ebook img

An Overview of the Hypercentral Constituent Quark Model PDF

10 Pages·0.13 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview An Overview of the Hypercentral Constituent Quark Model

AN OVERVIEW OF THE HYPERCENTRAL CONSTITUENT QUARK MODEL M.M.Giannini,E. SantopintoandA. Vassallo DipartimentodiFisicadell’Universita`diGenovaandI.N.F.N.,SezionediGenova February 8, 2008 3 0 0 Abstract 2 n Wereport ontherecentresultsofthehypercentral Constituent QuarkModel a (hCQM).Themodelcontainsaspinindependentthree-quarkinteractionwhichis J inspiredbyLatticeQCDcalculationsandreproducestheaverageenergyvaluesof 8 theSU(6) multiplets. The splittingsareobtained withaSU(6)-breaking inter- action, which can include also an isospin dependent term. The model has been 1 usedforpredictionsconcerningtheelectromagnetictransitionformfactorsgiving v agooddescriptionofthemediumQ2-behaviour. Inparticularthecalculatedhe- 7 licityamplitudeA1 fortheS11(1535)resonanceagreesverywellwiththerecent 1 2 CLAS data. Furthermore, we have shown for the first time that the decreasing 0 of theratioof theelasticform factorsof theproton isduetorelativisticeffects. 1 0 Finally, theelasticnucleonformfactorshavebeencalculatedusingarelativistic 3 versionofthehCQMandarelativisticquarkcurrent. 0 / h 1 Introduction t - cl Inrecentyearsmuchattentionhasbeendevotedtothedescriptionoftheinternal u nucleonstructureintermsofquarkdegreesoffreedom. Besidesthenowclassi- n calIsgur-Karlmodel[1],theConstituentQuarkModelhasbeenproposedinquite : differentapproaches: thealgebraicone[2],thehypercentral formulation[3]and v thechiralmodel[4,5].InthefollowingthehypercentralConstituentQuarkModel i X (hCQM),whichhasbeenusedforasystematiccalculationofvariousbaryonprop- r erties,willbebrieflyreviewed. a 2 The hypercentral model Theexperimental4−and3−starnonstrangeresonancescanbearrangedinSU(6)−multiplets (seeFig.1).ThismeansthatthequarkdynamicshasadominantSU(6)−invariant part,whichaccountsfortheaveragemultipletenergies.InthehCQMitisassumed tobe[3] τ V(x)=− + αx, (1) x wherexisthehyperradius x= ρ~2+~λ2 , (2) q whereρ~and~λaretheJacobicoordinatesdescribingtheinternalquarkmotion.The dependenceofthepotentialonthehyperrangleξ=arctg(ρ)hasbeenneglected. λ 1 (cid:25) = 1 (cid:25) = 1 (cid:25) = (cid:0)1 [GeV] 2 F37 P3100 P3300 F35 1:8 (70;0+) (56;2+) P1100 P13 D33D130 F15 D15 S110 1:6 P330 (70;1(cid:0)) S31 (56;0+)0 S11 D13 P110 1:4 P33 1:2 (56;0+) 1 P11 0:8 Figure1:Theexperimentalspectrumofthe4-and3-starnonstrangeresonances.Ontheleftthe standardassignementstoSU(6)multipletsisreported,withthetotalorbitalangularmomentum andtheparity. Interactions of the type linear plus Coulomb-like have been used since time forthemesonsector,e.g. theCornellpotential. Thisformhasbeensupportedby recentLatticeQCDcalculations[6].Inthecaseofbaryonsasocalledhypercentral approximationhasbeenintroduced[7,8],whichamountstoaverageanytwo-body potentialforthethreequarksystemoverthehyperangleξ andworksquitewell, speciallyforthelowerpartofthespectrum[9]. Inthisrespect, thehypercentral potentialEq.1canbeconsideredasthehypercentralapproximationoftheLattice QCDpotential.Ontheotherhand,thehyperradiusxisacollectivecoordinateand thereforethehypercentralpotentialcontainsalsothree-bodyeffects. Thehypercoulomb term1/xhasimportantfeatures[3,10]: itcanbesolved analytically and the resulting form factors have a power-law behaviour, at vari- ancewiththewidelyusedharmonicoscillator;moreover,thenegativeparitystates are exactly degenerate with the first positive parity excitation, providing a good startingpointforthedescriptionofthespectrum. Thesplittingswithinthemultipletsareproducedbyaperturbativetermbreak- ingSU(6),whichasafirstapproximationcanbeassumedtobethestandardhy- perfineinteractionH [1].ThethreequarkhamiltonianforthehCQMisthen: hyp p2 p2 τ H = λ + ρ − + αx+H , (3) 2m 2m x hyp wheremisthequarkmass(takenequalto1/3ofthenucleonmass).Thestrength 2 ofthehyperfineinteractionisdeterminedinordertoreproducethe∆−N mass difference,theremainingtwofreeparametersarefittedtothespectrum,reported inFig.2,leadingtothefollowingvalues: −2 α=1.16fm , τ =4.59. (4) N D M @MeVD 1900 1700 1500 1300 1100 900 1+ 1- 3+ 3- 5+ 5- 1+ 1- 3+ 3- 5+ 7+ €€€€ €€€€ €€€€ €€€€ €€€€ €€€€ €€€€ €€€€ €€€€ €€€€ €€€€ €€€€ 2 2 2 2 2 2 2 2 2 2 2 2 Figure2: ThespectrumobtainedwiththehypercentralmodelEq. (3)andtheparametersEq. (4)(fulllines)),comparedwiththeexperimentaldataofPDG[11](greyboxes). Keepingtheseparametersfixed, themodelhasbeenappliedtocalculatevar- iousphysicalquantitiesofinterest: thephotocouplings [12],theelectromagnetic transitionamplitudes[13],theelasticnucleonformfactors[14]andtheratiobe- tween the electricand magnetic proton form factors [15]. Some results of such parameterfreecalculationsarepresentedinthenextsection. 3 The results Theelectromagnetictransitionamplitudes,A1/2andA3/2,aredefinedasthema- trix elements of the transverse electromagnetic interaction, Ht , between the e.m. nucleon,N,andtheresonance,B,states: A1/2 = hB,J′,Jz′ = 21 |Hetm|N,J = 12,Jz =−12 i (5) A3/2 = hB,J′,Jz′ = 32 |Hetm|N,J = 12,Jz = 12 i Thetransitionoperatorisassumedtobe 3 e Ht = − j (p~ ·A~ + A~ ·p~) + 2µ s~ ·(∇~ ×A~ ) , (6) em Xj=1 (cid:20)2mj j j j j j j j (cid:21) wherespin-orbit and higher order correctionsareneglected[16,17]. InEq. (6) m , e , s~ , p~ and µ = gej denote the mass, the electric charge, the j j j j j 2mj 3 spin,themomentumandthemagneticmomentofthej-thquark,respectively,and A~ = A~ (r~)isthephotonfield;quarksareassumedtobepointlike. j j j TheprotonphotocouplingsofthehCQM[12](Eq.(5)calculatedatthephoton point), in comparison with other calculations [2, 17, 21], have the same overall behaviour,havingthesameSU(6)structureincommon,butinmanycasestheyall showalackofstrength. Figure 3: The helicity amplitudes for the D13(1520) resonance, calculated with the hCQMofEqs. (3)and(4)andtheelectromagnetictransitionoperatorofEq. (6)(full curve, [13]). The dashed curve is obtained with the analytical version of the hCQM ([10]), where the behaviour of the quark wave function is determined mainly by the hypercoulombpotential.Thedataarefromthecompilationofref.[19] Taking into account the Q2−behaviour of the transition matrix elements of Eq.(5),onecancalculatethehCQMhelicityamplitudesintheBreitframe[13]. ThehCQMresultsfortheD13(1520)andtheS11(1535)resonances[13]aregiven inFig. 3and4,respectively. TheagreementinthecaseoftheS11 isremarkable, themoresosincethehCQMcurvehasbeenpublishedthreeyearsinadvancewith respecttotherecentTJNAFdata[20]. Ingeneral theQ2-behaviour isreproduced, except fordiscrepancies atsmall Q2, especially in the Ap3/2 amplitude of the transition to the D13(1520) state. Thesediscrepancies,astheonesobservedinthephotocouplings,canbeascribed eithertothenon-relativisticcharacterofthemodelortothelackofexplicitquark- antiquark configurations, which may be important at low Q2 . The kinematical relativisticcorrectionsatthelevelofboostingthenucleonandtheresonancestates toacommonframearenotresponsibleforthesediscrepancies,aswehavedemon- 4 160 Capstick and Keister (Rel) Old data Armstrong et. al. 140 CLAS published New CLAS data 120 Aiello, Giannini, Santopinto 1/2) 100 -V e G 3 -0 80 1 (2 1/ A 60 40 20 0 0 0.5 1 1.5 2 2.5 3 3.5 4 Q2 (GeV2) Figure 4: ThehelicityamplitudefortheS11(1535) resonance, calculatedwiththehCQMof Eqs. (3)and(4)andtheelectromagnetictransitionoperatorofEq. (6)(dashedcurve,[13])and themodelofref.[21].Thedataaretakenfromthecompilationofref.[22] stratedinRef.[23]. Similarresultsareobtainedfortheothernegativeparityreso- nances[13].Itshouldbementionedthatther.m.s.radiusoftheprotoncorrespond- ingtotheparametersofEq.(4)is0.48fm,whichisjustthevalueobtainedin[16] inordertoreproducetheD13photocoupling.Thereforethemissingstrengthatlow Q2canbeascribedtothelackofquark-antiquarkeffects,probablymoreimportant intheouterregionofthenucleon. 4 The isospin dependence ThewellknownGuersey-Radicatimassformula[24]containsaflavourdependent term,whichisessentialforthedescriptionofthestrangebaryonspectrum. Inthe chiral Constituent QuarkModel [4,5], thenon confining part of the potential is providedbytheinteractionwiththeGoldstonebosons, givingrisetoaspin-and flavour-dependentpart,whichiscrucialinthisapproachforthedescriptionofthe lowerpartofthespectrum.Moregenerally,onecanexpectthatthequark-antiquark pair production can lead to an effective residual quark interaction containing an isospin(flavour)dependentterm. Therefore,wehaveintroducedisospindependenttermsinthehCQMhamilto- nian.Thecompleteinteractionusedisgivenby[25] Hint = V(x)+HS+HI+HSI, (7) 5 N D M @MeVD 1900 1700 1500 1300 1100 900 1+ 1- 3+ 3- 5+ 5- 1+ 1- 3+ 3- 5+ 7+ States €€€€ €€€€ €€€€ €€€€ €€€€ €€€€ €€€€ €€€€ €€€€ €€€€ €€€€ €€€€ 2 2 2 2 2 2 2 2 2 2 2 2 Figure 5: The spectrum obtained with the hypercentral model containing isospin dependent termsEq.(7)[25](fulllines)),comparedwiththeexperimentaldataofPDG[11](greyboxes). whereV(x)isthelinear plushypercoulomb SU(6)-invariant potential of Eq. 1, whiletheremainingtermsaretheresidualSU(6)-breakinginteraction,responsible forthesplittingswithinthemultiplets. HS isasmearedstandardhyperfineterm, HIisisospindependentandHSIspin-isospindependent. Theresultingspectrum for the 3*- and 4*- resonances is shown inFig. 5 [25]. The contribution of the hyperfineinteractiontotheN −∆massdifferenceisonlyabout35%,whilethe remainingsplittingcomesfromthespin-isospinterm,(50%),andfromtheisospin one, (15%). It should be noted that the position of the Roper and the negative paritystatesiswellreproduced. 5 Relativity Therelativisticeffectsthatonecanintroducestartingfromanonrelativisticquark model are: a) the relativistic kinetic energy; b) the boosts from the rest frames oftheinitialandfinalbaryontoacommon(saytheBreit)frame;c)arelativistic quarkcurrent.Allthesefeaturesarenotequivalenttoafullyrelativisticdynamics, whichisstillbeyondthepresentcapabilitiesofthevariousmodels. The potential of Eq.1 has been refitted using the correct relativistic kinetic energy τ H = p2 +m2− + αx+H . (8) rel ij x hyp Xi<j q Theresultingspectrumisnotmuchdifferentfromthenonrelativisticoneandthe parametersofthepotentialareonlyslightlymodified. Theboostsandarelativisticquarkcurrentexpandeduptolowestorderinthe quark momenta has been used both for the elastic form factors of the nucleon [14] and the helicity amplitudes [23]. In the latter case, as already mentioned, the relativistic effects are quite small and do not alter the agreement with data discussedpreviously. Fortheelasticformfactors,therelativisticeffectsarequite 6 1 0.8 0.6 2Q) p(E 0.4 G 0.2 0 -0.2 0 1 2 3 4 5 6 Q2 (GeV2) Figure6: Theelectricprotonformfactor,calculatedwiththerelativistichCQMofEq. (8)and arelativisticquarkcurrent[27]. strongandbringthetheoreticalcurvesmuchclosertothedata;inanycasetheyare responsibleforthedecreaseoftheratiobetweentheelectricandmagneticproton formfactors, as ithas been shown for thefirsttimeinRef. [15], inqualitative agreementwiththerecentJlabdata[26]. Arelativisticquarkcurrent,withnoexpansioninthequarkmomenta,andthe booststotheBreitframehavebeenappliedtothecalculationoftheelasticform factorsintherelativisticversionof thehCQMEq. (8)[27]. Theresultingtheo- retical form factors of the proton, calculated, it should be stressed, without free parameters and assuming pointlike quarks, are good (see Figs. 6 and 7), with somediscrepanciesatlowQ2,which,asdiscussedpreviously,canbeattributedto thelackingofthequark-antiquark paireffects. Thecorresponding ratiobetween theelectricandmagneticprotonformfactorsisgiveninFig.8:thedeviationfrom unityreachesalmostthe50%level,notfarfromthenewTJNAFdata[28]. 6 Conclusions The hCQM is a generalization to the baryon sector of the widely used quark- antiquarkpotentialcontainingacoulombplusalinearconfiningterm. Thethree freeparametershavebeenadjustedtofitthespectrum[3]andthenthemodelhas beenusedforasystematiccalculationofvariousphysicalquantities:thephotocou- plings[12],thehelicityamplitudesfortheelectromagneticexcitationofnegative paritybaryonresonances[13,23],theelasticformfactorsofthenucleon[14,27] andtheratiobetweentheelectricandmagneticprotonformfactors[15,27]. The agreement with data is quite good, specially for the helicity amplitudes, which arereproducedinthemedium-highQ2 behaviour, leavingsomediscrepanciesat low (or zero) Q2, where the lacking quark-antiquark contributions are expected 7 2.2 2 1.8 1.6 1.4 2Q) 1.2 p(M G 1 0.8 0.6 0.4 0.2 0 0 1 2 3 4 5 6 Q2 (GeV2) Figure 7: Themagneticprotonformfactor, calculatedwiththerelativistichCQMofEq. (8) andarelativisticquarkcurrent[27]. tobeeffective. Itshouldbenotedthatthehypercoulombterminthepotentialis themainresponsibleofsuchanagreement[10],whileforthespectrumafurther fundamentalaspectisprovidedbytheisospindependentinteractions[25]. References [1] N. Isgur and G. Karl, Phys. Rev. D18, 4187 (1978); D19, 2653 (1979); D20,1191(1979);S.GodfreyandN.Isgur,Phys.Rev.D32,189(1985);S. CapstickandN.Isgur,Phys.Rev.D34,2809(1986) [2] R.Bijker,F.IachelloandA.Leviatan,Ann.Phys.(N.Y.)236,69(1994) [3] M.Ferraris,M.M. Giannini, M.Pizzo, E.SantopintoandL.Tiator, Phys. Lett.B364,231(1995). [4] L.Ya.GlozmanandD.O.Riska,Phys.Rep.C268,263(1996). [5] L.Ya.Glozman,Z.Papp,W.Plessas,K.VargaandR.F.Wagenbrunn,Phys. Rev. C57, 3406 (1998); L. Ya. Glozman, W. Plessas, K. Varga and R. F. Wagenbrunn,Phys.Rev.D58,094030(1998). [6] G.Balietal.,Phys.Rev.D51,5165(1995). [7] P.Hasenfratz,R.R.Horgan,J.KutiandJ.M.Richard,Phys.Lett.B94,401 (1980) [8] J.-M.Richard,Phys.Rep.C212,1(1992) [9] M.FabredelaRipelleandJ.Navarro,Ann.Phys.(N.Y.)123,185(1979). [10] E. Santopinto, F. Iachello and M.M. Giannini, Nucl. Phys. A623, 100c (1997);Eur.Phys.J.A1,307(1998) 8 1.1 1 0.9 2Q) 0.8 p(M G 2Q) / 0.7 p(E G µ p 0.6 0.5 0.4 0.3 0 1 2 3 4 5 6 Q2 (GeV2) Figure 8: The ratio between the electric and magnetic proton form factors, calculated with therelativistichCQMofeq. (8)andarelativisticcurrent[27],comparedwiththeTJNAFdata [26,28]. [11] ParticleDataGroup,Eur.Phys.J.C15,1(2000). [12] M.Aiello,M.Ferraris,M.M.Giannini,M.PizzoandE.Santopinto,Phys. Lett.B387,215(1996). [13] M.Aiello,M.M.GianniniandE.Santopinto,J.Phys.G:Nucl.Part.Phys. 24,753(1998) [14] M. De Sanctis, E. Santopinto and M.M. Giannini, Eur. Phys. J. A1, 187 (1998). [15] M. DeSanctis, M.M. Giannini, L.Repetto and E.Santopinto, Phys.Rev. C62,025208(2000). [16] L.A.Copley,G.KarlandE.Obryk,Phys.Lett.29,117(1969). [17] R.KoniukandN.Isgur,Phys.Rev.D21,1868(1980). [18] F.E.CloseandZ.Li,Phys.Rev.D42,2194(1990); Z.LiandF.E.Close, Phys.Rev.bfD42,2207(1990). [19] V.D.Burkert,privatecommunication [20] R.A.Thompsonetal.,Phys.Rev.Lett.86,1702(2001). [21] S.CapstickandB.D.Keister,Phys.Rev.D51,3598(1995) [22] V.D.Burkert,arXiv:hep-ph/0207149. [23] M. De Sanctis, E. Santopinto and M.M. Giannini, Eur. Phys. J. A2, 403 (1998). [24] F. Guersey and L.A. Radicati, Phys. Rev. Lett. 13, 173 (1964); M. Gell- Mann,Phys.Rev.125,1067(1962);S.Okubo,Prog.Theor.Phys.27,949 (1962) 9 [25] M.M. Giannini, E. Santopinto and A, Vassallo, Eur. Phys. J. A12, 447 (2001). [26] M.K.Jonesetal.,Phys.Rev.Lett.B84,1398(2000). [27] M.DeSanctis, M.M.Giannini, E.SantopintoandA.Vassallo, tobepub- lished. [28] O.Gayonetal.,Phys.Rev.Lett.88,092301(2002). 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.