIMBHmass.Wewillusethelattervaluein As in the case of the G1 (Pooley&Rappaport, 2006) and M15 thefollowingdiscussions. (Hoetal.,2003)globularclusters,theX-rayemissionfromtheputative Since any Brownian motion of IMBH at the center of the galaxy IMBHatthecenteroftheFornaxdSphmaybeduetoBondiaccretion isnegligible16,wesearchedforX-raysourcesclosetotheFornaxcen- (Bondi&Hoyle1994)ontotheblackhole,eitherfromtheclustergas ter.Thissearchwasmadedifficultowingtotheuncertaintywithwhich orfromstellarwinds.Thus,assumingthatlow-angularmomentumgas the Fornax dSph center position is known. This is caused mainly by closetothecompactobjectaccretesspherically,forablackholeofmass thelargeasymmetryinthegalaxysurfacebrightnessasfirstobserved M movingwithvelocityvthroughagaseousmediumwithhydrogen BH byHodge(1961)(seealsoHodge&Smith1974).Theasymmetrywas numberdensityn,theaccretionrateis alsoconfirmedbyStetsonetal.(1998)whoevaluatedtheglobalgalaxy M˙ ≃4π(GM )2(v2+c2)−3/2m n, (3) centroidusingacirclemovingontheskyplaneuntilthemedian(x,y) BH s p positionofallthestarscontainedwithintheaperturecoincidedwiththe wherem andc aretheprotonmassandsoundspeedinthemedium, centerofthecircle.Dependingonthecircleradius(500or2000pixels), p s respectively.TheexpectedX-rayluminosityisthen Stetsonetal.(1998)obtainedtwocenterpositions(separatedby≃ 3′) indicatedbythegreendiamonds(withlabelsSHS98500pxlandSHS98 L ≃ǫηM˙c2, (4) X 2000pxl)inFigure6.Inthesamefigure,wealsogivethecoordinatesof thecentroidasobtainedbyHodge&Smith(1974)(reddiamond)and whichcanbeparametrizedas Demers&Irwin(1987) (black diamond). For comparison, the yellow diamond (on aCCDgapof thepncamera) representsthecentroid as L ≃ǫη8.8×1036 MBH 2 V −3 n ergs−1cm−2,(5) recentlydeterminedbyBattagliaetal.(2006)andthebluediamondis X 103M⊙! (cid:18)15kms−1(cid:19) (cid:18)0.1cm−3(cid:19) centeredontheNEDcoordinatesofFornaxdSph. whereV =(v2+c2)1/2,ǫistheefficiencyinconvertingmasstoradiant Note that the centroid labeled SHS98 2000 pxl, as estimated by s energyandηisthefractionoftheBondi-Hoyleaccretionrateontothe Stetsonetal.(1998)whenconsideringthelargestructureofthegalaxy, is at a distance of ≃ 28′′ from the centroid position according to blackhole. Thehydrogen number density of themassfeeding theblack hole Battagliaetal.(2006)andisapparentlyveryclosetooneoftheX-ray canbeestimatedbyusingthestructuralparametersoftheFornaxdSph as given in McConnachie (2002). In particular, it was found that the 16 Fromsimulations,oneexpectsanIMBHwithinaglobularcluster galaxyhostsatleast M ≃ 0.17×106 M ofgaswithintheobserved (or a spheroidal galaxy) tomove randomly when interacting withthe HI ⊙ half-lightradiusofr ≃ 710pc.Thus,alowerlimittothegasdensity surrounding stars. In the assumption that all the stars have the same h canbeevaluatedas mass m, the IMBH moves with an amplitude ∼ r (m/M ) (see e.g. c BH Bahcall&Wolf1976,Gurzadyan1982,andMerrittetal.2006)where n≃ 3MHI ≃5×10−3cm−3. (6) rcisthecoreradiusandMBH theblackholemass. 4πrh3mp 8 A.A.Nucitaetal.:TheXMM-NewtonviewoftheFornaxdSph Assumingthatv≃c ≃10kms−1,onehasV ≃14−15kms−1.Thus, where M˙ istheaccretionrateandr istheradiusoftheinneredgeof s I usingtheIMBHupperlimitofM =3.2×104M quotedabove,Eq. the disk. For a disk that extends inward to the last stable orbit (r = BH ⊙ I 5finallygivestheexpectedX-rayluminosity,i.e., 6GM /c2 for a non-rotating black hole), it is easy to verify that the BH efficiencyinconvertingtheaccretingmasstoradiantenergyis≃8.3%. L ≃ǫη4.50×1038ergs−1. (7) When comparing the observed X-ray luminosity in the 0.2−12 keV X bandofsource2withthevalueexpectedinthethindiskscenario(Eq. For an estimated distance of 0.138 Mpc to the Fornax dSph, the ex- 8), we can estimate a mass accretion rate of M˙ ≃ 1.87×1014 g s−1. pectedIMBHluminosityLXcorrespondstoanobservablefluxofFX ≃ Assumingagaintheradiationefficiencytobe8.3%,ablackholeofmass ǫη1.98×10−10ergs−1cm−2. 3.2×104M hasanEddingtonmassaccretionrateofM˙ ≃5.5×1022 ⊙ Edd AsonecanseefromacloseinspectionofFigure6,inthecasewhen g s−1. Thus, the ratio M˙/M˙ ≃ 4×10−9 implies that the IMBH in Edd theputativeIMBHpositioncoincideswiththecentroidSHS98500pxl FornaxdSph(ifany)accretesveryinefficientlyeveninthecontextofa 17,therewasnocleardetectionofX-raycounterpartsinthe0.2−12keV Keplerianthindiskmodel. band.Tobeconservative, theexpectedfluxcanbecomparedwiththe Theaboveconsiderations,theobservedlowluminosity,andthees- minimum(unabsorbed)flux(≃2.5×10−15ergs−1cm−2,seeSection2.4 timated power-law index Γ = 1.3+1.0 (marginally consistent with an −0.8 forfurtherdetails)detectableintheXMM-Newtonobservation.Hence, indexintherange 1.4-2.1, seee.g.Remillard&McClintock2006 for oneeasilyconstrainstheaccretionefficiencyoftheIMBHtobeǫη ≤ aclassificationofblackholebinaries)allowustodepictascenarioin 1.3×10−5. whichtheFornaxdSphIMBHmaybeinaquiescentstate. Onthecontrary,adetectionappears(sourcelabeled2)onthecen- Recently, it has also been proposed that a relationship between troidSHS98 2000 pxl position. Inthis case, using the fluxvalues ob- blackholemass,X-rayluminosity,andradioluminositydoesexist(see tained by the automatic procedure described in Section 2, we found e.g.Merlonietal.2003andKoerdingetal.2006a).Thisfundamental thatsource2hasanunabsorbedflux(obtainedviawebPIMMS)inthe plane can be used to test the IMBH hypothesis in globular clusters 0.2−12keVof≃ 3.0×10−15 ergs−1 cm−2which,attheFornaxdSph and dwarf spheroidal galaxies (Maccaroneetal. 2005). In particular, distance,correspondstoanintrinsicluminosityofL =7.0×1033 erg Maccarone(2004)scaledthefundamental-planerelationtovaluesap- X s−1.Thus,intheIMBHhypothesis,theaccretionefficiencyturnsoutto propriateforanIMBHhostinaGalacticglobularcluster;byrescaling beǫη≃1.6×10−5. theirequationtoestimatetheexpectedIMBHradiofluxat5GHz,i.e., With a more detailed analysis, we further extracted the MOS 1, L 0.6 M 0.78 10kpc 2 MOS 2, and pn spectra of source 2 using a circular region centered F =10 X BH µJy, (9) onthetargetcoordinatesandwithradiusof35′′.Wethenaccumulated 5GHz 3×1031cgs! 100M⊙! d ! thebackgroundonaregionlocatedonthesamechipandinaposition which,fortheaboveX-rayfluxestimates,correspondsto apparently free of sources. This resulted in MOS 1, MOS 2, and pn spectrawith≃230,≃250,and≃480counts,respectively. F ≃0.1 ǫ 0.6 mJy. (10) Aftergroupingthedataby25counts/bin,weimportedtheresulting 5GHz (cid:18)10−5(cid:19) background-reducedspectrumwithinXSPEC.Amodelconsistingofan For an accretion efficiency as low as a few 10−5, the expected radio absorbedpower-law,withhydrogencolumndensityfixedtotheaverage fluxiswellwithinthedetectionpossibilitiesoftheAustraliaTelescope value observed towards the target (2.7×1020 cm−2, see Section 2 for CompactArray(ATCA)which,foranintegrationtimeof≃12hr,may furtherdetails),resultedinthebestfitparametersΓ = 1.3−+01..80 andN = reachanRMSsensitivityof≃10µJy/beamat5GHz. (5.0±4.0)×10−7 kev−1 cm−2 s−1 with χ2 = 1.4 (for 34 d.o.f.). The ν 0.2-12keVbandabsorbedfluxofsource2isthen(0.6+1.7)×10−14erg −0.4 4. Conclusions s−1 cm−2 (90%confidence level)whichcorresponds toanunabsorbed flux of ≃ 6.2×10−15 erg s−1 cm−2 and an unabsorbed luminosity of Inthispaperwere-analyzedadeeparchiveXMM-Newtondataofthe LX ≃1.4×1034ergs−1.Assumingasphericalaccretion,onefinallyhas FornaxdSphgalaxywiththeaimofcharacterizingtheX-raypoint-like anaccretionefficiencyofǫη≃3×10−5. sourcepopulation.Byusingarestrictiveanalysis,wedetected107X- Notealsothatfor η = 1, theradiativeefficiencyǫ of theputative raysources.Mostofthemarelikelytobebackgroundobjectssincethe FornaxdSphIMBHissimilartothevaluesfoundforothersystemsin numberofdetectedsourcesisstatisticallyconsistentwiththatexpected theradiativelyinefficientregime(10−5−1,seeBaganoffetal.2003,but from the logN-logS relation. However, we cannot exclude that a few also Fenderetal. 2003, and Koerdingetal. 2006a,b). The same con- ofthedetectedobjectsbelongtotheFornaxdSph.Thecolor-colordi- clusioncanbereachedwhencomparingtheobservedX-rayluminosity agram(basedontheratiobetweenthe0.2−2.4keVflux(F )andthe inthe 0.2−12 keV band of source 2 (LX ≃ 1.4×1034 erg s−1) with NIRfluxinJband(FJ)versustheJ-Kcolor)fortheX-raysouXrceswith theexpectedEddingtonluminosity(i.e., LEdd ≃ 1.3×1038(MBH/M⊙) acounterpartinthe2MASScatalogshowsthepresenceofafewobjects ergs−1) intheIMBHhypothesis. Inthiscase, LX/LEdd ≃ 3×10−9 is (seebottom-leftpartofFigure3)possiblyofstellarnatureandlocalori- obtained, thusimplying that theIMBH must beextremely radiatively gin.Furthermore,sourcenumber61appearstobespatiallycoincident inefficient (for a comparison see the M15 case discussed in Hoetal. (within≃2′′)withalong-periodvariablestarfoundinthecatalogcom- 2003). Accretion onto a black hole may be different from a simple piledbyBersier&Wood(2002). spherical model, since the accreting gas has angular momentum. In Asdiscussedpreviously,amongalltheotherdwarfspheroidalsatel- such a case a Keplerian disk forms and the accretion occurs due to litesoftheMilkyWay,apeculiarcharacteristicoftheFornaxdSphis the presence of viscous torques, which transport the angular momen- thatofhostingfiveglobularclusters.WenotedthattwoX-raysources, tum outward from the inner to the outer regions of the disk (see e.g. detectedtowardsthegalaxywithouranalysis,arecoincidentwiththe Shapiro&Teukolsky1983).Inthesimplifiedcaseofathindiskstruc- twoFornaxglobularclustersGC3andGC4.Inparticular,forGC4we ture (see Shakura&Sunyaev 1973), the total luminosity of the disk identifiedoneX-raysource(labeled28inthesourcelistappearingin (mainlyoriginatinginitsinnermostparts)is Table1)whichisatadistanceof≃37′′ fromtheglobularclustercen- ter.Consequently,consideringtheGC4structuralparametersreported L≃ 1GMBHM˙ , (8) inTable5,oneobserves that source28 iswellwithinthetidal radius 2 r (≃ 43′′)oftheglobularclusterand,hence,possiblyassociatedwithit I (asalreadyclaimedbyOrioetal.2010).InthecaseofGC3,weidenti- 17 InthecaseinwhichtheFornaxcentroidpositioncoincideswithone fiedoneX-raysource(labeled103atadistanceof≃72′′ fromtheGC ofthoseevaluatedbyHodge&Smith(1974),Demers&Irwin(1987), center)thatmightbeattheoutskirtsoftheglobularcluster. orBattagliaetal.(2006)(red,black,andyellowdiamondsinFigure6, Finally,wediscussedtheIMBHhypothesisandfoundthatoneof respectively),wecansetonlyanupperlimittotheIMBHunabsorbed theX-raysources(labeled2)mightbeassociatedwithoneofthepos- fluxof≃2.5×10−15 ergs−1cm−2which,atthedistanceoftheFornax siblegalaxycentroidsidentifiedbyStetsonetal.(1998).Inthisframe- dSph,correspondstoaluminositylimitof≃5.7×1033ergs−1. work, we estimated the IMBH accretion parameter to be ǫη ≃ 10−5. 9 A.A.Nucitaetal.:TheXMM-NewtonviewoftheFornaxdSph However, sincethere isalargeuncertaintyintheidentificationof the Mateo,M.,1998b,ARA&A,36,435 galaxy’scenterofgravity,thelattervaluecanbeconsideredasanupper McConnachie,A.W.,2012,AJ,144,1 limittotheIMBHaccretionparameters. Mendez,R.,etal.,2011,AJ,143,93 Merloni,A.,Heinz,S.,DiMatteo,T.,2003,MNRAS,345,1057 Acknowledgements. We are grateful to F. Strafella, V. Orofino, and B.M.T. Merritt,D.,Berczik,P.,Laun,F.,Astron.J.133,533 Maiolofortheinterestingdiscussionswhilepreparingthemanuscript.Wealso Miller,M.C.,&Colbert,E.,2003,IJMPD,13,1 acknowledgetheanonymousRefereeforhissuggestions. Miocchi,P.,2007,MNRAS,381,10 Miocchi,P.,2010,A&A,514,52 Monet,D.,G.,etal.,2003,AJ,125,984 References Noyola,E.,&Gebhardt,K.,2006,AJ,132,447 Nucita,A.A.,etal.,2008,A&A,478,763 Arnaud,K.A.1996,XSPEC:TheFirstTenYears,inAstronomicalDataAnalysis Nucita,A.A.,DePaolis,F.,Saxton,S.,Read,A.M.,2012,NewAstronomy,17, SoftwareandSystemsV,ed.G.Jacoby,J.Barnes,ASPConf.Ser.,101,17 589 (SanFrancisco:ASP) Orio,M.,etal.,2010,AIPConferenceProceedings,1314,337 Ashman,K.M.,Zepf,S.E.,1998,GlobularClusterSystems,CambridgeUniv. Pooley,D.,&Rappaport,S.,2006,ApJ,644,L45 Press,Cambridge Poretti,E.,etal.,2008,ApJ,685,947 Baganoff,F.K.,etal.,2003,ApJ,591,891 PortegiesZwart,S.F.,etal.,2004,Nature,428,724 Bahcall,J.N.,&Ostriker,J.P.,1975,Nature,256,23 Prestwich,A.,etal.,2003,ApJ,595,719 Bahcall,J.N.,&Wolf,R.A.,1976,ApJ,209,214 Pych,W.,etal.2001,A&A,367 Battaglia,G.,etal.,2006,A&A,459,423 Ramsay,G.,&Wu,K.,2006,A&A,2006,459,777 Baumgardt,H.,etal.,2005,ApJ,589,25 Reines,A.E.,Sivakoff,G.R.,Johnson,K.E.,Brogan,C.L.,2011,Nature,470,66 Bersier,D.,&Wood,P.R.,2002,AJ,123,840 Remillard,R.A.,&McClintock,J.E.,2006,ARA&A,44,49 Bondi,H.,Hoyle,F.,1944,MNRAS,104,273 Roeser,S.,etal.,2008,A&A,488,401 Bozzo,E.,etal.,2011,A&A,535,1 Salucci,P.,etal.,2012,MNRAS420,2034S Cole,D.R.,Dehnen,W.,Read,J.I.,Wilkinson,M.I.,2012,arXiv:1205.6327 Saxton,R.,2003,XMM-SOC-CAL-TN-0023,version2.0 Cseh,D.,etal.,2010,MNRAS,406,1049 Scargle,J.,D.,1982,ApJ,263,835 Demers,S.,Irwin,M.J.,1987,MNRAS,226,943 Servillat,M.,etal.,2011,ApJ,743,6 DePaolis,F.,Gurzadyan,V.G.,Ingrosso,G.,1996,A&A315,396 Shakura,N.I.,&Sunyaev,R.A.,1973,A&A,24,337. Ebisuzaki,T.,etal.,2001,ApJ,562,L19 Shapiro,S.L.,&Teukolsky,S.A.,1983,BlackHoles,WhiteDwarfsandNeutron Fabbiano, G., & White, N.E., 2006, in Compact Stellar X-ray Sources, Eds. Stars:thephysicsofcompactobjects,Eds.JohnWiley&Sons,NewYork W.H.G. Lewin & M. van der Klis, pag. 475, Cambridge Univ. Press, Silk,J.,&Arons,J.,1975,ApJ,200,L131 Cambridge Silk,J.,Wyse,R.,Shields,G.A.,1987,ApJ322,59 Farrell,S.A.,etal.,2012,ApJ,747,L13 Skrutskie,M.F.,etal.,2006,AJ,131,1163 Farrell,S.A.,Webb,N.A.,Barret,D.,Godet,O.,Rodrigues,J.M.,2009,Nature, Soria,R.,&Wu,K.,2003,A&A,2003,410,56 460,73 Stetson,P.B.,Hesser,J.E.,Smecker-Hane,T.A.,1998,PASP,110,533 Fender,R.P.,Gallo,E.,Jonker,P.G.,2003,MNRAS,343,99 Stru¨der,L.,Briel,U.,Dennerl,K.,etal.2001,A&A,365,L18 Gebhardt,K.,Rich,R.M.,Ho,L.C.,2002,ApJ,578,L41 Stuhlinger,M.,etal.,2006,XMM-SOC-CAL-TN-0052,version3.0 Gerssen,J.,etal.,2002,AJ,124,3720 Tauris,T.M.,&vandenHeuvel,E.P.J.,2006,inCompactStellarX-raySources, Gerssen,J.,etal.,2003,AJ,125,376 Eds.W.H.G.Lewin &M.van der Klis, pag. 623, Cambridge Univ. Press, Gizis,J.E.,Mould,J.R.,Djorgovski,S.,1993,PASP,105,871 Cambridge Goerdt,T.,etal.,2006,MNRAS368,1073 Tinney,C.G.,1999,MNRAS,303,565 Greco,C.,etal.,2007,ApJ,670,332 Tinney,C.G.,DaCosta,G.S.,&Zinnecker,H.,1997,MNRAS,285,111 Grindlay,J.E.,etal.,2001,Science,292,2290 Turner,M.J.L.,Abbey,A.,Arnaud,M.,etal.2001,A&A,365,L27 Guainazzi, M., 2010, XMM-SOC-CAL-TN-0018, van der Marel R. P., 2004, Coevolution of Black Holes and Galaxies, from XMM-Newton Science Operations Centres, theCarnegie Observatories Centennial Symposia.PublishedbyCambridge http://xmm2.esac.esa.int/docs/documents/CAL-TN-0018.ps.gz UniversityPress,aspartoftheCarnegieObservatoriesAstrophysicsSeries. Gurzadyan,V.G.,1982,A&A,114,71 EditedbyL.C.Ho,37 Haakonsen,C.B.,&Rutledge,R.E.,2009,ApJSS,184,138 vanWassenhove, S.,Volonteri, M.,Walker, M.G.,Gair, J.R.,2010,MNRAS Hasinger,G.,Miyaji,T.,Schmidt,M.,2005,A&A,441,417 408,1139 Ho,L.C.,Terashima,Y.,&Okajima,T.,2003,ApJ,587,35 Veron-Cetty,M.P.,&Veron,P.,2006,A&A,455,773 Hodge,P.W.,1961,AJ,66,249 Watson,M.,etal.,2009,A&A,493,339 Hodge,P.W.,&Smith,D.W.,1974,ApJ,188,19 Webb,N.,etal.,2012,Science,337,554 Jardel,J.R.,&Gebhardt,K.,2012,ApJ,746,89 West,M.J.,Coˆte´,P.,Marzke,R.O.,&Jordan,A.,2004,Nature,427,31 Jones,D.H.,Peterson,B.A.,Colless,M.,&Saunders,W.,2006,MNRAS369, XRPSUser’sManual,2008,Issue2.6,(Eds.EhleM.etal.) 25 Kalberla,P.M.W.,Burton,W.B.,Hartmann,D.,etal.2005,A&A,440,775 Kirsch,M.G.F.,etal.2004,inProc.SPIE,5488,103 Kleyna,J.T.,Wilkinson,M.I.,EvansN.W.,GilmoreG.,2001,ApJ,563,L115 Kleyna,J.T.,Wilkinson,M.I.,Evans,N.W.,Gilmore,G.,2002,MNRAS,330, 792 Koerding,E.,Falcke,H.,Corbel,S.,2006,A&A,456,439 Koerding,E.G.,Fender,R.P.,Migliari,S.,2006,A&A,456,439 Kormendy,J.,1985,ApJ,295,73 Kuulkers,E.,Norton,A.,Schwope,A.,&Warner,B.,2006,inCompactStellar X-raySources,Eds.W.H.G.Lewin&M.vanderKlis,pag.421,Cambridge Univ.Press,Cambridge Maccarone,T.J.,2004,MNRAS,351,1049 Maccarone,T.J.,2005,MNRAS,364,L61 Maccarone,T.J.,etal.,2005,AstrophysicsandSpaceScience,300,239 Mackey,A.D.&Gilmore,G.F.,2003,MNRAS,340,175 Magorrian,J.,etal.,1998,AJ,115,2285 Martin,N.F,deJong,J.T.A.,Rix,H.-W,2008,ApJ,684,1075 Mashchenko,S.,Sills,A.,Couchman,H.M.,2006,ApJ,252,269 Mateo,M.,1997,inASPConf.Ser.Vol.116,TheNatureofEllipticalGalaxies, Astron.Soc.Pac.,SanFrancisco,(Eds.,ArnaboldiM.etal.) Mateo, M., 1998a, in Proc. Bonn/Bochum-Graduiertenkolleg Workshop, The Magellanic CloudsandOtherDwarfGalaxies.ShakerVerlag,Aachen,53, (Eds.Richtler,T.&Braun,J.M.) 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.