ebook img

An XMM-Newton Observation of Abell 2597 PDF

0.68 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview An XMM-Newton Observation of Abell 2597

Mon.Not.R.Astron.Soc.000,000–000(0000) Printed2February2008 (MNLATEXstylefilev2.2) An XMM-Newton Observation of Abell 2597 R. Glenn Morris⋆ and A. C. Fabian InstituteofAstronomy,MadingleyRoad,CambridgeCB30HA 2February2008 ABSTRACT We report on a 120ks XMM-Newton observation of the galaxy cluster Abell 2597. Results 5 from both the European Photon Imaging Camera (EPIC) and the Reflection Grating Spec- 0 trometer (RGS) are presented.From EPIC we obtain radial profilesof temperature,density 0 andabundance,andusethesetoderivecoolingtimeandentropy.Weillustratecorrectionsto 2 theseprofilesforprojectionandpointspreadfunction(PSF)effects.Atthespatialresolution n availabletoXMM-Newton,thetemperaturedeclinesbyaroundafactoroftwointhecentral a 150kpc or so in radius, and the abundance increases from about one-fifth to over one-half J solar.Thecoolingtimeislessthan10Gyrinsidearadiusof130kpc.EPICfitstothecentral 7 regionareconsistentwithacoolingflowofaround100solarmassesperyear.Broad-bandfits 1 totheRGSspectraextractedfromthecentral2arcminarealsoconsistentwithacoolingflow ofthesamemagnitude;withapreferredlow-temperaturecut-offofessentiallyzero.Thedata 1 appeartosuggest(albeitatlowsignificancelevelsbelowformaldetectionlimits)thepresence v oftheimportantthermometerlinesfromFeXVIIat15,17A˚ restwavelength,characteristicof 7 gasattemperatures∼0.3keV.Themeasuredfluxineachlineisconvertedtoamassdeposi- 4 tionestimatebycomparisonwithaclassicalcoolingflowmodel,andonceagainvaluesatthe 3 1 levelof100solarmassesperyearareobtained.Thesemassdepositionrates,whilstlowerthan 0 thoseofpreviousgenerationsofX-rayobservatories,areconsistentwiththoseobtainedfrom 5 UVdataforthisobject.Thisraisesthepossibilityofaclassicalcoolingflow,atthelevelof 0 around100solarmassesperyear,coolingfrom4keVbymorethantwoordersofmagnitude / intemperature. h p Keywords: galaxies:clusters:individual:A2597–X-rays:galaxies:clusters–coolingflows - o r t s a : 1 INTRODUCTION observationsofthecentral0.3arcsec(Tayloretal.1999)show an v invertedspectrum(a =0.6)core,togetherwithstraight,symmetric i Abell2597isarelativelynearby(z≈0.08),Abellrichnessclass0 X jetsemanatingfrombothsides. clusterofgalaxies.Richinfeatures,ithasbeenstudiedextensively r inmanywavebands. a Abell 2597 has previously been observed in X-rays by ThecentralcDgalaxycontainstheradiosourcePMNJ2323- various observatories, for example: Einstein (Crawfordetal. 1207 (PKS B2322-12) (Wright&Otrupcek 1990; Griffithetal. 1989); ROSAT (Sarazinetal. 1995; Sarazin&McNamara 1997; 1994).Thetotalfluxdensityofthissourceis∼1.7Jyat1.5GHz Peresetal.1998);ASCA(White2000);Chandra(McNamaraetal. (McNamaraetal.2001;Owenetal.1992),and∼0.3Jyat5.0GHz 2001); XMM-Newton (Still&Mushotzky 2002). Traditionally, it (Balletal.1993),implyingafairlysteepspectralindexa =−1.3 hasbeenclassifiedasamoderatelystrongcoolingflow(e.g.Fabian (Sn (cid:181) n a ). The source is physically small, ∼7×5,5×2arcsec 1994)cluster,withinferredX-raymassdepositionrate(M yr−1): ⊙ saotl1ve.5d,a5t.t0hGesHezfrereqsupeencctiievse,lyb.utTahtethseohuirgcheerisfreoqnulyenmcyodhearsaatenlyelorne-- 270±41 (ROSAT PSPC; Peresetal. 1998, rcool =152+−6578kpc); 259+176(ASCA;White2000). gatedappearancesuggestingadouble-lobedstructure.At8.44GHz −178 (Sarazinetal. 1995), the source is resolved into a nucleus and A short (∼ 20ks of good time) Chandra observation two lobes (∼5arcsec across), orientated roughly NE–SW. A jet (McNamaraetal.2001)highlightedtheinteractionbetweenthera- is clearly seen leading from the nucleus on the SW. This jet un- dio source and the X-ray gas, through the presence of so-called dergoes a sharp (∼90◦) bend about 0.5arcsec from the nucleus. ‘ghost cavities’ of low surface brightness, seemingly coincident Assumingatypicalspectralindexforthejetsof−0.7,theinferred withspursoflowfrequency(1.4GHz)radioemission.Suchbright- lobespectralindexis≈−1.5,suggestiveofconfinementandsyn- nessdepressions arebelievedtobebuoyantly risingbubbles(e.g. chrotronageing.VeryLongBaselineArray(VLBA)1.3,5.0GHz Bˆırzanetal.2004)associatedwithaprior(∼108yrpreviously,in thiscase) outburstofthecentralradiosource.Thesmallphysical ⋆ E-mail:[email protected] sizeoftheradiosourcemeans, however, thattheseissuesarenot (cid:13)c 0000RAS 2 R.G. Morrisand A.C. Fabian amenable to study with XMM-Newton, given its ∼5arcsec point sively)thecaseincoolingflowclusters.TheHa +[NII]luminos- spreadfunction(PSF). ity is 2.7×1042ergs−1, making it among the most luminous in In the Chandra and XMM-Newton era of high spatial and thesampleofHeckmanetal.(1989).TheHa luminosityismany spectral resolution, the cooling flow model is undergoing re- (∼300) times greater than that expected from extrapolating the interpretation. The cause is quite simply an absence (or at best classical∼107KX-raymassflowratesdownto∼104K,ageneral a severe weakness) of the spectral features expected from gas at featureofsuchnebulae.Thediscrepancyismadeevenworseifthe the low-end (.1keV, say; though there does not appear to be a relative sizes of the nebulae and X-ray cooling regions are taken fixedabsolutecut-off)oftheX-raytemperatureregimeintheob- intoaccount. Thedeep optical spectra of Voit&Donahue (1997) servedspectraofclustercentralregions.Reductionsintemperature reveal that the Abell 2597 nebula has T ∼104K, Z ∼0.5Z⊙, byfactorsofafew(e.g.Kaastraetal.2004)withradiusareseen. ne∼200cm−3,and issignificantlyreddened by(intrinsic,owing Theexpectedemissionlinesforseveralimportantlow-temperature tothelowGalacticcolumn)dust.Thelowinferredcolumndensity species (e.g. the FeXVII 15 and 17A˚ lines) do not seem to be NHII≈3×1019cm−2relativetothatofHIsuggeststhatthinion- present at the levels predicted by simple models. This is a trend izedHII layerssurround coldneutral HI cores.Thenebulahasa thatappearstoberepeatedinmanyclustersthathavetraditionally lowionizationparameter,mostspeciesbeingonlysinglyionized. been thought toharbour cooling flows(e.g. Petersonetal.2003). Photoionization from hot stars is the only ionization mechanism Many explanations (e.g. Fabianetal. 2001; Petersonetal. 2001) notruledout bytheobservations, buteven thehottest Ostars(in for this effect have been put forward; some involving suppres- isolation)wouldnotbeabletoheatthenebulatotheobservedtem- sionof thegascooling, some involvingdepartures fromstandard perature.Someformofheattransferfromtheintraclustermedium collisionally-ionizedradiativecooling.Afteraflirtationwithther- (ICM)maysupplyacomparableamountofenergytothenebula. mal conduction (but see e.g. Soker 2003), theoretical studies at Thecoreof thecentral cDexhibitsasignificant blueoptical presentseemtobeconcentratedonsomeformofdistributedheat- excess (e.g. McNamara&O’Connell 1993; Sarazinetal. 1995). ing from a central AGN (e.g. Vecchiaetal. 2004; Reynoldsetal. HST observations(Koekemoeretal.1999)resolvethisexcessinto 2005; Ruszkowskietal. 2004), effected by buoyant plasma bub- continuum emission around and across the radio lobes, and sev- bles. eral knots tothe south-west. Line-dominated (thereby not optical Observations at ultra-violet (UV) wavelengths suggest that synchrotronorinverseComptoninorigin)excessappearsinbright Abell2597maybeaparticularlyinterestingobjectforstudyinlight arcsaroundtheedgeoftheradiolobes,andmorediffuselyacross oftheseissues.Abell2597,togetherwiththez=0.06clusterAbell the lobe faces. Such geometry is suggestive of an emission shell 1795,wasobservedwiththeFarUltravioletSpectroscopicExplorer surroundingtheradiolobes.Abrightopticalknotisalsoseenco- (FUSE;Moosetal.2000)missionbyOegerleetal.(2001).FUSE incidentwiththesouthernradiohot-spot,consistentwithamassive is sensitive to the OVI 1032, 1038A˚ resonance lines, which are clumpresponsiblefor thedeflectionofthesouthernjet.Thecen- strong diagnostics of thermally radiating gas at temperatures ∼ tralregionalsoshowsstrongdustobscuration,resolvedintoseveral 3×105K. In a traditional cooling flow model, in which the ulti- large(severalhundredparsecs)regions. matefateofthehotgasistocooltoverylowtemperatures,strong In the infra-red, vibrational molecular hydrogen emission UVemissionisexpectedinsuchlinesasgascoolsoutoftheX-ray lines characteristic of ∼ 1000–2000K collisionally ionized gas temperatureregime;therebypotentiallyformingabridgebetween have been detected from the innermost ∼3arcsec of the central the hot, X-ray emitting gas and the cool, Ha (see below) radiat- clustergalaxy(Falckeetal.1998;Donahueetal.2000;Edgeetal. inggas.OVI1032A˚ emissionwasdetectedinAbell2597,withan 2002). Aswith the optical nebula, there istoo much emission as inferred luminosity3.6×1040ergs−1.Using simplecooling-flow compared to the expectation from even an inordinately massive theory,Oegerleetal.(2001)calculatetheassociatedmassflow-rate classicalcoolingflow,andyettoolittlemassforthistobethefinal as40M yr−1(withintheeffectiveradiusoftheFUSEapertureat reservoirofastandard,long-livedflow.Furthermore,themolecular ⊙ thisredshift,∼40kpc),foranintermediatecasebetweenthelimits gasisdusty, andthereforeunlikelytobethedirectcondensate of of isobaric and isochoric cooling. TheROSAT HRI mass deposi- thehot ICM(wheredust israpidlydestroyed). Againaswiththe tionrateofSarazinetal.(1995),≈330M⊙yr−1 withinacooling optical light, there is a complex filamentary structure that seems radius(definedbytcool<10Gyr)≈130kpc,isaroundthreetimes to be spatially associated with the radio source. The optical and larger(applying asimplelinear M˙ (cid:181) r scaling).Theweakness of infra-redpropertiesarebothconsistentwithUVheatingofthegas cluster cooling flows in comparison to the predictions of the tra- byapopulationofyoung,hotstars(Donahueetal.2000)(SFR∼ ditional model is thus again demonstrated, but extended down to few M yr−1).Abell2597alsohasapossibleCOdetection(Edge ⊙ theUVregime.Thisunder-luminosityatUVtemperaturesmaybe 2001);indicativeofverycold,moleculargas. contrastedwiththesituationatHa temperatures,wheretheAbell The Galactic column density in the direction of Abell 2597emissionnebula(seebelow),likeothersuchnebulae,isover- 2597 (l =65.4, b=−64.8) has the relatively low value 2.5× luminous, even whencompared toclassical,high X-raymassde- 1020cm−2(Dickey&Lockman1990;Starketal.1992).Recently, positionrates(Voit&Donahue1997). Barnes&Nulsen(2003)haveshownthatthe5s limitonanyfluc- In contrast, Abell 1795 was not detected in OVI. Similarly, tuation in the foreground HI column in this direction, on scales LecavelierdesEtangsetal.(2004),alsousingFUSE,wereunable ∼1arcmin,is0.43×1020cm−2(17percent). todetectOVIemissionfromeitherofthelowredshift(z≈0.07), IntrinsicHI21cmabsorptiontowardsthecentralradiosource low Galactic column (NH ∼4×1020cm−2), rich clusters Abell was detected by O’Deaetal. (1994). A narrow (∼200kms−1), 2029 and Abell 3112. These results highlight the apparently un- redshifted (∼300kms−1), spatially unresolved component coin- usual (within the currently favoured non-cooling flow paradigm) cident withthenucleusisinferredtobeagasclumpfallingonto natureofAbell2597,andmotivateamoredetailedX-raystudyof the cD. A broad (∼400kms−1), spatially extended (∼3arcsec, itsproperties. i.e. the size of the radio source) component at the systemic ve- The central (∼15arcsec in diameter) regions of Abell 2597 locity is consistent with being associated with the (hence photon harbour an optical emission line nebula, as is often (and exclu- bounded) Ha . The inferred column densities and masses for the (cid:13)c 0000RAS,MNRAS000,000–000 XMM-Newton Observationof A2597 3 narrowandbroadcomponentsareNH∼{8.2,4.5}×1020Tscm−2; M∼{3.5,7}×107TsM⊙;withTsthespintemperatureinunitsof 100K.Intrinsic,redshiftedHI wasalsoseenintheVLBAobser- vations of Tayloretal. (1999), and interpreted as a turbulent, in- wardly streaming, atomic torus (scale height .20pc) centred on thenucleus. Our chosen cosmology has H0 =50kms−1Mpc−1, W M = 1.0, and W L = 0.0. Adopting a redshift z = 0.0822 (see Sec- tion5.2.1),theluminositydistanceisDL=503Mpc,theangular diameterdistanceisDA=429Mpc,andtheangularlengthscaleis 2.08kpcarcsec−1.DataprocessingwascarriedoutusingtheXMM- NewtonScienceAnalysisSystem1(SAS)version5.4.1(akaxmm- sas 20030110 1802).Spectralanalysesemployed XSPEC2version 11.3.Unlessotherwisestated,quoteduncertaintiesare1s (68per cent)onasingleparameter. Figure1.MOS2lightcurveformedfrom100stimebins.Upperpanel:total exposure,withrejectedperiodsofhighcount-rateingrey,acceptedperiods 2 EPICDATAREDUCTION inblack.Lowerpanel:onlytheselectedGoodTimeInterval(GTI)isshown. Abell 2597 was observed by XMM-Newton on 2003 June 27–28 (observation ID 0147330101), during revolution 0650. The nom- inal length of the observation was 120ks, unfortunately the ex- removesveryfewcounts,andmeansthattheonlybackgroundline posure was heavily affected by background flaring (see Fig. 1). remaininginthepnisnotspatiallyvarying.Thisfreesusfromthe Thethinopticalblocking filterwasappliedtotheEuropeanPho- needtoextractbackgroundspectrafromthesamespatialregionof tonImagingCamera(EPIC).TheMOS(Turneretal.2001)andpn thepndetector, i.e.enables ustousealocal background. Thisis (Stru¨deretal. 2001) detectors were both operated in Full Frame desirable because it removes the vagaries of scaling and varying mode. cosmicbackgroundnecessarilyassociatedwiththeuseofablank- EPICeventsfileswereregeneratedfromtheObservationData skybackground(seebelow);anditallowsusgreaterfreedominthe Files (ODFs) using the SAS meta-tasks epchain and emchain. filteringofbackgroundflares.Additionally,comparisonoftheoff- Foremchain,standardoptionswereused,exceptthatbadpixelde- sourcepn spectrafortheAbell 2597 andblank-sky fieldsreveals tectionwasswitchedon.epchainwasrunintwostepsinorderto that the8keV fluorescence linesareshiftedtoalower energy by mergeintheinstrumenthouse-keepingGoodTimeInterval(GTI) about20eVinthelatter.Thisalmostcertainlyrepresentsachange data(whichareotherwiseignored)beforethefinaleventslistwas in calibration between the processing of the blank-sky templates created. and our re-processing of the ODFs for Abell 2597 (the effect of suchashiftwouldofcoursebelargelyrestrictedtoanincreasein c 2inthosechannelslyingaroundthefluorescentlineenergies). 2.1 Backgroundfilteringandsubtraction TheonlysignificantfluorescentlinesintheMOSdataarethe AlandSilinesat1.5and1.7keVrespectively(theCr,Mn,andFe The EPIC background is comprised of a number of components: linesaround6keVareseentobenegligible).Bothofthesefeatures proton,particle,photon.SoftprotonsintheEarth’smagnetosphere exhibitstrongspatialvariation(Lumb2002)overtheMOSfieldof scatterthroughthemirrorsystem,andareresponsibleforperiodsof view (hereinafter fov). Using a local background for the MOS is intensebackgroundflaring,wheretheinstrumentcountratecanrise thereforenotasviableapropositionasitisforthepn. byordersofmagnitude.Suchintervalscanonlybedealtwithbyex- Inordertobeabletomakeuseoftheblank-skyEPICback- cisingthemfromfurtheranalysisusingarate-basedGTIfiltering. ground templates of Lumb (2002), we use the same form of fil- Energeticchargedparticlesthatpassthroughthedetectorexciteflu- teringprocessasemployedintheconstructionofthosefiles.That orescent emission lines in several of the constituent components. is, we make a light-curve (e.g. Fig. 1) in 100s time bins of the Thestrongspatialvariationofsomecomponents ofthisemission high energy (PI > 10000) single pixel (PATTERN == 0) events (Freybergetal. 2002a, Freybergetal. 2002b, Lumb 2002) makes acrossthewholedetector.ThestandardXMMeventselectionflags itpreferabletoextractabackground fromthesameregion ofthe #XMMEA EMand#XMMEA EPareappliedfortheMOSandpnrespec- detectorasthesource.Fortheanalysisofextendedsources,theuse tively(theseexcludecosmicrays,eventsinbadframes,etc.). ofblank-skybackgroundtemplates(Lumb2002)isthereforetobe Our preferred filteringmethod is toform ahistogram of the desired. number of events in the 100s time-binsof the light curve, fit the For Abell 2597, cluster emission is detected up to around 8 coreofthedistribution(i.e.ignoringthehighcount-ratetail)witha and9keVintheMOSandpnrespectively.Thepnexhibitsstrong Gaussian,andexcludeperiodswherethecount-rateliesmorethan fluorescencelinesofNi,CuandZnaround 8keV.Theonlynon- ns awayfromthemean.Unfortunately,forMOS1(andthepn,but negligiblefluorescentlinevisibleinthepndatabelow8keVisthe thisisnotanissuesinceweusealocalbackgroundinthiscase)the 1.5keV Al line. Unlike the Cu (for example) line, this line does 2s count-ratethresholdslieabovethefiltrationlimitsusedinthe notvaryspatiallyoverthedetector(Freybergetal.2002b),sinceit creationofthebackgroundeventstemplates(0.2and0.45cts−1for originatesinthecamerahousing.Cuttingoffthespectraat7.3keV theMOSandpnrespectively).InordertomakeuseoftheMOS1 backgroundtemplatewethereforeapplythesameabsolutecount- 1 http://xmm.vilspa.esa.es/sas/ ratefilteringtothisinstrumentaswasusedtomakethebackground 2 http://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/ events file. For MOS2, the2s count-rate threshold is 0.13cts−1, (cid:13)c 0000RAS,MNRAS000,000–000 4 R.G. Morrisand A.C. Fabian andthisabsolutevalueisusedtofilterboththeobservationevents background fields. For the MOS, we make use of single, double, file,andtore-filterthebackgroundtemplateeventsfiletothesame triple, and quadruple pixel events (i.e. PATTERN 6 12). For the level.Forthepn,the2s count-ratethresholdis0.54cts−1. pn,weusesingleanddoubleevents(PATTERN 6 4).Inbothcases We strengthen the filtering by requiring that all GTIs be at onlyeventswithFLAG == 0areconsidered. least 10 minutes long. The GTI files are aligned on the frame boundaries of the relevant events files before being applied. The meanremainingONTIMEoftheeventsfilesafterfilteringinthis 2.2 Outoftimeevents wayare39(pn),37(MOS1),and38ks(MOS2). WhenthepnisoperatedinFullFramemode,asisthecasehere, It is known that the particle background can vary from brightsourcescanbesignificantlyaffectedbyso-calledoutoftime observation to observation at around the ten per cent level (OOT)events.Thesearecausedbyphotonswhicharrivewhilethe (Freybergetal. 2002a). We therefore scale the products (images CCDisbeingreadout(chargeshiftedalongcolumnstowardsthe and spectra) of the blank-sky MOS events file before they are readout node). Such events are assigned a wrong RAWY coordi- used to correct the source products. The scaling factor is ob- nateandhenceanimproperCTI(chargetransferinefficiency)cor- tained from the ratio of the count-rates outside the fov, where rection.Inanuncorrectedimage, theOOTeventsduetoastrong the only events should be the result of particle-induced fluores- sourcearevisibleasabright streaksmeared out inRAWY. OOT cence rather than from actual photons passing through the mir- eventsacttobroadenspectralfeatures. ror system. In detail, we find the number of counts remaining OOT events can only be corrected for in a statistical sense. in the GTI-filtered data after applying the evselect filtering We follow the standard procedure of re-running the SAS meta- criterion#XMMEA 16 && FLAG & 0x766a0f63 == 0 && PI in task epchain with the option withoutoftime=y passed to the [200:12000] && PATTERN <= 12, where the flag expression epeventstask.Thisgeneratesaneventsfilethatconsistsentirely selectseventsoutsidetheMOSfovbutwithnoothernon-zeroflag ofOOTevents,distributedovertherangeofRAWYpresentinthe settings.Combiningthisfigurewiththeexposuretimegivesanout- data.OOTimagesandspectracanthenbeproducedinthenormal of-fovcount-ratewhichisusedtonormalizethebackgroundtem- way,andscaledandsubtractedfromsourceimagesandspectrato plateproducts. Inthisway, weobtain scalingfactors of 1.02 and correctthemfortheOOTevents. 0.91 for the MOS1 and MOS2 backgrounds respectively. To al- The appropriate scale factor is obtained from the expected lowforsomeuncertaintyinthenormalization,weassigna10per fraction of OOT events, which depends on the ratio of the read- centsystematicerrortotheblank-skyproducts,whichisaddedin outtimetotheframetime.ForthepninFullFramemode,thisis quadraturetothestatisticalerrors. 4.6/73.3ms=6.3per cent (Stru¨deretal.2001,table1). Aslight The SAS task attcalc was used to reproject the blank-sky correctiontothisfactorisneededbecausetheversionofepevents templatestothesameskypositionastheAbell2597observation,so useddoesnottakeaccountofthefactthatinpnFullFramemode, thatthesameskycoordinateselectionexpressionscouldbeapplied thefirst12(of200)rowsaremarkedasbad.Accordingly,thecor- toboththescienceandbackgroundfields. rectscalingfactoris(1−12/200)∗6.3=5.9percent.Inpractice, Below5keVorso,thecosmicX-raybackground(CXB)dom- OOTeventsmakelittledifferencetothepnspectralfits. inates(Lumb2002)overtheinternalcamerabackground. Ifthere were no significant variation of the CXB over the sky, then the blank-skytemplateswouldalsorepresentthisbackgroundcompo- 2.3 Responsefiles nent. To allow for any changes in the CXB in the region of the target,aso-calleddoublebackgroundsubtractionapproachcanbe The lower limit for the spectral fits was placed at 500eV for the used. The large field of view of XMM-Newton, together with the MOS(followingtheadviceofKirsch2003forpost-revolution450 redshift of Abell 2597, result in significant areas of the detectors data;inanycasetheMOSresultsarerelativelyinsensitivetothe beingessentiallyfreefromclusteremission.Thisenablesustoex- adopted low-energy cut-off). For consistency (and to avoid low- amine the background spectrum from such regions and compare energy residuals) the same limit was applied to the pn data. The it with those of the (scaled) blank-sky templates extracted from highenergycut-offwasplacedat7.3keV,slightlybelowthemaxi- the same detector region. For this purpose we extracted spectra mumdetectedenergyfromthecluster,toavoidthebackgroundpn fromanannuluslyingbetween7and10arcmin(avoidingregions fluorescencelinecomplexat8keV(asdescribedinSection2.1). near the edge of the fov) from the cluster centre, which we take Spectraweregroupedtoaminimumof20countsperchannel to be located at the emission peak, in sky coordinates (X,Y)= toensureapplicabilityofthec 2statistic. (23720.5,23720.5).Non-ICMsourcesinthisregionwereexcluded Redistributionmatrixfiles(RMFs)andancillaryresponsefiles withcircularmasksofradiusatleast30arcsec.TheBACKSCAL (ARFs)weregeneratedusingtheSAStasksrmfgenandarfgen FITSheaderkeyswerecorrectedfortheareasoremoved. respectively.RMFsweremadeusingthestandardSASparameters. Initial comparison of the spectra extracted from this region ARFsweremadeinextended-sourcemode,usingalow-resolution oftheAbell2597fieldrevealsthattheagreement withtheblank- detector-coordinateimageofthespectralregion.Theimagepixel skyspectrascaledaccordingtotheout-of-fovcount-ratesisgood; size was chosen according to the size of the extraction region despite therelativelypoor quality of thescience observation asa so as to adequately sample the variation in emission, bearing in whole(i.e.theheavybackgroundflaring).Thereissomethingofa mind that the version of arfgen employed does not model vari- slightexcessofsoft(.2keV)countsintheAbell2597field,but ations on scales .1arcmin. Strictlyspeaking, the images should nottoanygreatdegree. beexposure-weighted(i.e.de-vignetted;Saxton&Siddiqui2002), In summary, we use a local (extracted from 7–10arcmin in but we find this makes almost no difference in practice in this radius)backgroundforthepn.FortheMOS,weusetheblank-sky case.Badpixellocationsweretakenfromtherelevanteventsfile. templatestodealwiththespatiallyvaryingSiandAlbackground TheapproachofgeneratingARFsappropriatetotheemissionpat- lines, corrected by a double-background subtraction approach to tern in the spectral extraction region differs from the ‘weight- accountforany(minor)varianceinCXBbetweenthescienceand ing’ method (e.g. Arnaudetal. 2001) more frequently employed (cid:13)c 0000RAS,MNRAS000,000–000 XMM-Newton Observationof A2597 5 Table1.Global(1–4arcmin)spectralproperties. A B C -12d00m00.0s NkTH 3.525.+490.05 31..6497+−+000...0337 3.525.+490.05 −0.05 −0.07 −0.05 M1 Z 0.25+0.02 0.26+0.02 0.26+0.02 −0.02 −0.02 −0.03 z 0.0822 0.0822 0.078+0.001 −0.002 c 2 349.6/343 340.5/342 342.1/342 09m00.0s NH 2.49 1.91−+00..33 2.49 kT 3.43+0.05 3.50+0.07 3.42+0.08 −0.05 −0.07 −0.05 M2 Z 0.22+0.02 0.23+0.02 0.22+0.02 −0.02 −0.02 −0.02 z 0.0822 0.0822 0.081+0.002 −0.002 c 2 297.3/348 294.2/347 296.8/347 18m00.0s NH 2.49 0.01−+00..021 2.49 kT 3.24+0.030 3.59+0.04 3.22+0.02 −0.003 −0.04 −0.03 pn Z 0.20+0.01 0.25+0.01 0.22+0.01 26m00.0s 30.0s 23h25m00.0s 24m30.0s −0.01 −0.01 −0.01 z 0.0822 0.0822 0.077+0.0004 −0.001 Figure 2. pn count image of Abell 2597, selected with FLAG == 0 && c 2 1321.2/1003 1118.8/1002 1293.6/1002 PteAreTdTEaRnNd6cor4rec&te&dPfIoriOnO[T20e0v:e1nt5s00a0s]d.eTschreibiemdaigneSheacstiboenen2,GbTuItfinlo- NkTH 3.325.+409.01 30..6519+−+000...0113 3.323.+490.02 vignetting or background correction has been applied. Image pixels are All Z 0.212−+00.0.00053 0.25+−00..0013 0.23+−00..0012 4arcsecacross,roughlythesizeofthePSFcore. z 0.08−202.006 0.08−20.201 0.079−+00..00101 −0.001 c 2 2000.6/1698 1815.8/1697 1968.0/1697 inXMM-Newtonspectralanalyses.Wefindthatthedifferencesin NHisGalacticcolumninunitsof1020cm−2;kT temperatureinkeV;Z thetemperatureprofilesetc.obtainedusingthetwoapproachesare metallicityrelativetosolar.Errorsare1s .Quantitieswithouterrorswere negligible(asperGastaldelloetal.2003). fixed.ModelsA–Carephabs×mekal,with:GalacticNH;freeNH;freez. Whenfittingallthreedetectorssimultaneously,thenormalizationswere untied(thoughtheeffectsofthiswereslightinthisinstance). 3 GLOBALPROPERTIES threedetectorsadoptdisparateredshifts,withMOS1andthepndis- Thepnimageof thecluster isshowninFig.2.AsintheROSAT agreeing(atthe1s level)withthenominalopticalredshift,0.0822. observationofSarazin&McNamara(1997),thereareanumberof AnalysisoftheRGSdata,however,withitshigherspectralresolu- non-ICM sources in the field of view, though only two of these tion(seeSection5.2),resultsinaredshiftconsistentwiththeopti- arewithin6arcminoftheclustercentre.Theclusteremissionitself calvalue.ComparingtheresultsofmodelsAandC(whichdiffer displaysarelaxed,somewhatellipticalform. onlybywhetherredshiftisfreeornot),weseethattheonlyeffects Inordertoexaminetheglobalspectralpropertiesoftheclus- offreeingzaretoreduce c 2 somewhat–theresultsforotherpa- ter,andtochecktheagreementbetweenthethreeEPICdetectors, rameterssuchasT andZareunchanged.Accordingly,wehaveleft weextractedspectrafromanannulusofradius1–4arcmincentred zfixedattheopticalvalueinallsubsequentEPICfits. on the cluster emission peak (J2000: RA = 23h25m19.8s, Dec = In Table 2 are shown the results of fitting the entire central -12d07m26s;skycoordinates:X =23720.5,Y =23720.5).Thisra- 4arcmin.Nowthatweincludethecoolingregion,awidervariety dial range was selected to excise any cooling flow region and so ofspectralmodelsbecomerelevant.ModelsAandBarethesame thatthebackgroundcontributionwasinsignificant,inordertohave asinthe1–4′ case.Thefitsinthe0–4arcmin regionadopt lower themostsimplespectralshapepossible.Theresultsofbasicsingle temperaturesandhigherabundances,sothatwemayexpecttosee temperaturefitsarepresentedinTable1. temperatureandabundanceprofilesthatdecreaseandincreasere- Whenafixed,Galacticabsorptionisused(modelA),thepn spectivelywithdecreasingradius(seeSection4). has atemperature somewhat below that of theMOS instruments, Theresultsof model Bcanbecompared directlywiththose andahigherreducedc 2.Iftheabsorbingcolumnisallowedtovary ofAllenetal.(2001),whofound,usingASCA:T=3.38+−00..0067,Z= (modelB),thenallthreedetectorspreferavaluesignificantlybe- 0.35−+00..0043,andNH=0.99−+00..0087(90percentconfidencelimits). lowGalactic,withthepnN beingmuchlowerthanthatofeither InmodelsDandEweaddasecondmekalcomponent,with H MOS. Importantly, however, freeing N results in the MOS and anindependenttemperatureandnormalization.Forallthreedetec- H pnT andZ valuescomingintomuchcloseragreementwitheach tors, the fits are significantly improved. For example, for MOS1 other.Theconclusionwemaydrawfromthisisthatallthreedetec- withafreeNH, thechange infitstatisticisD c 2=−17.9 for the torsexhibitsomeformofsoftexcess(whoseoriginisunclear)with removal of two degrees of freedom. According to the F-test, the respecttoaGalacticabsorbingcolumn,moresointhepn;butthat significanceofsuchanimprovementis(1−3.4×10−4).Adhering whentheabsorbingcolumnisallowedtobefree,thethreedetectors to strict mathematical formalism, the F-test is not really valid in agreereasonablywellwithregardstotheotherclusterproperties. casessuchasthis(testingforthepresenceofasecondcomponent), Whenallthreedetectorsareanalysedsimultaneously,thefitsadopt whereone ofthehypotheses liesontheboundary of theparame- acompromisebetweenthepnandMOSvalues(thereareroughly terspace(Protassovetal.2002).Inpractice,however,MonteCarlo equalnumbersofcountsinthepnandtwoMOScombined). simulationsshowthatitgivesacceptableanswers(Johnstoneetal. Model C has a fixed N , but freely varying redshift z. The 2002). H (cid:13)c 0000RAS,MNRAS000,000–000 6 R.G. Morrisand A.C. Fabian Table2.Global(0–4arcmin)spectralproperties. A B D E F G NH 2.49 1.49+−00..22 2.49 2.52−+00..44 2.49 2.11−+00..33 kT 3.35+0.03 3.47+0.04 3.46+0.04 3.45+0.04 3.56+0.05 3.56+0.05 −0.03 −0.04 −0.03 −0.03 −0.05 −0.05 kT2 - - 0.47−+00..0077 0.46−+00..0088 - - M1 K2/K - - 0.015−+00..000022 0.015−+00..000055 - - M˙ - - - - 93+15 73+20 −15 −19 Z 0.35+0.02 0.37+0.02 0.39+0.01 0.39+0.02 0.37+0.02 0.37+0.02 −0.01 −0.02 −0.01 −0.02 −0.02 −0.02 c 2 474.9/396 450.0/395 432.0/394 432.1/393 437.4/395 435.4/394 NH 2.49 1.78+−00..22 2.49 2.13−+00..33 2.49 2.56−+00..33 kT 3.22+0.03 3.30+0.03 3.32+0.03 3.35+0.05 3.40+0.05 3.40+0.05 −0.03 −0.03 −0.03 −0.04 −0.04 −0.04 kT2 - - 0.75−+00..019 0.86−+00..12 - - M2 K2/K - - 0.016−+00..000033 0.015−+00..000066 - - M˙ - - - - 92+16 96+22 −16 −22 Z 0.30+0.01 0.31+0.01 0.32+0.02 0.32+0.02 0.31+0.01 0.31+0.01 −0.01 −0.01 −0.02 −0.02 −0.01 −0.01 c 2 404.3/400 391.9/399 375.5/398 374.0/397 372.0/399 371.9/398 NH 2.49 0.47+−00..11 2.49 0.87−+00..11 2.49 1.11−+00..11 kT 3.04+0.02 3.29+0.02 3.20+0.02 2.29+0.08 3.43+0.03 3.43+0.03 −0.02 −0.02 −0.02 −0.08 −0.04 −0.03 kT2 - - 0.31−+00..0022 6.78−+00..65 - - pn K2/K - - 0.035−+00..000033 0.51−+00..0077 - - M˙ - - - - 159+8 86+11 −10 −11 Z 0.278+0.008 0.318+0.009 0.325+0.01 0.27+0.01 0.301+0.009 0.322+0.01 −0.008 −0.009 −0.006 −0.01 −0.009 −0.009 c 2 1781.8/1190 1482.2/1189 1537.3/1188 1307.4/1187 1504.2/1189 1417.2/1188 Models:A,Bphabs×mekal;D,Ephabs×(mekal+mekal);F,Gphabs×(mekal+mkcflow).Thefirst,secondmodelineachpairhaveGalactic,free NHrespectively.K2/Krelativenormalizationofsecondtemperaturecomponent;M˙ massdepositionrate(M⊙yr−1);Zmetallicity(solarunits). Therelativenormalizationofthesecondtemperaturecompo- thesecondcomponent,alsoprovidesasignificantimprovementin nent is a few per cent of that of the bulk hot gas. If the hot and fit over a one-component model. The data are not able to distin- cold phases are in pressure equilibrium, then nCTC =nHTH. The guishbetweenthesetwopossibilitieswithanydegreeofaccuracy. normalizationofthemekalmodel variesasK(cid:181) n2V.Hence,the For example, for MOS1 a cooling flow provides a very slightly relativefillingfactorofthecoldphaseisgivenby worsefitthanasingletemperature,whereasfortheMOS2thesit- uation is reversed. The cooling flow fit does have only one extra VC/VH=(KC/KH)∗(nH/nC)2=(KC/KH)∗(TC/TH)2; freeparameter though. Whentheabsorbing column isallowedto befree,allthreedetectorsindependentlyfitamassdepositionrate w∼hfiecwha×pp1l0ie−d4toinththeisrecsauslets.inTable2foreachdetectorgivesvalues ∼90M⊙yr−1.AnanalysisoftheReflectionGratingSpectrome- ter(RGS)data(Section5)producesverysimilarmassdeposition Interestingly,whenasecondtemperaturecomponentisavail- results. able, then the fitted N for the MOS detectors becomes consis- H InFig.3weshowtheresultsofallowingtheminimumtem- tent with the Galactic value. The pn results, however, for model perature of the cooling flow component, T , to vary freely; for min Earenotsensiblyconstrained.Itisnoticeablethatthebest-fitting bothfixedandfreeN (i.e.modelsFandGinTable2respectively). H low-temperature components for the twoMOS detectors in mod- WhenT isallowedtovaryfreely,avaluesomewhatabove‘zero’ min elsDandEaresomewhatdiscrepant.If(aswewillarguelateron) (i.e.themodel minimum, 0.081keV)ispreferred; but azerocut- therereallyisacoolingflowoperatingdowntolowtemperaturesin offtemperatureisentirelyconsistentwiththedata,withinthe1s thissystem,thentherewillbegaspresentatacontinuousrangeof limits. The associated mass-deposition rate, M˙, is little changed. temperatures,anditisnotobviouswhatthepreferredsinglelow- FreeingN broadenstheallowedconfidenceregions,butdoesnot H temperature value will be in a model with only two temperature greatlyaffecttheresults. components, nor how it will vary between different instruments. TheuppertemperaturesforthetwoMOSinstrumentsalsoseemto besystematicallydifferent,albeitatalowerlevelthanforthelow 3.1 ComparisonwithChandra temperatures.Intermsofthefit,thehighervalueforT inMOS2 2 seemstobeduetoaslightlybroaderironLhumpat1keVinthis WepresentabriefcomparisonoftheresultsofXMM-Newtonand detector. Chandra observations of Abell 2597 through a re-analysis of the Forcompleteness,wenotethatthepnresultsarestableagainst Chandra observation of McNamaraetal. (2001). We use a con- alternative forms of light-curve filtering and background correc- servative flare screening of the Chandra data that results in 7ks tion.Forexample,ifweapplythesamecount-ratecut(0.45cts−1) of good time. The agreement between the Chandra and XMM- asusedintheblank-sky fieldsof Lumb(2002),and thenemploy Newton pointings for the location of the X-ray emission peak is adoublebackgroundsubtractiontechnique(asusedfortheMOS), excellent. The largest complete circle centred on this point that thenthepnfitsareessentiallyunchanged. canbeextractedfromtheACIS-S3chiphasaradiusof1arcmin. Usingacoolingflowmodel(inwhichgascoolsfromthetem- This encompasses most of the cooling region (see Section 4.2). perature of the bulkhot gas), insteadof asingle temperature, for A background spectrum was extracted fromthe appropriate stan- (cid:13)c 0000RAS,MNRAS000,000–000 XMM-Newton Observationof A2597 7 4 RADIALPROPERTIES Given the symmetric nature of the emission visible in Fig. 2, we haveperformedanalysesusingcircularannulicentredontheclus- teremissionpeak. 4.1 Surfacebrightnessprofile Fig.5showsthesurfacebrightnessprofileofthecentral4arcmin inradius of the cluster inthe 0.5–2.0keV band, from the sum of theMOS1andMOS2data.Theprofilewasextractedfrom1arcsec pixelimagesandvignetting-correctedexposuremaps,usingcircu- lar annuli centred on the emission peak. A background was sub- tractedusingtheappropriatescaledblank-fielddatasets.Thewidth ofeachannuluswassuchthatthesignificanceofthebackground- subtractedcountsitcontainedwasatleast5s .Pointsourceswere excluded. Also shown is the result of a b profile fit to the surface Figure3.ConfidencecontoursintheM˙–TminplanefortheMOS1+MOS2 brightness,S (r)=S 0[1+(r/rc)2]−3b +0.5;withb =0.585+−00..000021, cpoeorlpinangefllofiwxefidtsN(Hm,olodwelesrFpaanndelGfrieneTNaHb.leT2h,ebcurtowssitshhTomwinstfhreeebteosvt-afirtyv).aUlupe-, rc=T23h.e0s−+u00r..00fa22caercbsreicg.htnessprofileisaffectedbytheXMM-Newton andthecontoursareplottedforD c 2=2.3,4.61,9.21;correspondingtothe PSF,whichcanitselfbewelldescribed byab model (Ghizzardi 68,90,and99percentconfidencelimitsrespectivelyontwofreeparame- ters.Theleft-handboundaryisduetothelowestusablemodeltemperature, 2001,2002),withacoreradiusofaround5arcsec.Whenanintrin- 0.081keV. sicbrightnessprofilea(~r)ismodifiedbyaninstrumentalPSFb(~r), theobservedprofileistheconvolutionofthetwo, ¥ c(~r)= d2~ua(~u)b(~r−~u)=2p dkkJ0(kr)a˜(k)b˜(k), (1) Z Z0 wherethesecondformisforthecaseofradialsymmetryandmakes use of the convolution theorem. a˜(k) in this expression is the ra- diallysymmetricFouriertransform(Birkinshaw1994),orHankel transformoforderzero, ¥ f˜(k)= drJ0(kr)rf(r), (2) Z0 withJ aBesselfunctionofthefirstkind.Evaluatingtheeffectof 0 instrumentPSFonasurfacebrightnessprofilethereforereducesto performingthreeHankeltransforms.Thegeneralb functionhasan analytic Hankel transform (Gradshteyn&Ryzhik 2000, equation 6.565.4),butthespecificcaseofb =2/3,whichisagoodapproxi- mationforboththeXMM-NewtonPSFandmanyclusterbrightness profiles,isespeciallysimple: Finigruardeiu4s.C(thoenficdoeonlcinegcornetgoiuorns)infrothmeMt˙h–eTmCihnapnldanraefAoCrtIhSe-Sc3endtraatla1,awrcitmhina f(r)=(a2+r2)−3/2 ⇔ f˜(k)= e−ak (3) a GalacticNH.PlotdetailsareasperFig3. Asaresult,if S(r)=S0[1+(r/rs)2]−3/2 and P(r)=P0[1+(r/rp)2]−3/2 (4) describe the source and PSF profiles respectively, with the latter dardblank-skyfield.Thespectrumwasfittedoverthe0.6–7.0keV normalizedsothatP0=(2p rp)−1,thenitisstraightforwardtoshow thattheconvolutionc(r)isgivenby range. Fig.4istheChandracounterpartoftheupperpanel(i.e.fora rs 2 r 2 −3/2 cfioxnesdtrNaHin)tsofwFhiegn.3thfeorabthseorMbiOngS.coWluemwnerweausnaalblolewteodotbotavianrysefnrseiebllye. c(r)=S0(cid:16)rs+rp(cid:17) (cid:20)1+(cid:16)rs+rp(cid:17) (cid:21) . (5) Thepreferredlow-temperaturecut-offforthecoolingflowcompo- Thisisnothingmorethananotherb profile,withareducedcentral nent,thoughnottightlyconstrained,isaslowaspossible.Theas- amplitudeS′ andincreasedcoreradiusr′: 0 s swreoisctuhialtttshedearXmeMaalsMsso-dNienepawogstroitenieomEnPerInaCttewrieissthu∼ltths7o0fsoeMrft⊙rhoeymrc−etn1h,tereaRnlGt4irSaer,lcyamscisonhn.osTwishnteesinnet S0′ =S0(cid:16)1+rrps(cid:17)−2∼S0(cid:16)1−2rrps(cid:17) and rs′ =rs+rp. (6) Fig.17.Fig4maybecontrastedwiththemorecommonChandra The simplest PSF correction we can make to the surface resultinsuchcases,whereamuchhigherT ispreferred(e.g.in brightness profile is therefore to subtract the radius of the PSF, min Abell3581;Johnstoneetal.2005,fig.10). 5arcsec, from the core fitted to the convolved profile, 23arcsec, (cid:13)c 0000RAS,MNRAS000,000–000 8 R.G. Morrisand A.C. Fabian Figure5.Surfacebrightnessprofileofthecentral240arcsecinradius,0.5– 2.0keV band, from summed MOS1 and MOS2profiles. The dotted line showsab profilefittothedata–seetextfordetails.Theprofilehasbeen correctedforbackgroundandvignetting. resultinginanestimateof18arcsecfortheintrinsicsurfacebright- nesscoreradius. 4.2 Spectralprofiles Inorder toobtain reliablespectral fits,annular radii werechosen soastoencompassslightlymorethan10000(net,i.e.background- subtracted) counts in each MOS, and thus over 20000 counts in thepn. Itwas found that annuli withfewer counts (e.g. 7500 per MOS)tendedtogivepoor(unphysical)resultsinthedeprojection Figure6.Projectedtemperature(upperpanel)andmetallicity(lowerpanel) and PSF-correction analyses. In such cases, the lower signal-to- profiles.TheopentrianglesaresimultaneousMOS1+MOS2fits,thefilled squaresarethepn.Themodelwasphabs×mekalwithacommon,free noiseallowsphysicallyunrealisticsolutions(inwhichfittedquan- tities tend to oscillate about the smoother profiles obtained from absorbingcolumnNHsharedbyallannuli.TheNHvalueswere(inunitsof annuli with more counts) to become mathematically valid. Both 1020cm−2):1.52−+00..0088(MOS);0.19−+00..0066(pn).WithNHfreetovarybetween annuli,theTandZprofilesarenotmuchchanged.TheMOSNHshowsno correctionalgorithms(seee.g.Johnstoneetal.2005fortestingof significantvariationwithradius;whereasthatofthepnisconsistentwith thedeprojectionprocess)involveredistributionofcountsbetween theMOSinthecentraltwobins,butmuchloweroutsidethisregion. annuli,potentially(dependingonthedetailsofthebrightnesspro- file) leaving small net numbers of counts in any one annulus. In practiceitisfoundtobebeneficialnottolettheuncorrectedcount In Fig. 7, we show the radial dependence of the cumula- numbersfalltoolow.Theoutermostannuluswastruncatedatara- tivemassdeposition rate, M˙(<r),withinthecooling flow radius diusof5arcmin(duetotheincreasingrelativebackground)andso (130kpc; see Section 4.2.2). There is a discrepancy between the contains somewhat fewer counts. By the timethislast annulus is MOS and pn detectors, with the former preferring smaller mass reached, the background is contributing about 30 per cent of the depositionrates.Owingtothewaythisfigurewasconstructed(fit- totalcounts. tingeachannulusindependentlywithasingletemperaturecompo- nentandacoolingflowcomponent,thensummingtheM˙ valuesso obtained from the centre outwards), the discrepancy between the 4.2.1 Projectedprofiles two instruments builds with increasing radius. Also shown is the Fig. 6 shows the results of fitting a single-temperature MEKAL M˙ value inferred by Oegerleetal. (2001) from their FUSE data; (Meweetal. 1995) model to each spectral annulus, with an uni- namely40M yr−1withinaradiusof40kpc.Thefigureillustrates ⊙ form(butfreetovary)absorbingcolumnappliedtoallannuli.The thatthereisreasonableagreementbetweentheX-rayandUVmass central temperature isa littleover 2.5keV (afunction of thesize depositionrateswithinaradiusof40kpc. ofthecentralannulus).Overthecentral100kpcorsothetempera- tureincreases,reachingamaximumof∼3.6keV.Outsidethecen- tralcoolingregion,thereisperhapsevidenceforagradualdecline 4.2.2 Deprojectedprofiles intemperaturebeyond∼150kpcorso.Themetallicityexhibitsa fairlysmoothdeclinewithincreasingradiusinthecentralcooling The results of Fig. 6 are subject to projection effects, in which region,droppingfromaround0.5Z atthecentreto0.2Z atthe thespectralpropertiesatanypointintheclusteraretheemission- ⊙ ⊙ outside. weightedsuperpositionofradiationoriginatingatallpointsalong ResultsareshownforthesimultaneousfitofbothMOSinstru- thelineofsightthroughthecluster.InFig.8weshowtheresultsof ments,andalsoforthepn.Thetwoinstrumentsagreereasonably adeprojectionoftheMOSandpnspectrausingtheXSPECprojct well interms of T and Z,but have very different preferences for model.Undertheassumptionofintrinsicspherical(moregenerally, N . ellipsoidal) shells of emission, this model calculates the geomet- H (cid:13)c 0000RAS,MNRAS000,000–000 XMM-Newton Observationof A2597 9 Figure7.Cumulativeprojectedmassdepositionrate,M˙(<r),forthecool- ingflowregion.TheopentrianglesaresimultaneousMOS1+MOS2fits, thefilledsquaresarethepn.Themodelwasphabs×(mekal+mkcflow) withafixedGalacticabsorption.ThestarshowstheFUSEOVIdatapoint ofOegerleetal.(2001),withanerrorbarappropriatefortheaccuracyof theFUSEfluxmeasurement,(1.3±0.35)×10−15ergcm−2s−1. ricweightingfactorsaccordingtowhichemissionisredistributed amongsttheprojectedannuli. As is to be expected, the temperature in the outer regions wheretheprofileisfairlyflatisseentoberelativelylittleinfluenced by projection. Deprojection recovers a lower central temperature thanbefore,sinceintheprojectedfitsthespectrumofthecentral annulusiscontaminatedbyoverlyinghotteremission.Thereisalso Figure 8. Deprojected temperature (upper panel) and metallicity (lower some evidence for a higher central abundance in the deprojected panel)profiles.TheopentrianglesaresimultaneousMOS1+MOS2fits,the metallicityprofile. filledsquaresarethepn(asperFig.6).Themodelwasprojct×phabs× Thedeprojectedpntemperatureprofileshowssomesignsof mekalwithacommon,freeabsorbingcolumnNHsharedbyallannuli.The instabilityinthecentre,inwhichneighbouringbins‘oscillate’with NH valueswere(inunitsof1020cm−2):1.53−+00..0088 (MOS);0.23+−00..0066 (pn); highandlowtemperatures.Theinterpolatedvalues,though,agree littlechangedfromtheprojectedresults. wellwiththeMOSresults.Recently,Johnstoneetal.(2005)have shownthattheprojctapproachworkswellatreproducingvarious simplesyntheticclustertemperatureanddensitystructures.Possi- (inperfectagreementwiththeROSATresultofSarazinetal.1995), blytheslightinstabilityofthepnfitreflectsamorecomplexunder- andlessthan5Gyrinside85kpc. lyingtemperaturedistribution(e.g.morethanonephase);butmore AlsoshowninFig.9aretheresultsofsimplemodelfitstothe likely it is simply a quirk of geometry that renders certain phys- densityandentropyprofiles.Thedensityprofileisrepresentedby iacbaulnlydaunncreesalaitsttihcesporloujteicotnesdmvaaltuheemmaatkiecsallliyttlpeldauifsfiebrleen.cFer,ebeuztinthgetehfe- ab model,n(r)=n0[1+(r/rc)2]−1.5b ;withb =0.57+−00..0011,n0= fectcanberemovedbyusinglargerannuli(althoughthepnannuli 0.0354−+00..00000066cm−3,rc=49.0−+00..99kpc.Theseresultsfortheden- sityprofileareinreasonable agreement withthoseobtainedfrom shownalreadycontainsimilarnumbersofcountstothecombined fittingthesurfacebrightnessprofile(Section4.1).Theabsenceofa MOS annuli), but weretainthesameannuli here for bothinstru- significantexcessinthedeprojecteddensityinthelastannulusin- mentsforillustration. dicatesthatwereachasufficientlylargeradiusthatprojectionfrom InFig.9weshowvariousquantitiesderivedfromthedepro- more distant material is not significant (compare with the Chan- jected spectral fits. The electron density ne is obtained from the 1/2 dradeprojectionresultsofJohnstoneetal.2005).Theentropypro- mekalno−rm1/a2lization,andscalesasH0 .Thecoolingtime(scal- fileisparametrizedasaconstantpluspower-law,S(r)=S0+krh ; ing as H0 ) is an approximate isobaric one, calculated as the withS0=15.1−+11..55keVcm2,k=0.28−+00..0055keVcm2kpc−1.19,h = ctiomoelitnagkerantefoarttahneygatesmtoperaradtiuartee,itsenthalpyusingtheinstantaneous 1.19−+00..0043.ThefitwiththeS0 termissubstantiallybetterthanthat without,butbearinmindthatthePSFhasnotbeencorrectedfor H g kT here. A logarithmic slope for the entropy profileof ≈1.1 ispro- tcool≈ nenHL (T) = g −1m XHneL (T), (7) duced in simulations involving gravitational collapse and shock heating(Tozzi&Norman2001). where:g =5/3istheadiabaticindex;m ≈0.61(forafully-ionized Thevirialradiusbecomesaquantityofinterestatthispoint. 0.3Z⊙ plasma) isthemolecular weight; XH≈0.71 isthe hydro- It is known that the calibrations of the scaling relations obtained genmassfraction;andL (T)isthecoolingfunction.The‘entropy’ fromsimulations havenormalizations quitedifferent tothose ob- −2/3 is the standard astronomer’s entropy, S=Tne , and scales as tained from observation. Allenetal. (2001) studied the cluster −1/3 H . virialscalingrelationsusingChandra,butdonotquoteanexplicit 0 Thecoolingtimeislessthan10Gyrinsidearadiusof130kpc radius–temperature relation. Using their data for an SCDM cos- (cid:13)c 0000RAS,MNRAS000,000–000 10 R.G. Morrisand A.C. Fabian Figure10.xmmpsfmixingfactorscalculatedat1.0keV.Eachcurveshows, foroneoftheannularregions,thefractionofthefluxinthatregionorigi- natingfromeachoftheotherregions.Onlycontributionsgreaterthan1per centareshown.Thepeakfluxisalwaysfromtheregionitself.Theactual mixingfactorsusedinternallybythemodelrelatetothefractionoftheflux fromeachregiongoingtootherregions.Thefactorsshownherearecalcu- latedfromtheseusingthemodelnormalizationsfittedtoeachannulus.By construction,thepointswiththesamex-coordinatesumto1.0. icallyverylargeareemployed;butinsuchcasesthePSFredistri- bution becomes less significant anyway, and we also obtain very limitedresolutionofthecentralcoolingregion,whichisthemain areaofinteresthere. Foragivensetofspectralannuli,andagivenbrightnesspro- Figure9.Derived quantities fromthe deprojected profiles ofFig.8:up- file,thexmmpsfmodelcalculatesthemixingfactorsthroughwhich perpanelelectrondensity;middlepanelapproximateisobariccoolingtime; fluxfromanygivenannulusisredistributedtoalltheothers.The lowerpanelentropy.Thedottedlinesshowthefitsofsomesimplemodels factorsarecalculatedattenenergiesintherange0.5–6.0keV,al- tothedata:abetaprofileforthedensity;andaconstantpluspower-lawfor though the energy dependence of the XMM-Newton PSF is rela- theentropy.Seetextfordetails. tivelysmall.Theinputbrightnessprofilecanbespecifiedusingei- theranimage,oramodelparametrization.Wefindthatthereisno significant difference between using a MOS1 (say) image or the mology,wecalibratether–T relationasr2500=0.31Mpch5−01(1+ PSF-correctedb profilefromSection4.1toprovidethebrightness z)−3/2(T2500/keV)0.5.Theconversionfromanoverdensityof2500 information.Bywayofexample, weshow themixingfactorsfor tooneof200(appropriateforthevirialradius)dependsuponthe oursetofannuliat1.0keVinFig.10.Atthetenpercentlevel,each formassumedforthedensityprofile.TakinganNFWprofilewith annulusisonlyaffectedbyitsimmediateneighbours.Nevertheless, atypicalclusterconcentrationc=5,wefindthatr200≈2.75r2500. themixingispotentiallyquitesignificant,sinceformanyregions Usingatemperatureof3.5keV,wethereforeestimateavirialra- only50percentoftheirfluxoriginatesfromthatsameregion. dius of 1.4Mpc for Abell 2597. The radius 0.1R therefore lies V InFig.11,weshowtheT andZprofilesobtainedfromaPSF- withinthesixthannulusfromthecentre(abinwhosemid-pointis correctedfitoftheMOS1data.Comparedtotheuncorrectedpro- at 150kpc). Themeasured entropy in thisbin isS0.1RV =(137± files(Fig.6),asteepercentraltemperaturegradientisrecovered,as 6)h−1/3keVcm2. Thisisa relativelylow value (see e.g. fig. 4of wellasalargercentralabundancepeak. 50 Ponmanetal.2003),butrecallPSFeffectsarestillpresentinthis Fig.12displaysthedensity,coolingtime,andentropyderived result. fromthePSF-correctedprofiles.ComparedtotheresultsofFig.9,a highercentraldensity,andalowercentralcoolingtimeandentropy areobtained.Alsoshownisab modelfitforthedensity,with:b = 4.2.3 PSF-correctedprofiles 0.579−+00..000044, n0 =0.068−+00..000011cm−3, rc =31.6−+00..66kpc. The PSF correctedcoreradiusof15arcseciscomparabletotheestimateof ThebroadeningeffectoftheXMM-NewtonPSFactstoredistribute 18arcsecmadeinSection4.1usingthesurfacebrightnessprofile. countsbetweenspectralannuliinamannerconceptuallysimilarto Theentropyprofileiswell-fit–reduced c 2=7.49/(9 − 3) thatofprojection.Consequently,itcanbecorrectedforinthesame – by a constant plus power-law model of the same form way,Tnahmeemlyosbtyreucseinngt vaenrsXiSoPnEaCvamiliaxbinlegamtothdeelt,imxmemopfsfw.ritingwas used in Section 4.2.2, with: S0 = 7.9−+11..53keVcm2, k = 0.40+0.11keVcm2kpc−1.15,h =1.15+0.05. unable to fit observations from different instruments simultane- −0.08 −0.04 ously,sowepresenthereonlytheresultsforMOS1,inordertoil- lustratetheeffectsofPSFonthespectralfits.Wehavebeenunable 4.3 ComparisonwithChandratemperatureprofile toachievephysicallyrealisticsolutionswhenusingthexmmpsfand projctmodelsincombination,tocorrectforbothprojectionand AsperSection3.1,wehavecomparedtheXMM-NewtonandChan- PSFatthesametime.Theexceptioniswhenannulithatarephys- draresults.Chandraspectrawereextractedfromthesameannuli (cid:13)c 0000RAS,MNRAS000,000–000

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.