Astronomy&Astrophysicsmanuscriptno.ngc2903paper7 (cid:13)c ESO2009 February6,2009 An optical search for supernova remnants in the nearby spiral galaxy NGC 2903 (ResearchNote) E.Sonbas1,2,A.Akyuz1,andS.Balman3 9 0 0 1 UniversityofCukurova,DepartmentofPhysics,01330Adana,Turkey 2 2 SpecialAstrophysicalObservatoryofR.A.S.,Karachai-Cherkessia,NihnijArkhyz,369167Russia n 3 Dept.ofPhysics,MiddleEastTechnicalUniversity,06531Ankara,Turkey a Received-;accepted- J 6 ABSTRACT ] A Aims.Wepresenttheresultsofanopticalsearchforsupernovaremnants(SNRs)inthenearbyspiralgalaxyNGC2903. Methods. Interference filterimages and spectral data were taken in March 2005 with the f/7.7 1.5 m Russian Turkish Telescope G (RTT150)atTUBITAKNationalObservatory(TUG).Spectraldatawereobtainedwiththe6mBTA(BolshoiAzimuthalTelescope, . Russia).WeusedtheSNRidentificationcriterionthatconsistsofconstructingthecontinuum-subtractedHαandcontinuum-subtracted h [SII]λλ6716,6731imagesandtheirratios. p Results.FiveSNRcandidateswereidentifiedinNGC2903with[SII]/Hαratiosrangingfrom0.41-0.74andHαintensitiesranging - from9.4×10−15 to1.7×10−14ergscm−2s−1.ThisworkrepresentsthefirstidentificationofSNRsbyanopticalsurveyinNGC2903. o Wepresentthespectrumofoneofthebrightcandidatesandderivean[SII]/Hαemissionlineratioof0.42forthissource.Inaddition, r t the weak [OIII]λ5007/Hβ emission line ratio in the spectrum of this SNR indicates an old oxygen-deficient remnant with a low s propagationvelocity. a [ Keywords.SupernovaRemnants(SNRs)–SpiralGalaxies,NGC2903 1 v 2 1. Introduction Extragalacticsearches for SNRs were first obtainedfor the 4 MagellanicCloudsbyMathewson&Clarke(1973).Theywere 6 Supernovaremnants(SNRs)areimportantformanyofthetheo- thefirsttousethe[SII]/Hαemissionlineratiosforopticaliden- 0 riesofinterstellarmedium(ISM)becausesupernovaexplosions tification of SNRs. Blair et al. (1981),Smith et al. (1993),and . andtheireventualdispersionofejectedmaterialhavetheeffect 1 Blair&Long(1997,2004)alsousedsamemethodsuccessfully. 0 of enriching the ISM with the material processed in stellar in- 9 teriors.In a typicalHII region,the sulfuris in the formof S++ A number of nearby spiral galaxies have already been 0 becauseofthestrongphotoionizationfluxofthecentralhotstar observed to identify SNRs using optical observations (e.g : orstars.Therefore,the[SII]/Hαratioistypically≈0.1-0.3for D′Odorico,Dopita&Benvenuti1980;Braun&Walterbos1993; v HII regions. Outside the HII region, there are not enough en- Magnieretal.1995;MF97;Matonicketal.1997;Gordonetal. i X ergeticfreeelectronstoexciteS+andtoproduceforbidden-line 1998,1999;Blair & Long1997,2004)and X-rayobservations r ([SII]λλ6716,6731)emission.Forthatreason,nearlyalldiscrete (Pence etal. 2001;Ghavamianet al. 2005).Radio searchesfor a emissionnebulaewith[SII]/Hα≥0.4areshock-heatedandthey extragalacticSNRs have been conductedby Lacey et al. 1997; areprobablySNRs. Lacey & Duric (2001) and Hyman et al. (2001). SNR surveys have also been carried out at optical, radio, and X-ray wave- In several prior works, the motivation for observing SNRs lengthsbyPannutietal.(2000,2002,2007). in nearbygalaxies(Matonick& Fesen 1997(hereafter MF97); Pannutietal. 2000,2002)andin ourGalaxy(Mavromatakiset In this work, we searched for SNRs in the nearby spiral al. 2002; Fesen et al. 1997, 2008) has already been discussed. galaxy NGC 2903 using the criterion [SII]/Hα ratio is ≥ 0.4. ThesampleofGalacticSNRsisquitelarge,andinterstellarex- NGC 2903is an SB(s)d type galaxywith a 61◦ inclinationan- tinction and uncertain distances cause selection effects. These gle, and 17◦ position angle at a distance of 9.4 Mpc to NGC problems are much less significant in extragalactic samples. 2903 has been adopted for this paper (Bresolin et al. 2005). It Assumingthedistancetoagalaxyisknown,alltheSNRsareat was observed at radio (Williams & Becklin 1985; Tsai et al. thesamedistancefromus,sosomepropertiescanbecompared 2006),infrared(Simonset al.1988;Williams& Becklin1985; directly. Also, the foreground extinction is generally low, thus Alonso - Herrero, Ryder & Knapen 2001), X - ray (Fabbiano, relativepositionsofSNR samplesaredeterminedaccuratelyin Trinchieri & MacDonald 1984; Mizuno et al. 1998; Junkes & anextragalacticsurvey.ByknowingthepositionsoftheSNRs, Hensler 1996; Tschoke, Hensler & Junkes 2003), and optical theirdistributionsarecalculatedrelativetoHIIregionsandspi- wavelengths (Bresolin et al. 2005). Multiwavelength observa- ralarms.PossibleSNRprogenitorshavebeeninvestigatedfrom tionsofNGC2903impliesthatithasaverycomplexstructure thesedistributions(MF97;Blair&Long1997,2004). withknotsinthenucleus.Theknots,called“hot-spots”,contain manyearlytypestars(Okaetal.1974;Simonsetal.1988).Tsai Sendoffprintrequeststo:E.Sonbas et al. (2006) report subarcsecond-resolution VLA (Very Large 2 E.Sonbasetal.:AnopticalsearchforsupernovaremnantsinthenearbyspiralgalaxyNGC2903(RN) Array)imagingofNGC2903.Theyfoundsevendiscreteradio doublet lines and to extract and eliminate contributions of two sources in the central 15′′ × 15′′ of galaxy at the wavelengths [NII]λλ6548,6583linesneartheHαline. of6and2cmtoalimitingintegratedfluxdensityof0.2and0.3 mJy,respectively.Theyidentifiedoneoftheirsources(sourceD) 3. Resultsanddiscussion as a candidate radio SNR. Their detected sourcesmeet at least oneofthe followingcriteria:5σdetectionatthepeakintensity ToidentifytheSNRcandidatesinNGC2903,weusedthetech- atonewavelengthand4σemissiondetectionatboth6and2cm. nique where continuum-subtractedHα and [SII] λλ6716,6731 Theorganizationofthepapermaybedescribedasfollows:. images were constructed and then [SII]/ Hα image ratios were InSect.2wediscussboththeimagingandspectroscopicobser- made. Finally, regionsthat have image ratio values ≥ 0.4 were vationsthatwereconductedaspartofthisstudy,aswellasthe identifiedascandidateSNRs(Blair&Long1997). accompanyingdatareduction.TheSNRidentificationtechnique, Preliminary SNR candidates were found by blinking be- searchresults,anddiscussionaredescribedinSect.3. tween continuum-subtracted[SII] and Hα subfield images. We only displayed a region about 2′ on a side at one time for vi- sualinspectionofthefieldstosearchforcandidates.Anybright 2. Observationsanddatareduction feature in the continuum-subtracted [SII] image was checked againstthecontinuum-subtractedHαtomakesurethestarswere 2.1.Imaging not poorly subtracted. If the feature in the [SII] image looked brighterthan it was in the Hα image, we marked it as an SNR NGC2903wasobservedin2006Marchwiththe1.5mRussian candidate.EachpreliminarySNR candidatewas a possibletar- TurkishTelescope(RTT150)atTUBITAKNationalObservatory getforfollow-upspectralobservation.Inthelatterstep[SII]and (TUG) in Turkey.Imageswere taken with TFOSC (TUBITAK Hα,continuum-subtractedimageswereusedtomeasurethetotal FaintObjectSpectrographandCamera)2048×2048pixelCCD countsforeachSNRcandidate.We selecteda circularaperture with a plate scale of 0′′.39 pixel−1, giving 13′.3 × 13′.3 FOV. in continuum-subtractedimagesto sumtheADU (Analogueto We used narrowband interference filters centered on the lines Digital Units) counts. Afterwardsa concentricannuluswas se- of [SII] & Hα + 2 continuum filters to remove starlight from lected to determinethe backgroundcountsto subtractfromthe Hα and [SII] images. Characteristics of the interference filters aperture sum. The aperture sizes used to measure fluxes were usedintheseobservationsarelistedinTable1.Anobservation constrained by the seeing that was attained during our inter- logoftheimagingdataisshowninTable2forthisgalaxy.The ference filter imaging observations(namely 1.9′′, which corre- datawerereducedusingESO–MIDAS(TheEuropeanSouthern spondsto∼87pcfortheassumeddistancetoNGC2903of9.4 ObservatoryMunichImageDataAnalysisSystem)softwareen- Mpc).Becauseofthedifferencebetweenseeingandpixelscales, vironment.SeveralHα,[SII],andassociatedcontinuumimages wedidnotincluderadiicalculationsfortheSNRcandidatesthat of each galaxy field were combined to obtain deeper field im- wedetected.Tocorrectfluxvaluesforinterstellarextinction,we agesinordertoincreasethesignal-to-noiseratioforthefaintest useddatafromCardelli,Clayton,andMathis(1989). objects. As shown in Table 2, 20 exposures (5400 seconds in Using the SNR identification technique described above, 5 totalfortwofilters) werecombinedfortwoobservationnights. SNR candidates were detected in NGC 2903 with [SII]/Hα ≥ StandardstarsfromthelistofOke(1974)andStone(1977)were 0.4.Resultsofourpresentobservationswithcandidatesandcor- observed each night to determine the flux conversion factors. rected flux ratios from the imaging analysis of these SNRs are Bias framesanddomeflats were also observed.Eachexposure listedinTable3.ThemeasuredHαfluxofSNR4issmallerthan wasbias-subtracted,trimmed,andflat-fielded.Thecosmicrays the other four optically-identified SNRs by factors of approxi- were removed from each [SII] and Hα image. The SNR can- mately 2-3. We caution that calculations involvingthe Hα line didates overlaid on DSS (Digitized Sky Survey) images of the mayhaveslightcontaminationfromthe[NII]lines.We carried spiralgalaxycanbefoundinFig.1. outthesecalculationsinanenvironmentwithalimitingfluxsen- sitivity level of 3.1×10−15 erg cm−2 s−1 for our imaging obser- 2.2.Spectroscopy vationsofNGC2903.Thissensitivitylimitwas determinedby choosingastructurethathasminimummagnitudeinthegalaxy ThespectraldataofonebrightSNRwereobtainedwiththeop- field. Then the total counts from the same circular aperture of ticaltelescopeBTA-6m(BolshoiAzimuthalTelescope,Russia) SNRsusedareconvertedtogalaxyfluxvalueusingthespectro- 2008 April. The SCORPIO (Spectral Camera with Optical scopicstandardstarfluxmentionedabove. Reducer for Photometricaland InterferometricalObservations) OnlyonefieldwasobservedinNGC2903.Itcoversatotal spectrograph was used in BTA with a CCD 2048 × 2048 pix- fieldof12′×6′.InFigs.2-3weshow4′×4′subfieldsofNGC elsinsize.Weused1′′ slitwidth,anda3500-7200Åspectral 2903.NoSNRswerefoundinthesouthernhalfofthegalaxy.We rangewasassumedforSCORPIOwith10Åspectralresolution. notethatthe southfieldofthe galaxyconsistsofmainlybright The IDL codes and IRAF packages were used to perform the HIIregionscomparedwiththenorthfield(Bresolinetal.2005). basicreductions,flux,andwavelengthcalibrationsandinterstel- ThismightbeoneofthereasonsfortheabsenceofSNRsinthis larextinctioncorrection.Spectrophotometricstandardstarsfrom region.The detectedSNR distributionin NGC 2903resembles Oke(1974)andStone(1977)catalogswereobservedeachnight. theskeweddistributionofSNRsseeninNGC2403byMatonick Derivedfluxesfromthespectrophotometricstandardswereused etal.(1997).TheyalsoexplaintheabsenceofSNRsinthenorth tofindthefluxesforspectrallinesinourSNRspectrum.Biases, fieldoftheimageofNGC2403inasimilarfashion. halogenlampflats,andFeArorNeoncalibrationlambexposures AmongthefivecandidatesdetectedinNGC2903,wewere were obtained for each observation set. Finally [SII] and Hα able to observe SNR4 spectroscopically and derive a specific emissionlinefluxesweremeasuredusingsplotroutineinIRAF. line ratio of [SII]/Hα of 0.42. The optical spectrum of SNR4 To obtainspectral data of SNRs, the slit position was arranged isshowninFig.4.LineintensitiesrelativetoHβ,theE ,and (B−V) so thatbotha brightstar andthe SNRwere insidethe slit. The Hαintensity valueforthisspectrumgivenin Table 4.We used aim of spectral observationswas to resolve [SII] λλ6716,6731 thisspectrumtocalculatelineratiosfor[SII]λ6761/[SII]λ6731 E.Sonbasetal.:AnopticalsearchforsupernovaremnantsinthenearbyspiralgalaxyNGC2903(RN) 3 and [OIII]λ5007 / Hβ. We calculated electron density, N , us- As noted by MF97, Braun & Walterbos (1993) have esti- e ing [SII]λ 6761/[SII]λ6731line ratio and the Space Telescope matedthatabouthalfofallSNeareofTypeIb/corTypeII(that ScienceDataAnalysisSystem(STSDAS)tasknebular.temden. is,producedbythedeathsofmassivestars);inturn,onlyhalfof Whenanelectrontemperaturevalueisgiven,thistaskcalculates alloftheseSNearelocatedinregionswithenoughambientden- theelectrondensity,basedonthefive-levelatomapproximation sitytoproduceadetectableSNR.Thismeansthat,onlyabouta explainedinthetask.Thelineratioof[SII]λ6716/[SII]λ6731> quarterofallSNeventsmayleaveeasilydetectableopticalrem- 1.46gives the low density limit correspondingto N ≤ 10 cm3 nants.InourcasewehavedetectedfiveSNRs,indicatingthatthe e (Osterbrock 1989). Assuming an electron temperature of T = totalnumberofSNeinNGC2903is∼20,abouthalfofwhich 104 K, the calculated N value is 360, which is not so atypical (∼ 10)wouldleave remnants.Thisnumbercouldalso betaken e forsuchgalaxies(forexample,SNR19inNGC2403,Matonick asanupperlimitforobservationswithmuchmoreimprovedvis- et al. 1997). For SNR4, we detected only a weak [OIII]λ5007 ibilityandseeingconditions.However,onlyabouthalfofthem / Hβ emission line ratio of ∼0.1indicatingan oxygen-deficient (∼5)wouldoccurineasilydetectableregions.Alltheseprovide remnant, which corresponds to a low propagation velocity be- acceptableexplanationsforourobservations.Iftheopticallyvis- lowthelimitof≤100km/s(Smithetal.1993),whichshutsoff iblelifetimeofatypicalSNRisabout20,000years(Braunetal. thenebularshocks.Therearemanyexamplesofsuchweakline 1989),it would also give us an SN occurrencerate of about 1 ratioswithpooroxygencontentinanumberofnearbygalaxies per 1000 yrs. When we compared this rate to MF97 SN rates, (Blair&Long2004;MF97). wefindquitegoodoverlapforthecaseofNGC5585,whichhas thesamenumberofSNRs.Inthesamework,forgalaxieswith We searched for X-ray counterparts to the SNRs that lower and higher SNR numbers, this rate goes proportionally were found by our optical observations. Twenty one X- higherandlower. ray point sources were determined in the position and Intheiranalysis,MF97alsopresentthemodevaluesofthe extension of NGC 2903 in the Master X-Ray Catalog measuredHαintensitiesforthedetectedSNRsamplesfromnu- (http://heasarc.nasa.gov/W3Browse/all/xray.html). We found merousgalaxiestoseeevidenceofanyselectioneffectsandbi- only one positional coincidence with the Master X-ray cata- ases(seetheirTable19).Usingthegalaxydistancestheyshow log sources taking a 30′′ positional error circle around the ob- thelogofthemodeoftheHαluminosity,L(Hα) ,islargerfor jects.SNR3fallsintheerrorcircleof1RXSJ093210.2+212947. mode moredistantgalaxies.Thismeansthat,ifthedistanceofgalaxies However,thetabulatedpositionerrorofthecatalogsourcewas increases,itismuchmoredifficulttodetectthefainterSNRs.In 18′′,whichwaslowerthanourassumederror,oncetheerrorcir- ourcase,wecalculatedthattheL(Hα) valuecouldbetaken clediminishedinsize,therewefoundnocorrelationofourcan- mode as ∼1.2×1038 erg s−1 (since we have detected a few SNRs, we didate SNR3 with the source. This catalog contains data from were onlyable to calculate an averagevalue for Hα intensities the Position Sensitivity Proportional Counter (PSPC) onboard andconsideredthis asourmodevalue.Thiswas also the prac- ROSAT (Rontgen Satellite) and Imaging Proportional Counter ticebyMF97forgalaxieswithalownumberofSNRs).Witha (IPC) onboardEinstein observatories. IPC provides an angular distanceof9.4Mpc,NGC2903followsthesametrendtoward resolutionof ∼30′′ (FWHM) at ∼1 keV andthe limiting sensi- higherL(Hα) valuestogowithgreaterdistances. tivity rangefrom ∼5×10−14 to ∼3×10−12ergcm−2s−1 in the 0.3 mode - 3.5 keV energy band (Gioia et al. 1990). And ROSAT PSPC minimum sensitivity lies around a few times 10−13 - 2×10−14 Acknowledgements. WethanktheTUBITAKNationalObservatory(TUG)and SpecialAstrophysicalObservatory(SAO)fortheirsupportwithobservingtime ergcm−2s−1 intheenergyband0.1-2keV(Morleyetal.2001). andequipment.AlsowewouldliketothanktoIGPP(InstituteofGeophysical PSPChasprovided∼30′′(FWHM)on-axisangularresolutionat PlanetaryPhysics)atUCR(UniversityofCaliforniaRiverside)forprovidingus 1keV(Trumper,1984).Theselimitingfluxessetanupperlimit someoftheinterferencefilters.WealsothankananonymousrefereeandM.E. Ozelfortheirvaluablecommentsanddiscussions. ontheluminosityofsourcesthatwouldbedetectedinthiscat- alogasafewtimes1038 ergs−1 atthedistanceof9.4Mpc(for NGC2903).Giventhata maximumradiativeX-rayluminosity References ofanSNR(withashocktemperatureof0.1keVorabove)will beafewtimes1038−39ergs−1(seePanutti,Schlegel,Lacey2003; Alonso-Herrero,A.,Ryder,S.D.,Knapen,J.H.2001,MNRAS,322,757 Schlegel&Panutti2003;Holtetal.2003),itisonlynormalthat Blair,W.P.,Kirshner,R.P.&Chevalier,R.A.1981ApJ,247,879 Blair,W.P.&Long,K.S.1997,ApJS,108,261 thereare no SNRs amongthe Master X-rayCatalog sourcesin Blair,W.P.&Long,K.S.2004,ApJS,155,101,121 thevicinityofNGC2903.Tschokeetal.(2003)havealsofound Braun,R.,Goss,W.M.,Lyne,A.G.1989,ApJ,340,355 18 sources in the vicinity of NGC 2903. We checked for any Braun,R.&Walterbos,R.A.M.1993,A&AS,98,327 positional coincidence with these sources using an error circle Bresolin,F.,Schaerer,D.,GonzlezDelgado,R.M.,Stasinska,G.2005,A&A, of 30′′, but found no correlation. Given our results for SNR4, 441,981 Cardelli,J.A.,Clayton,G.C.&Mathis,J.S.1989,ApJ,345,245 sincewederivenostrong[OIII]emissionandour[OIII]λ5007/ D′Odorico,S.,Dopita,M.A.&Benveuti,P.1980,A&AS,40,67 Hβratioindicatesthatnebularshocksarearoundorbelow100 Fabbiano,G.,Trinchieri,G.&MacDonald,A.1984,ApJ,284,65 km/s(i.e.,anoldremnant),thisyieldsanupperlimitontheelec- Fesen,R.A.,Winkler,F.,Rathore,Y.,Downes,R.A.&Wallace,D.1997,AJ, tron temperatures of about 105 K, which would greatly reduce 113,767 Fesen,R.A.,Rudie,G.,Hurford,A.&Soto,A.2008,ApJS,174,379 theX-rayemissionthatwillbedetectedfromthisremnant.Itis Ghavamian,P.,Blair,W.P.,Long,K.S.,Sasaki,M.,Gaetz,T.J.,Plucinsky,P.P. expectedthatX-rayimagingwithChandra,withimprovedan- 2005AJ,130,539 gularresolutionandsensitivity,couldprovidevaluableimprove- Gioia,I.M.,Maccacaro,T.,Schild,R.E.,Wolter,A.,Stocke,J.T.,Morris,S.L., mentforSNRdetectionsinnearbygalaxiesespeciallyforNGC Henry,J.P.1990,ApJS,72,567 2903. Gordon,S.M.,Kirshner,R.P.,Long,K.S.,Blair,W.P.,Duric,N.,Smith,R.C. 1998,ApJS,117,89 We alsocheckedforanoverlapbetweenouropticallyiden- Gordon, S. M.,Duric, N.,Kirshner, R. P.,Goss, W. M.,Viallefond, F. 1999, ApJS,120,247 tifiedSNRsandthecandidateradioSNRinNGC2903reported Holt,S.S,Schlegel,E.M.,Hwang,U.,Petre,R.2003,ApJ,588,792 by Tsai et al (2006). However, there is no overlap (within 2′′ Hyman,S.D.,Calle,D.,Weiler,K.W.,Lacey,C.K.,VanDyk,S.D.&Sramek, positionalaccuracy)amongthesesources. R.2001,ApJ,551,702 4 E.Sonbasetal.:AnopticalsearchforsupernovaremnantsinthenearbyspiralgalaxyNGC2903(RN) Junkes,N.&Hensler,G.1996,InternationalConferenceonX-rayAstronomy Table 1. Characteristics of the interference filters used in our andAstrophysics:Ro¨ntgenstrahlungfromtheUniverse,459 observations Kilgard,R.E.etal.2002,AmericanAstronomicalSociety,201,1416 Lacey,C.,Duric,N.,Goss,W.M.1997,ApJS,109,417 Name λ FWHM Lacey,C.K.&Duric,N.2001,ApJ,560,719 Wavelength(Å) Å Magnier,E.A.etal.1995,A&A,114,215 Mathewson,D.S.&Clarke,J.N.1973,ApJ,180,725 [SII] 6728 54 Matonick,D.M.&Fesen,R.A.1997,ApJS,112,49(MF97) continuum 6964 350 Matonick,D.M.,Fesen,R.A.,Blair,W.P.&Long,K.S.1997,ApJS,113,333 Hα 6563 80 Mavromatakis,F.,Boumis,P.&Paleologou,E.V.2002,A&A,387,635 continuum 6446 123 Mizuno,T.,Ohbayashi,H.,Iyomoto,N.&Makishima,K.1998,IAUS,188,284 Morley,J.E.,Briggs,K.R.,Pye,J.P.,Favata,F.,Micela,G.,Sciortino,S.2001, MNRAS,326,1161 Table2.Anobservationlogofimagingdataforourtargetgalaxy Niklas,S.,Klein,U.,Braine,J.&Wielebinski,R.1995,A&AS,114,21 obtainedwithRTT150atTUG. Oka,S.,Wakamatsu,K.,Sakka,K.,Nishida,M.,&Jugaku,J.1974,PASJ,26, 289 GalaxyName Date Filter Exposure Oke,J.B.1974,ApJS,27,21 (s) Osterbrock,D.E.1989,S&T,78,491 Pannuti,T.G.,Duric,N.,Lacey,C.,Goss,W.M.,Hoopes,C.G.,Walterbos,R. NGC2903 2006March4/5 [SII] 3×600 A.M.,Magnor,M.A.2000,ApJ,544,780 2006March4/5 Hα 3×600 Pannuti, T. G., Swartz, D. A., Duric, N., Urosevic, D. 2002, American 2006March4/5 continuum-6446 2×300 AstronomicalSociety,200,3505 2006March4/5 continuum-6964 2×300 Pannuti,T.G,Schlegel,E.M.&Lacey,C.K.2007,AJ,133,1361 2006March5/6 [SII] 6×600 Pence,W.D.,Snowden,S.L.,Mukai,K.&Kuntz,K.D.2001,ApJ,561,189 2006March5/6 Hα 6×600 Schlegel,E.M.,Holt,S.S.,Petre,R.2003,ApJ,598,982 2006March5/6 continuum-6446 4×300 Schlegel,E.M.,Panutti,T.G.2003,AJ,125,3025 2006March5/6 continuum-6964 4×300 Sersic,J.L.1973,PASP,85,103 Simons,D.A.,Depoy,D.L.,Becklin,E.E.,Capps,R.W.,Hodapp,K.-W.& Hall,D.N.B.1988,ApJ,335,126 Table3.NewopticalSNRcandidatesdetectedinNGC2903. Smith,R.C.,Kirshner,R.P.,Blair,W.P.,Long,K.S.,&Winkler,P.F.1993, ApJ,407,564 Stone,R.P.S.1977,ApJ,218,767 SNRName RA DEC [SII]/Hα I(Hα) Trumper,J.1984,PhyS,7,209 (J2000.0) (J2000.0) (ergcm−2s−1) Tsai,Chao-Wei,Turner,J.L.,Beck,S.C.,Crosthwaite,L.P.,Ho,P.T.P.,Meier, SNR1 9:32:12.5 +21:32:30 0.41 9.4E-15 D.S.2006,AJ,132,2383 SNR2 9:32:13.7 +21:30:48 0.74 1.7E-14 Tschoke,D.,Hensler,G.&Junkes,N.2003,A&A,411,41 SNR3 9:32:10.7 +21:29:19 0.57 1.6E-14 Wynn-Williams,C.G.&Becklin,E.E.1985,ApJ,290,108 SNR4 9:32:12.5 +21:29:06 0.42 5.4E-15 SNR5 9:32:11.1 +21:28:23 0.53 1.1E-14 Table 4. Relative line intensities and observational parameters forSNR4 Line SNR4 Hβ(λ4861) 100 OIII(λ4959) - OIII(λ5007) 11 NII(λ5200) - He(λ5876) - OI(λ6300) - OI(λ6364) - NII(λ6548) 30 Hα(λ6563) 280 NII(λ6583) 98 SII(λ6716) 62 SII(λ6731) 55 E 0.032 (B−V) I(Hα) 5.4E-15ergcm−2s−1 [SII]/Hα 0.42 E.Sonbasetal.:AnopticalsearchforsupernovaremnantsinthenearbyspiralgalaxyNGC2903(RN) 5 Fig.1.AlltheSNRsthataredetectedinourstudyareindicated Fig.4. Optical spectrum of SNR4 in NGC 2903 obtained with ontheimagesextractedfromDigitalSkySurvey(DSS).Figure BTA.Identifiedlinesareindicatedinthefigure. showsNGC2903withthe5newSNRcandidatesfoundinthis worklabeledwithcircles. Fig.2. The figure indicates the SNR candidates (SNR1 and SNR2)detectedinthisworkwithinNGC2903overlayedona∼ 4′ssubfieldofcontinuum-subtracted[SII]image. Fig.3. Thefigure indicatesthe SNR candidates(SNR3, SNR4, andSNR5)detectedinthisworkwithinNGC2903overlayedon a∼4′subfieldofcontinuum-subtracted[SII]image.