ebook img

An overview of the Amazonian Aerosol Characterization Experiment 2008 PDF

24 Pages·2010·6.95 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview An overview of the Amazonian Aerosol Characterization Experiment 2008

Atmos. Chem. Phys.,10,11415–11438,2010 Atmospheric www.atmos-chem-phys.net/10/11415/2010/ Chemistry doi:10.5194/acp-10-11415-2010 ©Author(s)2010. CCAttribution3.0License. and Physics An overview of the Amazonian Aerosol Characterization Experiment 2008 (AMAZE-08) S.T.Martin1,M.O.Andreae2,D.Althausen3,P.Artaxo4,H.Baars3,S.Borrmann2,Q.Chen1,D.K.Farmer5, A.Guenther6,S.S.Gunthe2,J.L.Jimenez5,T.Karl6,K.Longo7,A.Manzi8,T.Mu¨ller3,T.Pauliquevis9,*, M.D.Petters10,A.J.Prenni11,U.Po¨schl2,L.V.Rizzo4,J.Schneider2,J.N.Smith6,E.Swietlicki12,J.Tota8, J.Wang13,A.Wiedensohler3,andS.R.Zorn2 1SchoolofEngineeringandAppliedSciencesandDepartmentofEarthandPlanetarySciences,HarvardUniversity, Cambridge,Massachusetts,USA 2MaxPlanckInstituteforChemistry,Mainz,Germany 3LeibnizInstituteforTroposphericResearch,Leipzig,Germany 4InstituteofPhysics,UniversityofSa˜oPaulo,Brazil 5DepartmentofChemistryandBiochemistryandCooperativeInstituteforResearchintheEnvironmentalSciences, UniversityofColorado,Boulder,Colorado,USA 6NCAREarthSystemLaboratory,NationalCenterforAtmosphericResearch,Boulder,Colorado,USA 7CenterofWeatherForecastandClimaticStudies(CPTEC-INPE),CachoeiraPaulista,Sa˜oPaulo,Brazil 8NationalInstituteofAmazonianResearch(INPA),Manaus,Brazil 9InstituteofAstronomy,GeophysicsandAtmosphericScience,UniversityofSa˜oPaulo,Brazil 10DepartmentofMarine,Earth,andAtmosphericSciences,NorthCarolinaStateUniversity,Raleigh,NorthCarolina,USA 11DepartmentofAtmosphericScience,ColoradoStateUniversity,FortCollins,Colorado,USA 12DepartmentofPhysics,LundUniversity,Lund,Sweden 13DepartmentofEarthandAtmosphericSciences,UniversityofNebraska,Lincoln,Nebraska,USA *nowat: EarthandNaturalSciencesDepartment,FederalUniversityofSaoPauloatDiadema,Diadema,Brazil Received: 4June2010–PublishedinAtmos. Chem. Phys.Discuss.: 30July2010 Revised: 2November2010–Accepted: 17November2010 –Published: 2December2010 Abstract. The Amazon Basin provides an excellent envi- large-scalecontextforthecampaign,especiallyasprovided ronmentforstudyingthesources,transformations,andprop- bysatelliteobservations.Newfindingspresentedinclude:(i) erties of natural aerosol particles and the resulting links be- aparticlenumber-diameterdistributionfrom10nmto10µm tweenbiologicalprocessesandclimate.Withthisframework that is representative of the pristine tropical rain forest and in mind, the Amazonian Aerosol Characterization Experi- recommended for model use; (ii) the absence of substan- ment(AMAZE-08),carriedoutfrom7Februaryto14March tial quantities of primary biological particles in the submi- 2008 during the wet season in the central Amazon Basin, cron mode as evidenced by mass spectral characterization; sought to understand the formation, transformations, and (iii) the large-scale production of secondary organic mate- cloud-formingpropertiesoffine-andcoarse-modebiogenic rial;(iv)insightsintothechemicalandphysicalpropertiesof aerosol particles, especially as related to their effects on theparticlesasrevealedbythermodenuder-inducedchanges cloud activation and regional climate. Special foci included intheparticlenumber-diameterdistributionsandmassspec- (1) the production mechanisms of secondary organic com- tra; and (v) comparisons of ground-based predictions and ponents at a pristine continental site, including the factors satellite-basedobservationsofhydrometeorphaseinclouds. regulating their temporal variability, and (2) predicting and AmainfindingofAMAZE-08isthedominanceofsecondary understandingthecloud-formingpropertiesofbiogenicpar- organic material as particle components. The results pre- ticlesatsuchasite. Inthisoverviewpaper,thefieldsiteand sentedhereprovidemechanisticinsightandquantitativepa- theinstrumentationemployedduringthecampaignareintro- rametersthatcanservetoincreasetheaccuracyofmodelsof duced. Observationsandfindingsarereported,includingthe theformation,transformations,andcloud-formingproperties ofbiogenicnaturalaerosolparticles,especiallyasrelatedto theireffectsoncloudactivationandregionalclimate. Correspondenceto: S.T.Martin (scot [email protected]) PublishedbyCopernicusPublicationsonbehalfoftheEuropeanGeosciencesUnion. 11416 S.T.Martinetal.: AnoverviewoftheAMAZE-08 1 Introduction The worldwide production mechanisms of secondary or- ganic components from the oxidation of volatile organic The Amazon Basin is a highly favorable environment for compounds (VOCs) have received considerable attention in studyingthesources,transformations,andpropertiesofbio- the literature during the past few years (Chung and Sein- genic aerosol particles (Andreae et al., 2002; Martin et al., feld,2002;TsigaridisandKanakidou,2003;Tsigaridisetal., 2010). In contrast, advection in the widely polluted north- 2005;HenzeandSeinfeld,2006;TsigaridisandKanakidou, ernmidlatitudesofNorthAmerica,Europe,andAsiamixes 2007; Healdetal.,2008). Therehasbeensignificantuncer- together anthropogenic and natural components of parti- tainty regarding the contribution by primary organic emis- cles. Amazonianstudiescan potentially isolatenaturalpro- sions,comparedtoinsituphotochemicalproductionofsec- cessesand,indoingso,canprovideabaselineunderstanding ondaryorganicaerosol(SOA),tothemassconcentrationof againstwhichanthropogeniceffectsonatmosphericaerosol organic particle material in urban areas, ranging from 80% sources and properties can be understood (Andreae, 2007). primary in the study of Pandis et al. (1992) to 35% pri- ThiskindofunderstandingisrelevantnotonlytotheNorth- mary in the studies of Zhang et al. (2005) and Volkamer ern Hemisphere of today but also to the Amazon Basin of et al. (2006, 2007). Attribution between anthropogenic and thefutureunderseveralpossibledevelopmentscenarios. Fo- biogenicsecondaryorganicmaterialremainsuncertain(Mil- cused on these possibilities, the Amazonian Aerosol Char- let et al., 2006). Volkamer et al. (2006) and de Gouw and acterizationExperiment(AMAZE-08)wascarriedoutinthe Jimenez (2009) emphasize that previous conclusions from wetseasonof2008. global models may vastly underestimate the anthropogenic A summary of the sources of Amazonian aerosol parti- contribution. There are missing sources of SOA produc- clesandimportantinfluencesontheiratmosphericlifetimes tioninpollutedanthropogenicregions(deGouwetal.,2005; and aging processes can be found in the review of Mar- Takegawaetal.,2006;Volkameretal.,2006)andalsointhe tin et al. (2010). A short introduction is provided herein, free troposphere (Heald et al., 2005), as implied by obser- as follows. In-Basin natural processes include emissions vations of excess organic mass concentrations compared to both of primary biological aerosol particles (PBAPs) and best-model predictions. Carbon-14 dating of secondary or- of gaseous sulfur, nitrogen, and carbon species from the ganicmaterialinareasheavilyinfluencedbyanthropogenic ecosystem, oxidation of the gaseous species not just in the sourcesimpliesahighbiogenicfractionandthusanimpor- atmospheric gas phase but also in cloud water to produce tant role of biogenic species (Klinedinst and Currie, 1999; low-volatility particle-phase products (i.e., secondary par- Szidatetal.,2004). Incontrast,modelsfortheseconditions ticle components), and removal of gases and particles by predict that the quantities of SOA material produced from wet and dry deposition. The strongest anthropogenic influ- biogenicsourcesshouldbesmall.Theimplicationofthedis- enceinsidetheBasinisbiomassburning,whichisespecially crepancybetweenobservationsandmodelsisthatsynergis- prevalent in the dry season and in the southern part of the ticbiogenic-anthropogenicinteractionsexistthatarenotwell Basinduringthattime(i.e.,outsideofboththetemporaland understoodatpresent(deGouwetal.,2005). Theseseveral geographicscopeofAMAZE-08).Influencesoriginatingout observations, among others, have highlighted the need for of the Basin and advecting into it include marine particles a more thorough understanding of SOA production (Gold- fromtheAtlanticOcean,dustandbiomassburninginAfrica, stein and Galbally, 2007; Kroll and Seinfeld, 2008; Carlton andgaseousspeciesfrombothregionsthatcanbeconverted etal.,2009;Hallquistetal.,2009). withintheBasinintosecondarycomponentsofparticles.The TheAmazoninthewetseasonrepresentsapristineenvi- particles from African sources arrive in the Basin sporadi- ronment having nearly pure biogenic aerosol particles (Ar- callyaseventsandaremorecommonintheaustralsummer taxo et al., 1990; Gerab et al., 1998; Andreae et al., 2002; thanwinter.Thebiomass-burningemissionsfromAfricacan Claeysetal.,2004;Andreae,2007;Martinetal.,2010),mak- beregardedlargelyasananthropogeniccomponent. ing it an ideal laboratory to isolate natural SOA production ThescientificobjectiveofAMAZE-08wastounderstand andtherebyprovideabaselineunderstandingagainstwhich the formation, transformations, and cloud-forming proper- tomeasureanthropogenicinfluences. TheAmazonBasinis ties of fine- and coarse-mode biogenic natural aerosol par- the region of highest VOC emissions globally (Guenther et ticles, especially as related to their effects on cloud acti- al.,1995;Kesselmeieretal.,2009;Vrekoussisetal.,2009). vation and regional climate. Special foci included (1) the Moreover, the high solar flux and large biogenic emissions productionmechanismsofsecondaryorganiccomponentsat leadtoalargesourceofOHradicals(Lelieveldetal.,2008). a pristine continental site, including the factors regulating Asaresult,SOAproductioninthegasphaseisinitiateddom- theirtemporalvariability,and(2)predictingandunderstand- inantlybyOHradicals. Ozoneconcentrations(5to20ppb) ingthecloud-formingpropertiesofbiogenicparticlesatsuch are relatively low in Amazonia, and O -initiated SOA pro- 3 a site. These foci can be broadly described as an investiga- ductionisthereforelessimportantthanthatoftheOHpath- tion on the link between biological processes and climate, ways. Nitrate radical concentrations are low in Amazonia as mediated by atmospheric chemistry (Barth et al., 2005; andarebelievedtocontributenegligiblytoSOAproduction. Kelleretal.,2009). SOAproductionalsooccursincloudwater(Limetal.,2005; Atmos. Chem. Phys.,10,11415–11438,2010 www.atmos-chem-phys.net/10/11415/2010/ S.T.Martinetal.: AnoverviewoftheAMAZE-08 11417 Carlton et al., 2008, 2009; Ervens et al., 2008). The fac- 2 Measurements torsinfluencingtherelativeimportanceofgas-andaqueous- phasepathwaysforSOAproductionremaintobewelldelin- The principal measurement site of AMAZE-08 was tower eated,especiallyfortheenvironmentalparametersprevalent TT34 (02◦35.6570S, 060◦12.5570W, 110ma.s.l.) (Fig. 1). intheAmazonBasin. It was located in the central Amazon Basin, 60km NNW Predicting and understanding the cloud-forming proper- of downtown Manaus and 40km from the metropolis mar- ties of atmospheric particles, especially for particles having gins. The site, accessed by a 34-km unpaved road, high organic fractions, is essential for accurate predictions was within a pristine terra firme rainforest in the Reserva ofconvectiondynamics,precipitation,andenergyfluxesand Biolo´gicadoCuieirasandmanagedbytheInstitutoNacional theirintegrationwithclimateatallscales. Thepristinecon- de Pesquisas da Amazonia (INPA) and the Large-Scale ditionsofthewetseasonoftheAmazonBasin,inwhichthe Biosphere-Atmosphere Experiment in Amazonia (LBA). organicvolumefractionsofparticlesapproach90%(Fuzziet The base of tower TT34 was on a ridge, and the scale of al.,2007),representanexcellentopportunityforthedevelop- hill-valley relief near the tower was ca. 50m. The forest ment of this understanding. Both the development of warm canopy height near the tower varied between 30 and 35m. cloudsbyactivationofcloudcondensationnuclei(CCN)and Housingfortheresearchersanda60kWdieselgeneratorfor ofcoldcloudsbyactivationoficenuclei(IN)areimportant. power supply were located 0.33km and 0.72km downwind PriortoAMAZE-08,icenucleihadneverbeforebeenstud- of TT34, respectively. The generator was separated from iedinAmazonia,andstudiesoftheINpropertiesoforganic TT34bya50-mdeepvalley, withtheresearcherhousingat particles in other parts of the globe have been hampered by thebottomofthevalley. thedifficultyofdisentanglingthecontributionoforganicma- Climatological and meteorological information for this terial from that of sulfate and dust, which have been mixed region of the Amazon Basin is provided by Andreae et together. For this reason, measurements in the Amazon in al. (2002) and Araujo et al. (2002). The rainfall during thewetseasonareparticularlyimportantfortheisolationof AMAZE-08 was consistent with the typical monthly values theINpropertiesoforganicparticles. of the wet season (Fig. S1). The meteorological statistics Robertsetal.(2001,2002,2003),Rissleretal.(2004),and recordedatthetopofthetowerduringAMAZE-08were23 Mircea et al. (2005) measured CCN number concentrations to27◦C(quartilesofdistribution)and80to99%RHinthe intheAmazonBasinduringthewetseason. Thosestudies, daytime; thenighttimestatisticswere22to24◦Cand96to however,didnotinvestigatethedependenceofCCNactivity 100%RH.Thequartilesofpressurewere9.9to10×105Pa. ontheparticlesize, includingtheirpossibletemporalvaria- TherecommendationwastonormalizeAMAZE-08datasets tion. The construction of accurate microphysical models of tostandardtemperatureandpressure(0◦C,105 Pa,dryair). cloudformation,precipitation,andenergyfluxesisnotpos- Normalization facilitated quantitative comparisons among siblewithoutinformationonthesize-dependentCCNactiv- AMAZE-08datasets,aswellaswithdatasetsofearlierand ity. Moreadvancedmodelslinkedtovariablechemistryalso futuremeasurementcampaigns. cannotbedevelopedwithoutmeasurementsonhowparticle In addition to TT34, there were three auxiliary sites. chemistry potentially changes during the day and with size Tower K34 (2◦36.5450S, 60◦12.5580W, and 130ma.s.l.; (i.e., from the condensation of secondary organic products 1.6km from TT34; 54m height) housed several instru- aswellaspossibleheterogeneousagingreactionssuchasby ments directly at its top level (Ahlm et al., 2009). Site OHradical). K23 (2◦38.3070S, 60◦9.4300W, and 108ma.s.l.; 7.56km In this overview paper of AMAZE-08 (7 February to 14 from TT34) was used for tethered balloon soundings up to March2008),thefieldsiteandtheinstrumentationemployed 800m. A light detection and ranging instrument (LIDAR) during the campaign are introduced (Sect. 2). Observations and one site of the Aerosol Robotic Network (AERONET) and findings are reported, including the large-scale context were located 19.1km from TT34 at the Silvicultura site for the campaign (especially as provided by satellite obser- (02◦35.9130S,060◦02.2400W)(Althausenetal.,2009;Ans- vations) (Sect. 3), a summary of AMAZE-08 publications mannetal.,2009). available to date (Sect. 3.1), and five sections with new re- At TT34, air was entrained into three inlets fixed at sultsnotpublishedelsewhere(Sects.3.2.1–3.2.5). Thetop- 38.75m to the top of the tower. The air was brought by icsofthesesectionsareselectedtoprovideaperspectiveon samplinglinestoaground-levelcontainer(2.2×5.9×2.5m3) the results from AMAZE-08 regarding the formation, the (Fig.S2). Theinletforgasesconsistedofaninvertedfunnel transformations, and the cloud-forming properties of bio- havinganinsectscreenacrossit. Theinletforturbulent-flow genic natural aerosol particles, especially as related to their aerosol sampling was a screen-covered open tube that was effectsoncloudactivationandregionalclimate. placed very close to a sonic anemometer and positioned in the direction of predominant wind flow. An inlet with an aerodynamiccutoffnominallyofPM butactuallyofPM 10 7 for our flow conditions was used for laminar-flow aerosol sampling. The sampling lines running from these inlets to www.atmos-chem-phys.net/10/11415/2010/ Atmos. Chem. Phys.,10,11415–11438,2010 11418 S.T.Martinetal.: AnoverviewoftheAMAZE-08 40 m Inlet TT34 35 Canopy 30 25 Sampling 20 Lines 15 10 Leipzig Dryer 5 Container Ground 0 Fig.1.DiagramFoifgf.o1u.r-Dseicatgioranmteolefsfcooupri-csetoctwioenr(tTelTes3c4o)p,ischotowwinerg(pToTsi3t4io),nsshoofwininlegt,pcoasnitoipoyn,ssoafmipnllientg,clainneosp,yd,rsyaemr,palnindginlisntreusm, entcontainer. InsetphotosareshownlargerinFig.S2. dryer,andinstrumentcontainer.InsetphotosareshownlargerinFig.S2. the container included a 6.4-mm (1/400OD) Teflon line for therefore calculated to range from 5 to 7µm for the range gas sampling, a 12.7-mm (1/200OD; 10.9mm ID) stainless of flow rates employed during AMAZE-08. Therefore, the steel linefor turbulent-flow aerosol sampling, anda 19-mm lowerandupperlimitsoftransmissionoftheinlet-sampling- (3/400OD; 17.3mm ID) stainless steel line for laminar-flow lineassemblywerecalculatedas4nmto7µm,respectively, aerosolsampling. Fromthesamplingheighttothecontainer, fortheconditionoflaminarflow. Comparisonbetweenthis the three lines were wrapped together and encased by sec- calculatedsize-transmissionwindowandatypicalmeasured tions of heating tape and insulation. Feedback control was number-diameter distribution suggests that there was mini- usedtomaintainthetemperatureat30±1◦Ctoavoidwater mal loss of particle number concentration during transit in condensationinthesamplinglines. the sampling line running from the inlet at the top of the towertotheinstrumentsinthecontainerbelow. Thisexpec- Mostoftheparticleinstrumentationinthecontainersam- tationwasconfirmedforthelaminarlinebythegoodagree- pledfromthelaminarline(Table1). Forthedimensionsand 33ment between the particle number concentrations recorded flowofthelaminarsamplingline,theReynoldsnumbervar- usingcondensationparticlecounters(CPCs)insidetheTT34 ied from 1200 to 2000 during the period of measurements. container and those recorded by a CPC on the top of tower Thecalculateddiffusionalandgravitationaldepositionlosses K34 (Fig. 2). A self-regenerating automatic dryer was for a particle of dynamic shape factor of 1 and a den- placed on the top of the container and intercepted the lam- sity of 1000kgm−3 indicate 50% transmission cutoffs of inar sampling line prior to entrance into the container. The 4nmand10.5µmthroughthesamplinglines,withincreased dryerconsistedoftwodiffusiondryersinparallel,onedrying transmission between those sizes (www.seas.harvard.edu/ the aerosol flow while the other was bypassed and regener- AerosolCalculator).AReynoldsnumberof2000approaches ated by dry air (Tuch et al., 2009). The flow was switched the turbulent regime, and in this case the calculated 50% from one dryer to the other at a threshold of 40% RH. By transmissioncutoffsshiftto13nmand3.5µmforlossesby this sequence, the RH was kept between 20 and 40% when gravitational settling, diffusional impaction, and inertial de- measuredbyanin-linesensor(Fig.3). Thecabinethousing position. The upper limit of the aerodynamic cutoff was Atmos. Chem. Phys.,10,11415–11438,2010 www.atmos-chem-phys.net/10/11415/2010/ S01.0T2.M,4a2r–ti1n,e0t1a,l..s:yAhPno.mveerhvCiew.soomfttAheAMAZE-08 /0102/1/01/ten.syhp-mehc-som1t1a4.w1w9w thatTab ble OPC OPC SEM UV-APS DMACCNC/C CPCTD HR-ToF-AMS SMPS PAR LIDAR MAAP F-HR-ToF-AM HR-ToF-AMS CFDC2CO3O2NO,NOCO TEOMPM-10 TEOMPM-2.5 eganbefore1.Instrume P S an cartridgesgasadsorptionWELASparticlecounterwhite-lightopticalGrimm1.108particlecounterlaser-sourceopticalsamplesmicroscopyoffilterscanningelectron particlesizerultravioletaerosolwithCCNC&CPCCdifferentialmobilityanalyzercountercondensationparticlethermodenuderAerosolMassSpectrometertime-of-flightAerodynehigh-resolutionparticlesizerscanningmobilityonsitemeteorologicaldatapyranometerradiationphotosyntheticallyactiveranginglightdetectionandphotometermultiangleabsorption andsonicanemometermodeoftheHR-ToF-AMSEddycovarianceflux (AMS)AerosolMassSpectrometertime-of-flightAerodynehigh-resolution(icenuclei)diffusionchambercontinuous-flowcarbondioxideozoneoxidesofnitrogencarbonmonoxideunder10µmforparticulatematteroscillatingmicrobalancetaperedelementunder2.5µmforparticulatematteroscillatingmicrobalancetaperedelement Instrument ndstoppedafter,thetimetsmakingmeasurements NCAR MPI-PC MPI-PC MPI-BG MPI-BG MPI-BG MPI-PCNCAR MPI-PC Lund INPAINPA INPA IfT IfT CU-Harvard Harvard-CU CSUCPTECCPTECCPTECCPTEC CPTEC CPTEC Organization periodofduringAM 28Feb 7Feb 7Feb 15Feb 7Feb 14Feb 7Feb28Feb 7Feb 21Feb ← 18Feb 7Feb 7Feb 7Feb17Feb17Feb17Feb17Feb 17Feb 17Feb start AMAAZE Z-0 14Mar 14Mar 14Mar 14Mar 14Mar 14Mar 14Mar→ 14Mar → → → 14Mar 14Mar 8Mar14Mar14Mar14Mar14Mar 14Mar 14Mar stopTT34 E-08.8atth e n/a laminar laminar laminar laminar laminar laminarlaminar laminar laminar ←→←→ ←→ laminar turbulent turbulent laminargasgasgasgas ground ground linestartstoK34 Location mainsiteTT34 p a s ←→ startstopSilvicultura wellasth e 0.2 5 1.2 1 5 1 10.6 0.1 1 n/an/a n/a n/a 5 Asabove 0.1 1.5n/an/an/an/a n/a n/a Flow(Lpm auxilia ) ry 1800 60 6 2000 300 10000 1n/a 150 300 n/an/a n/a n/a 60 Asabove 150 btw10and60m300300300300 300 300 CharacteristicTim sitesK34and in e(s) the n/a 0.2–10 0.3–20 n/a 0.5–10 0.03–0.3 001>.n/a 0.08–0.8 0.01–0.5 n/an/a n/a n/a Asabove 0.06–0.8 15<.n/an/an/an/a 10< 25<. DiameterRange(µm Silvicultura.L ) ef t chromatographymassspectrometryanalyzedbythermaldesorptiongas- number-sizedistributionofparticles number-sizedistributionofparticles particleimagesofthebiologicalfractionparticles,includingidentificationnumber-sizedistributionofcoarse-modeofparticlessize-resolvedCCNactivity particlenumberconcentrationparticlevolatilitystandardversioninletwasmodifiedfromasaboveforotherHR-TOF-AMS; number-sizedistributionofparticlesrelativehumidity;temperaturewindspeedanddirection;rainfallamount;downwardandupwardradiationfluxes coefficientatdifferentwavelengthsverticalprofilesofbackscatterandextinctionofdepositedparticleslightabsorptionat673nmandfluxmassspectraorganic,sulfate,nitrate,chloride,ammonium)non-refractorychemicalcomponents(includingchemicallyresolvedfluxesofsubmicronspectraofparticlessizedistribution;high-resolutionmassammonium,andchloride;aerodynamicparticleparticle-phaseorganic,sulfate,nitrate,size-resolvedmassconcentrationsof icenucleiactivityofparticles particlemassconcentration particlemassconcentration MeasuredQuantity andrightarrowsindicatemeasure m e n ts www.atmos-chem-phys.net/10/11415/2010/ Atmos. Chem. Phys.,10,11415–11438,2010 5 80-EZAMAehtfoweivrevonA :.latenitraM.T.S 11420 S.T.Martinetal.: AnoverviewoftheAMAZE-08 aRO T ndUniversityofSaoPaulo(USP).˜esearch(INPA),LundUniversity(Lund),Mrganizationabbreviations:CenterofWeath sunphotometer(AERONET) nephelometer totalfilterfine&coarsefiltersnucleuscounterCCNCcloudcondensation aethalometermassspectrometerPTR-MSproton-transfer-reactionozoneoxidesofnitrogen Instrument able1.Continued. (cid:3)(cid:2)(cid:2)(cid:3)3Concentrationcm 112505000000000 TKT3344tocwonetrainer axerF O PlanckInstituteforCorecastandClimatic USP USP10Feb USP10FebUSP10Feb USP10Feb USP10Feb NCAR8FebNCAR8FebNCAR8Feb rganizationstart 20000 MMara1r28(cid:3)9 TMimare1(cid:2)3UTC(cid:3) Mar14 hemistry–Studies(CP → →→ → → 27Feb27Feb27Feb stopTT34 (cid:3)(cid:2)(cid:2)(cid:3)3cm 1500 PT n articleCEC),Co 10m10m laminar laminar toptoptop line Lo entratio 1000 hemistry(MPIC-PC),MaxPlanckInstituteforChemistry–BiogeochemistryloradoStateUniversity(CSU),UniversityofColorado(CU),LeibnizInstitute 27Febn/an/a→ 10300 n/adaysn/adays 1300 53600 n/a300n/a300n/a120 startstopstartstopFlow(Lpm)CharacteristicTime(s)DFprttohheonK34Silviculturaipeegrbra.Aoeon2cationmsMte.ehonnPAutitaopesZrwrdltyEeiesca-Farels0isetng8autdtnbhrsirueredie tum2egtnpo.ibotopTetsnrhpoiantowsimFatatceiflinohkittbomoimraswtlepConcegeontoneoiranlhs.vmiedtcwdudslie2eer,eaupaumarive.rnKr5ylrrnbvc5eraPeeee0tmdoeee0n3rrms00aKetrat0tef4batrmassrrteon3to,gasciigoinmaito4acmwnmngnmtt1srgln,isoeehep8t−tnoFsiwudogo:ilnMntf03iciidrifphthgntu0hoaeuetoeart.igmosncohdecwnoSwtoanphefpebohaf4laroreoenuettdosew.ptrrohrlhsseftllmbltTecah,TueeudoatoosnmhhwlteTccsatiniteaaeplhpoon3eenhcostsaidn4nsd0eseeikcuftricp0dorntteadreaasaohi:iwitest0ncvspen1krimeTm0alnteeiid.aedeaeitk6strnmethseiMbrsecnok1rtsgTenreasoseunmud.aewttT(cid:2)6nccamssinpinUTntodt3rakatfreesoTeb4nrTesummrFsfnoeCcttabsp3ahcaroimto(cid:3)p,legin4hieofltcrkowlny0r.dedionTeirao6AeehSneanssnwtK:vTmridtn0o4Micdcera3sa03eete.oihdratT4tsoAn4nKdeeTlt.iustttTuwnZss3rhoiphts(cadua3t4EeglTaaeletaygep4eyirrs-hrbsogptd.0ntebiaeuihonesso,8ecit(pesedet)arerlTvtp.ttpvaesxsochwseahili1oecomekltnieset2hyuerrnnhreu:tae.trpts0teasswoomosnalo0xtipfttTiaedolbonhctttlrsthhhhneouueeaoeteeeets--fr-rtrwhsbtceiheeoorlennnieToiscnvreTatelnhe3bdtt4orataavonanteidndaod5rnisi0n.acs)0temoecnrwpsmtleehi−mcnetng3s- (MPIC-BG),NforTroposphe n/a all alln/a n/a n/a n/an/an/a iameterRange gicnorcenretesaaisnweeadrrmpbryeiorurtphtoatnosai2mn0sp%ildienignthbtehyeciondnsitstraturiinmbeuer.ntitosTn.hTleihnReesHseitnthspeiodrieenftothoreef ationalCenterforAtmosphericResearch(NCAricResearch(IfT),NationalInstituteofAmazon wavelengthsscatteringcoefficientatmultipletotalorganiccarbonanalysischromatography;metalsanalysisbyPIXanionandcationanalysisbyion integratedCCNnumberconcentrationsatmultiplewavelengthslightabsorptionofdepositedparticlesorganiccarboncompoundsspeciationandconcentrationofvolatile (µm)MeasuredQuantity tttrtttttahhhhaehheirleeeaervTnaotaaitethuianiceinirvegernsum-erhttjucoreutptumohusrhseacmneorturebdlacmpeppuitornuiturtliiunieiettmdroositdenicen.rptttarhyiwt.nlthesoagflebaosTiomyirennswiwhnnfiapseutmaeiclrdsirraaentepmenr,ugflloctriewohuonber3lfewnu.gii4btndlch)aeyleoTinwntnu3Nthhwetnaee◦aasdasCioafisnepmnNorreaoepndrrpatrdrtrfihlwieuiiRmaeonescalsdHngoesrupdro-2relrtemoei3oexbnfnsa◦cyepset4oChruea0foawer,rrinvexaatasgithpllsodotoeeahmefn(ood7wctsepuwu0oieigobbo%ntarhhnyef--- R),ian E; ated at a Reynolds number of 5000 to 10000, and the Atmos. Chem. Phys.,10,11415–11438,2010 www.atmos-chem-phys.net/10/11415/2010/ S.T.Martinetal.: AnoverviewoftheAMAZE-08 11421 Feb14 40 30 (cid:37) (cid:76) 35 (cid:72) y Humidit 30 atitude 10 e L v ati 25 (cid:45)10 el R 20 (cid:45)30 00:00 06:00 12:00 18:00 00:00 (cid:45)80 (cid:45)60 (cid:45)40 (cid:45)20 0 20 Time UTC Longitude Fig.F3.igR.el3at.iveRheulmaitdiivtyeinhtuhemlaimdiintayr-flionwtaheerosloalmsaimnpalirn-gfllionewusainegrothseodlrysearmdespcrliibnedgblyinTeuchet 6000 al.(2009).Thedryerconsistsoftwodiffusiondryers(silic(cid:72)agel),a(cid:76)ndtheaerosolflowisdivertedintoonedryer whileutshiensegcotnhdeonedirsyreegrendereatsecd.riWbheedntbheythTresuhcolhdReHtfaorl.reg(e2n0er0at9io)n.isTreahcehedd,rthyeearerocsoolnfl-owis m 4000(cid:76) sistsoftwodiffusiondryers(silicagel),andtheaerosolflowisdi- (cid:72) divertedtothatdryer.Themethodofregenerationisadry-airflowobtainedfromacompressor. ht verted into one dryer while the second one is regenerated. When g ei 2000 thethresholdRHforregenerationisreached,theaerosolflowisdi- H vertedtothatdryer. Themethodofregenerationisadry-airflow 0 obtainedfromacompressor. 0 50 100 150 200 250 BackwardTime hr correspondingdiffusional,gravitational, andinertialdeposi- 6000 (cid:72) (cid:76) tion losses suggest 50% transmission cutoffs of 17nm and m 4000(cid:76) 3.1µm, with 100% transmission between these cutpoints. (cid:72) ht Figure 3 The line for gas sampling entered the container without in- eig 2000 H terception. Forsomegasmeasurements,additionalsampling lines were temporarily place3d5at various heights along the 0 0 50 100 150 200 250 tower(Karletal.,2009). BackwardTime hr Theinstrumentshousedinsidethecontainerandthesam- pling line used by each instrument are listed in Table 1. Fig. 4. Ten-day HYSPLIT backtrajectories at 200m (red) and ThesubsetofinstrumentsrelatedtoSeFcti.g3..42.“TNeenw-dRayesHulYts”SPLIT backtrajectories at 200m (red) and (cid:72)30(cid:76)00m (blue) during AMAZE-08. Each point 3000m (blue) during AMAZE-08. Each point along a trajectory include: a condensation particle counter (CPC, TSI model alongatrajectoryrepresenrtespraes1e2n-ths sate1p2.-hThsteepg.reeTnhepogrineetnmpaoriknst tmhaerklosctahteiolnocoaftiotonwoefrTT34. 3010); a scanning mobility particle sizer (Lund SMPS de- towerTT34. scribed by Svenningsson et al., 2008); an optical paFrtigiculree 4 counter (OPC, Grimm model 1.108); an ultraviolet aero- dynamic particle sizer (UV-APS, TSI model 3314; Huff- particles and the transformations of particle components. man et al., 2010); the LIDAR instrument discussed previ- The backtrajectories arriving at the site at 200 and 3000m ously; two high-resolution time-of-flight Aerodyne Aerosol above ground level are shown every 12h from 7 February MassSpectrometers(HR-ToF-AMS)(DeCarloetal.,2006), to 14 March 2008 in Fig. 4 (Draxler and Hess, 1998) (see one belonging to Harvard University Environmental Chem- Fig.S3for500,1000,2000,and4000m). Thefigureshows istry Laboratory and equipped with a standard inlet (Liu et thatthesynoptic-scaletradewindscamepredominantlyand al., 2007) and the other belonging to the Max Plank In- consistentlyfromthenortheast,travellingacrosstheAtlantic stitute – Particle Chemistry (MPI-PC) group and equipped Ocean and then over 1600km of nearly pristine forest be- with a novel inlet shifted to favor larger diameter particles; fore arrival at the research site. The low-altitude flow was a thermodenuder as described in Wehner et al. (2002); and from the northeast, changing to easterlies at mid-altitude. acontinuous-flowdiffusionchamberformeasurementsofice Local wind measurements at the top of the research tower nuclei(Rogersetal.,2001). confirmedthatthedaytimewindsweredominantlyfromthe north and northeast (Fig. 5). At nighttime, the winds stag- 36 natedattimesandcouldcomefromanydirection. 3 Observationsandfindings The trajectories represented in Fig. 4, suggesting smooth Back-trajectory analyses and satellite observations covering trajectoriesofairparcels, areaHYSPLITproductthatuses the trajectory paths during the period of AMAZE-08 pro- a Lagrangian framework and omits treatment of vertical vide large-scale information concerning both the sources of mixing.Treatingatmospherictransportoveraten-dayperiod www.atmos-chem-phys.net/10/11415/2010/ Atmos. Chem. Phys.,10,11415–11438,2010 11422 S.T.Martinetal.: AnoverviewoftheAMAZE-08 from day to day and the weak vertical shear in the lower a Daytime 3–5 km of trade winds both suggest that the representation in Fig. 4 is a reasonable first-order description of airmass NNNN (cid:72) (cid:76) transport. IntheparticularsituationofAMAZE-08,thereis strongobservationalsupportforthevalidityofthisapproach. NNNNWWWW NNNNEEEE Ben-Amietal.(2010)documentedthetransportofdustand smoke across the Atlantic Ocean along the path suggested bythetrajectoriesinFig.4byusingacombinationofremote sensingandsurfaceobservations. An implication of the backtrajectories shown in Fig. 4 is that,inadditiontoin-Basinsourcesandtransformations,the WWWW EEEE particlesoftheAmazonBasinduringAMAZE-08werealso affectedattimesbysoildusttransportfromnorthernAfrica 0000....1111 and biomass burning in equatorial Africa. Satellite obser- 0000....2222 vations support this possibility and further indicate that the 0000....3333 long-rangetransportofmaterialfromAfricatotheresearch sitewasepisodicduringAMAZE-08(Ben-Amietal.,2010). SSSSWWWW SSSSEEEE Comparison of the ten-day backtrajectories and satellite- based MODIS fire counts (Figs. 4 and 6) suggests that ad- SSSS vection of biomass-burning products from Africa may have occurred. LIDAR measurements record a large plume of b Nighttime dustandsmokeoverCapeVerdeon3February2008thatar- NNNN rivesoneweeklaterattheresearchsiteintheAmazonBasin (cid:72) (cid:76) (Ansmann et al., 2009). Particle optical depth recorded by MODISontheAQUAsatelliteduringtheperiodofAMAZE- NNNNWWWW NNNNEEEE 08isalsosupportiveofthepossibilityoflong-rangetransport of biomass-burning products (Fig. 7). In contrast, an influ- ence of regional biomass burning appears less plausible be- cause of the absence of fires along the in-Basin trajectories (Fig. 8). The absence of markers of fresh biomass burning WWWW EEEE bothintheparticle-phasemassspectra(e.g.,elevatedsignal intensity at m/z 60 and 73) and in the gas-phase mass spec- 0000....1111 tra(e.g.,thebenzene:acetonitrileratio)furtherconfirmsthis 0000....2222 conclusion(Chenetal.,2009;Karletal.,2009). Elevated African dust emissions occurred several times 0000....3333 duringtheperiodofAMAZE-08,asapparentintheMODIS SSSSWWWW SSSSEEEE observationsofFig.7. Basedonthebacktrajectoriesduring these times, a portion of these emissions may have reached theresearchsiteapproximatelyoneweeklater. Simulations SSSS using the global chemical transport model “GEOS-Chem” 0(cid:45)1 1(cid:45)2 2(cid:45)3 (cid:62)3ms(cid:45)1 for the AMAZE-08 time period, as well as measurements of fine-mode dust concentrations at the research site, sug- gestseveralsignificantevents(>0.5µgm−3)ofAfricandust Fig.5. DaytimeandnighttimeFiwg.i5n.dDraoystiemsemanedansiughrtetidmeatwtihndertoosepsomfeatsouwreedratTtThe3t4opdoufringtrAanMspAorZt tEo-t0h8e.reTsheaercchosnicteenco-mpared to background con- tower TT34 during AMAZE-08. The concentric circles represent centrations (<0.2µgm−3) (Prenni et al., 2009a), in gen- tric circles repFriegsueren 5t the fractitohenafrlacftrioenqaulefrneqcuyenocfywofiwnidnsdsffrroommddififfefreenrtesnetctsoercdtiroerctidoinrse.ctions. Within each sector, the eralagreementwithearlierreportsofepisodicdustintrusion Withineachsector,thecolorcodingofradialdistanceindicatesthe color coding of radial distance indicates the relative frequencies of the wind speeds.(Prospero et al., 1981; Andreae et al., 1990; Artaxo et al., relativefrequenciesofthewindspeeds. 1990;Swapetal.,1992;Formentietal.,2001). In addition to the influence of synoptic-scale upwind sources, the vertical structure of the local atmosphere must with a Lagrangian parcel model is a strong simplification be considered for the interpretation of nighttime compared of the complexities of atmospheric movement. Vertical ex- to daytime measurements at TT34. Nighttime and day- change and cloud processing take place along the path of time differences in the height and the stability of the plan- transport and modify concentrations and properties of air- etary boundary layer largely bifurcate the scientific context masstracers.Nevertheless,theconsistencyofthetrajectories of the measurements at TT34 during these two periods. At Atmos. Chem. Phys.,10,11415–11438,2010 www.atmos-chem-phys.net/10/11415/2010/ 37 S.T.Martinetal.: AnoverviewoftheAMAZE-08 11423 Fig.6. GFriidgd.e6d.stGatriisdtidcaeldssutmatmisatriiceaslosfufimremsaorvieersAoffrificareasnodvSeoruAthfrAicmaeraincad.SPoauntehlsAarmeeprriecpaa.rePdaunseilnsgatrheeperigehpta-rdeadycuosminpgosthiteesofthe ClimateModelingGrid(CMG)FireProductsoftheMODISCollection-5ActiveFireProduct(Giglioetal.,2006). Redisscaledfrom0to eight-daycompositesoftheClimateModelingGrid(CMG)FireProductsoftheMODISCollection-5Active 25pixelfirecounts,withcorrectionsforcloudcover. Somepixelshavemorethan25firepixels(e.g.,maximumvalueforscenesshownis 1000pixeFlifirerePcrooudnutsc)t.(Giglioetal.,2006). Redisscaledfrom0to25pixelfirecounts,withcorrectionsforcloudcover. Somepixelshavemorethan25firepixels(e.g.,maximumvalueforscenesshownis1000pixelfirecounts). nighttime, katabatic (i.e., hill-valley) flows are important et al. (2008). In the morning (12:00UTC is 08:00LT), the (Araujoetal.,2002). Thenighttimemeasurementstherefore PBL-topheightwas200m. From13:00to14:00, thePBL- hadamicroscalefetch,incontrasttothemesoscalereachof topheightincreasedfrom400to800m.By14:30,cloudfor- the daytime measurements. As a result, the nighttime mea- mation occurred. The figure also shows that residual layers surements at TT34 were influenced by local activities, such presentat500and800minthemorningbecameentrainedby asnighttimeecosystememissions. Althoughthereisconsid- localnooninthePBL.Anotherlayerofparticlesisapparent erable interest in the nighttime activities of tropical forests at approximately 2000m, possibly the result of long-range (Graham et al., 2003a; Guyon et al., 2003a; Gilbert, 2005), transportoracloudresiduallayer,amongotherpossibilities. thefocusofAMAZE-08wasonmesoscaleprocesses. The height-resolved backscatter coefficients averaged Thedevelopmentoftheboundary-layerstructureatnight acrosstwodifferenttimeperiodsareshownintherightpanel wasdrivenbytheformationofanocturnalplanetarybound- of Fig. 11. In the first period (12:30–13:10UTC), a shal- ary layer (PBL) that had a height comparable to the local low convective boundary layer and an overlying residual topographical relief, which was 50 to 100m around TT34. layer from the day before are revealed in the profile of the InthisregionoftheAmazonBasin,thethicknessofthecon- backscatter coefficient. A sharp, steep gradient occurs at vectivePBLtypicallyvariesfrom100–200matnightto1to the top of the PBL. A lofted particle layer is located be- 2km when fully developed in the mid afternoon (Martin et 38tween1300mand2400matthattime.Anhourlater(14:07– al., 1988; Garstangetal., 1990; Fischetal., 2004). Several 14:20UTC), the vertical structure of the backscatter coeffi- balloonsoundingsmadeduringAMAZE-08wereconsistent cient evolves significantly, showing the growth of the PBL with these values (Figs. 9 and 10), with a PBL-top height up to 800m and the mixing of the lofted residual layer into near700to800mbylocalnoon. the PBL. The second lofted layer has descended, having its The development of the planetary boundary layer, which lowerlimitatabout1100m. can be observed by LIDAR measurements, is shown in the Some of the measurement periods at TT34 were affected leftpanelofFig.11for13March2008.Theblacklineshows by local pollution, especially at night. The nocturnal hill- thePBL-topheightthatwasderivedbythemethodofBaars valleyflow,incombinationwiththeshallowboundarylayer, www.atmos-chem-phys.net/10/11415/2010/ Atmos. Chem. Phys.,10,11415–11438,2010 11424 S.T.Martinetal.: AnoverviewoftheAMAZE-08 25Jan2008to01Feb2008 18Feb2008to25Feb2008 02Feb2008to09Feb2008 26Feb2008to04Mar2008 10Feb2008to17Feb2008 05Mar2008to12Mar2008 0 0.2 0.4 0.6 (cid:62)0.8 FFigi.g7..7P.artPicalertoicpltiecaolpdetipcthalobdseeprvtehdobybstheervMeOdDbISyitnhsteruMmeOntDonIStheinAsQtrUuAmseantetlloitne(tLheevyAeQtaUl.,A20s0a7;teRlelimteer(eLtealv.,y20e0t8a).l.S,h2ow00n7ar;e thelevel-3eight-daycompositesofCollection5. Remeretal.,2008). Shownarethelevel-3eight-daycompositesofCollection5. led at times to a circulation of generator exhaust to the by their respective horizontal scales. Unless stated specifi- research station, and these events (which were evident in callyotherwise,thedataassociatedwiththeperiodsoflocal the data setsFiogfumre u7ltiple instruments; Fig. S4) were tagged pollution(constituting24%ofthemeasurementperiod)were and logged into a community file accessed by AMAZE-08 excluded from AMAZE-08 analyses. Besides these tagged researchers. Intersection of the generator plume with the periods,thesitewasfreeoflocalanthropogenicinfluences. research station was abrupt (i.e., total particle concentra- tionscouldincreaseabove1000cm−3 for15min,dropback 3.1 Publishedresults to 300–400cm−3 for 15min, and then jump again above 1000cm−3; Fig.S4). Theabruptbehaviorreflectedthenar- SeveralrecentpublicationsdescribefindingsfromAMAZE- row horizontal extent and the shifting nature of the gener- 08. Karl et al. (2009) employed measurements of isoprene ator plume. The duration of one of these events was typi- photo-oxidationproductstoinfermissingchemistryinstan- cally several hours. Other local pollution (both at day and dardmodelsofatmosphericchemistry,complementingother night)arrivedattimesfrommetropolitanManaus. Thispol- recent theoretical (Peeters et al., 2009), laboratory (Paulot lutionwasapparentinmultipledatasets(Fig.S4),wascon- et al., 2009), and field (Kuhn et al., 2007; Lelieveld et al., tinuous, lasted for time periods of up to a day or more (the 2008) results on this topic. These results suggested more longest period was 38h), and corresponded to local winds rapid oxidation of biogenic emissions than presently imple- from the direction of Manaus. The greater duration of the 39 mented in chemical transport models and, correspondingly, Manausplumecomparedtothatofthegeneratorisexplained enhanced formation of oxygenated products that might fa- vorably partition to the particle phase (Guyon et al., 2003a, Atmos. Chem. Phys.,10,11415–11438,2010 www.atmos-chem-phys.net/10/11415/2010/

Description:
in the Amazon Basin. Predicting and understanding the cloud-forming proper- ties of atmospheric particles, especially for particles having high organic
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.