ebook img

An Ultra Low Power ADC for Wireless PDF

147 Pages·2014·6.94 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview An Ultra Low Power ADC for Wireless

An Ultra Low Power ADC for Wireless Micro-Sensor Applications by Naveen Verma B.A.Sc., Electrical Engineering and Computer Engineering, University of British Columbia Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering and Computer Scienco at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2005 © 2005 Massachusetts Institute of Technology. All rights reserved. A uthor .......................... ...... Department of Electrical Engineering and Computer Science May 16, 2005 C ertified by .................... ................ ..................... Anantha P. Chandrakasan Professor of Electrical Engineering Thesis Supervisor Accepted by..... .......... Arthur C. Smith Chairman, Departmental Committee on Graduate Students MASSACHUSETTS INS E OF TECHNOOGY BARKER MAR 0 3 2006 LIBRARIES 2 An Ultra Low Power ADC for Wireless Micro-Sensor Applications by Naveen Verma Submitted to the Department of Electrical Engineering and Computer Science on May 16, 2005, in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering and Computer Science Abstract Autonomous micro-sensor nodes rely on low-power circuits to enable energy har- vesting as a means of sustaining long-term, maintenance free operation. This work pursues the design of an ultra low-power analog-to-digital converter (ADC) whose sampling rate and resolution can be scaled to dynamically recover power savings. The proposed ADC has a sampling rate of 0-100 kS/s and a resolution of either 12 or 8 bits. The design is based on the successive approximation register architec- ture (SAR), which is suitable for scaleable, micro-power operation. Specifically, the number of active blocks has been minimized to allow efficient power-gating, which, in- turn, has been leveraged to implement scalability features. Several new techniques to improve the efficiency of the ADC have been developed and employed. Analog offset calibration in the regenerative latch is used, to improve the power-delay product of the comparator; pre-amplifier cascade optimization is performed with consideration to thermal noise limitations; weak-inversion biasing is employed in the active amplifiers; passive switch-capacitors are used to generate the auto-zero reference voltage such the CMRR of the ADC is maximized; integrated capacitors are laid-out in a new common-centroid arrangement that minimizes edge effects; finally, the sub-DAC's transmission gain is adjusted to reduce non-linearities caused by the attenuating ef- fects of parasitics. The ADC has been fabricated in a 0.18pLm CMOS technology. All circuits are powered using a IV supply, though bootstrapping is used internally. At a resolution of 12-bits, and a sampling rate of 100 kS/s, the power consumption of the entire ADC core is 26pW. The SNDR of the converter with a 48 kHz input tone is 65dB (10.55 ENOB) and the SFDR is 71dB. The power consumption decreases linearly with sampling rate, and is measured to be approximately 200nW at 500 S/s. Thesis Supervisor: Anantha P. Chandrakasan Title: Professor of Electrical Engineering 3 4 Acknowledgements This thesis has been a major accomplishment. It is not, however, my accomplishment alone. The immense support and friendship I've received from so many over the course of my degree and education so far, is perhaps the aspect most worth remembering. Let me start by thanking them here. Firstly, I must express my gratitude to my advisor and role model, Professor Anantha Chandrakasan. Anantha forces me to do my best; how is it that I can spend months analyzing a problem, and the first time I present it to him, I get a question I hadn't even thought of? But, most importantly, I thank Anantha for giving me something to strive towards. Of course, non-technically, the biggest impact in my life is courtesy of my mom and dad. Saying thank you to you guys is too trivial and inconsequential for everything you have done and meant. I only hope that you know, as you always do, how much your support means to me on a daily basis. My sisters, Angelee and Serena, have played a very important role, not only in my life, but specifically in the completion of this thesis. Thank you, both, for making it such a high priority to keep in tact my ability to write prose. Of course, your encouragement has meant even more. Engineering education, a microcosm of life, is an arduous process. I've gotten support, all the way, from my good friend, Sean. Neither of us quite fits into the EE scene, but we get each other through it, and, at the end of it, we have a good laugh. There is a group of masters who took it personally to make sure I understood what engineering really is: a tall order, considering, at the time, I barely understood V=IR. Thank you Dr. Lawrence, Dr. Jaeger, Dr. Pulfrey, and Dr. Salcudean. Here at MIT, I wish to thank everyone from Ananthagroup. I'm lucky to be associated with such a bright group, that continually inspires me to be more creative. Finally, I would like to acknowledge National Semiconductor for providing fabri- cation services for the prototype chip, as well as their development help and CAD support. 5 R ?r -4t-0 .3W; ---ishmr- ae:~A- -Ka '-Or:No afAOi- 5-"-a --- --' 'wilvus-M M-- -a il r--N-t-Md i ti-e''ESW:.r' ihas--e'-0 --.r tal- ''M-i- r %:- .a r s - - Contents 1 Introduction 19 1.1 Requirement Specifications . . . . . . . . . . . . . . . . . . . . . . . . 20 1.1.1 Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.1.2 Sampling Rate . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.1.3 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.1.4 Input Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.2 Architecture Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2 Precision Limitations 25 2.1 Low Overdrive of MOS Switches . . . . . . . . . . . . . . . . . . . . . 25 2.2 Charge Injection Errors . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3 Mismatch of Passive Elements . . . . . . . . . . . . . . . . . . . . . . 27 2.4 Mismatch of Active Elements . . . . . . . . . . . . . . . . . . . . . . 27 2.5 Device Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.6 Threshold Voltage Hysteresis . . . . . . . . . . . . . . . . . . . . . . . 30 2.7 Other Error Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3 Successive Approximation Conversion 33 3.1 Basic Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2 Differential Successive Approximation ADC . . . . . . . . . . . . . . 35 3.3 Analysis of Error Sources . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.3.1 Capacitor Mismatch . . . . . . . . . . . . . . . . . . . . . . . 39 7 3.3.2 DAC Parasitics . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3.3 Reference Voltage Error . . . . . . . . . . . . . . . . . . . . . 41 3.3.4 Comparator Offset . . . . . . . . . . . . . . . . . . . . . . . . 41 3.3.5 Sampling Switch Non-Linearity . . . . . . . . . . . . . . . . . 42 3.3.6 Comparator Thermal Noise . . . . . . . . . . . . . . . . . . . 42 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4 Architecture Design and Theory 45 4.1 Global Architecture and Concepts . . . . . . . . . . . . . . . . . . . . 45 4.1.1 Conversion Plan . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.1.2 Sample Rate Scaling . . . . . . . . . . . . . . . . . . . . . . . 47 4.1.3 Resolution Modes . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.1.4 Self-Timed Bit Cycling . . . . . . . . . . . . . . . . . . . . . . 51 4.2 Block Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.2.1 Comparator Architecture . . . . . . . . . . . . . . . . . . . . . 54 4.2.2 DAC Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.2.3 SAR Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5 Circuit Design 75 5.1 DAC Circuit Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.1.1 Switch Network . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.1.2 Capacitor array . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5.2 Comparator Circuit Design . . . . . . . . . . . . . . . . . . . . . . . . 91 5.2.1 Preamplifers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.2.2 Offset-Calibrating Latch . . . . . . . . . . . . . . . . . . . . . 96 5.2.3 Latch Level Restorer . . . . . . . . . . . . . . . . . . . . . . . 106 5.3 SAR Circuit Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.4 Clock Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5.5 Charge Pump and Voltage Multiplier . . . . . . . . . . . . . . . . . . 112 8 6 Testing and Characterization 115 6.1 Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.2 Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 6.2.1 Static Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . 118 6.2.2 Dynamic Noise and Linearity . . . . . . . . . . . . . . . . . . 120 6.3 Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6.4 Comparision Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 7 Discussions and Future Work 129 7.1 Effects of Applied optimizations . . . . . . . . . . . . . . . . . . . . . 130 7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 7.2.1 Digital Optimization . . . . . . . . . . . . . . . . . . . . . . . 132 7.2.2 Programmable On-Chip Post-Filtering . . . . . . . . . . . . . 132 7.2.3 Resolution Scalable DAC . . . . . . . . . . . . . . . . . . . . . 132 7.2.4 Active Input Switch . . . . . . . . . . . . . . . . . . . . . . . 132 A ADC Fundamentals 135 A.1 Linear Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . 135 A.1.1 Ideal ADC Model . . . . . . . . . . . . . . . . . . . . . . . . . 136 A.1.2 Quantization Noise . . . . . . . . . . . . . . . . . . . . . . . . 136 A.2 Non-Ideal ADC Model . . . . . . . . . . . . . . . . . . . . . . . . . . 137 A.2.1 Effective Resolution . . . . . . . . . . . . . . . . . . . . . . . . 138 A.2.2 Random Noise in SAR ADCs . . . . . . . . . . . . . . . . . . 138 A.3 Performance Normalization . . . . . . . . . . . . . . . . . . . . . . . 139 A.3.1 Sampling Rate . . . . . . . . . . . . . . . . . . . . . . . . . . 139 A.3.2 Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 A.3.3 Figure of Merit . . . . . . . . . . . . . . . . . . . . . . . . . . 141 9

Description:
the CMRR of the ADC is maximized; integrated capacitors are laid-out in a new of 12-bits, and a sampling rate of 100 kS/s, the power consumption of the entire it such a high priority to keep in tact my ability to write prose.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.