Operator Theory: Advances and Applications Vol. 204 Editor: I. Gohberg Editorial Office: M. Putinar (Santa Barbara, CA, USA) School of Mathematical Sciences A.C.M. Ran (Amsterdam, The Netherlands) Tel Aviv University L. Rodman (Williamsburg, VA, USA) Ramat Aviv J. Rovnyak (Charlottesville, VA, USA) Israel B.-W. Schulze (Potsdam, Germany) F. Speck (Lisboa, Portugal) I.M. Spitkovsky (Williamsburg, VA, USA) Editorial Board: S. Treil (Providence, RI, USA) D. Alpay (Beer Sheva, Israel) C. Tretter (Bern, Switzerland) J. Arazy (Haifa, Israel) H. Upmeier (Marburg, Germany) A. Atzmon (Tel Aviv, Israel) N. Vasilevski (Mexico, D.F., Mexico) J.A. Ball (Blacksburg, VA, USA) S. Verduyn Lunel (Leiden, The Netherlands) H. Bart (Rotterdam, The Netherlands) D. Voiculescu (Berkeley, CA, USA) A. Ben-Artzi (Tel Aviv, Israel) D. Xia (Nashville, TN, USA) H. Bercovici (Bloomington, IN, USA) D. Yafaev (Rennes, France) A. Böttcher (Chemnitz, Germany) K. Clancey (Athens, GA, USA) R. Curto (Iowa, IA, USA) Honorary and Advisory Editorial Board: K. R. Davidson (Waterloo, ON, Canada) L.A. Coburn (Buffalo, NY, USA) M. Demuth (Clausthal-Zellerfeld, Germany) H. Dym (Rehovot, Israel) A. Dijksma (Groningen, The Netherlands) C. Foias (College Station, TX, USA) R. G. Douglas (College Station, TX, USA) J.W. Helton (San Diego, CA, USA) R. Duduchava (Tbilisi, Georgia) T. Kailath (Stanford, CA, USA) A. Ferreira dos Santos (Lisboa, Portugal) M.A. Kaashoek (Amsterdam, The Netherlands) A.E. Frazho (West Lafayette, IN, USA) P. Lancaster (Calgary, AB, Canada) P.A. Fuhrmann (Beer Sheva, Israel) H. Langer (Vienna, Austria) B. Gramsch (Mainz, Germany) P.D. Lax (New York, NY, USA) H.G. Kaper (Argonne, IL, USA) D. Sarason (Berkeley, CA, USA) S.T. Kuroda (Tokyo, Japan) B. Silbermann (Chemnitz, Germany) L.E. Lerer (Haifa, Israel) H. Widom (Santa Cruz, CA, USA) B. Mityagin (Columbus, OH, USA) V. Olshevski (Storrs, CT, USA) Subseries Joseph A. Ball Linear Operators and Linear Systems Department of Mathematics Virginia Tech Subseries editors: Blacksburg, VA 24061 USA Daniel Alpay Department of Mathematics André M.C. Ran Ben Gurion University of the Negev Division of Mathematics and Beer Sheva 84105 Computer Science Israel Faculty of Sciences Vrije Universiteit NL-1081 HV Amsterdam The Netherlands An Operator Perspective on Signals and Systems Arthur E. Frazho Wisuwat Bhosri Birkhäuser Basel · Boston · Berlin Authors: Arthur E. Frazho Wisuwat Bhosri School of Aeronautics and Astronautics 541/15 Lamphun Road Purdue University Amphoe Muang West Lafayette, IN 47907-2045 Chiang Mai 50000 USA Thailand e-mail: [email protected] e-mail: [email protected] 2000 Mathematics Subject Classification: 47A20, 47A57, 47B35 Library of Congress Control Number: 2009938997 Bibliographic information published by Die Deutsche Bibliothek. Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at http://dnb.ddb.de ISBN 978-3-0346-0291-4 Birkhäuser Verlag AG, Basel – Boston – Berlin This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of use permission of the copyright owner must be obtained. © 2010 Birkhäuser Verlag AG Basel · Boston · Berlin P.O. Box 133, CH-4010 Basel, Switzerland Part of Springer Science+Business Media Printed on acid-free paper produced from chlorine-free pulp. TCF∞ Printed in Germany ISBN 978-3-0346-0291-4 e-ISBN 978-3-0346-0292-1 9 8 7 6 5 4 3 2 1 www.birkhauser.ch Preface In this monograph, we combine operator techniques with state space methods to solve factorization, spectral estimation, and interpolation problems arising in control and signal processing. We present both the theory and algorithms with some Matlab code to solve these problems. A classical approach to spectral factorization problems in control theory is based on Riccati equations arising in linear quadratic controltheory and Kalman filtering. One advantage of this approach is that it readily leads to algorithms in the non-degenerate case. On the other hand, this approach does not easily generalize to the nonrational case, and it is not always transparent where the Riccati equations are coming from. Operator theory has developed some elegant methods to prove the existence of a solution to some of these factorization and spectral estimation problems in a verygeneralsetting.However,these techniques are in generalnotusedto develop computational algorithms. In this monograph, we will use operator theory with statespacemethodstoderivecomputationalmethods tosolvefactorization,spec- tralestimation,andinterpolationproblems.Itis emphasizedthatourapproachis geometric and the algorithms are obtained as a special application of the theory. We will present two methods for spectral factorization. One method derives algo- rithms based on finite sections of a certain Toeplitz matrix. The other approach uses operator theory to develop the Riccati factorization method. Finally, we use isometric extension techniques to solve some interpolation problems. The monograph is divided into five parts. In the first part, we present some classicalresults fromoperatortheory.This includes the Wolddecomposition,uni- lateral and bilateral shifts, the Beurling-Lax-Halmos Theorem, and the Naimark representation Theorem. Chapter 5 on the Naimark representation Theorem is one of the fundamental tools that is used throughout the monograph.The reader familiar with operator theory can skip this part and refer back to it as needed. This part also includes some results on rational functions which are not usually presented in elementary operator theory. The first part is self contained and is written for someone with a minimal background in operator theory. The other four parts aremore or less independent ofeachother, andcanbe readseparately. There may be some cross references. However, this should not cause any major difficulty. In part II, we develop finite section techniques to compute the inner-outer factorization of rational functions and solve a spectral factorization problem in both the squareand non-squarecases.Furthermore, operatortechniques are used to solve some sinusoid estimation problems in signal processing. In particular, we use geometric methods to develop the Capon-Genorimus sinusoid estimation algorithm.Finite section methods are also used to solve some sinusoid estimation problems. Many of these techniques are based on the Levinson and Kalman-Ho algorithm. Several examples using Matlab are given. vi Preface In part III, we use Riccati techniques to solve factorization and Darlington synthesis problems. These Riccati techniques are developed from the Naimark representationTheorem.Chapter11is devotedto theKalmanfilter.This chapter can be read independently from the rest of the monograph. This is included to demonstrate where the Riccati equations in control theory originally came from, and how they can be used to solve Kalman and Wiener filtering problems. ThefourthpartisanintroductiontopositiverealandH∞typeinterpolation problems.Our approachis basedon extending a contractionto an isometry.Here we do not present the set of all solutions, we just give the central solution and corresponding state space formula. The central solution is the one that is most widely used in applications. The fifth part is the appendix which includes a short review of state space techniques used throughout the monograph. We also place a special emphasis on the Kalman-Ho algorithm, which plays a fundamental role in some of our computationaltechniques.The last chapter is devotedto the Levinsonalgorithm. Finally, the Gohberg-Semencul-Heinig inversion formula for a positive Toeplitz operator is presented. It is assumed that the reader is familiar with linear algebra, and some ele- mentary facts from operator theory such as the projection theorem, the adjoint of an operator and a positive operator. Our approach is geometric and we do not relyonmeasuretheoretictechniques.Itisalsoassumedthatthe readeris familiar with some elementary concepts fromlinear systems theory suchas controllability, observability and state space realization. A review of some of these state space techniques is given in the appendix. Some sections can be skipped without any loss of continuity and the reader will be notified when this is the case. We have alsousedthenotesattheendofthechaptertodevelopsometechnicalconnections between our results and some of the existing theory. Finally, it is noted that we developed our theory using Hardy spaces of functions which are analytic outside the open unit disc. This was done mainly because these Hardy spaces are more naturallysuitedtothefastFouriertransformalgorithminMatlabandstatespace methods. We hope that this monograph is beneficial to both mathematicians and en- gineers. We believe that the operator theoretic foundation provides additional insightintospectralfactorizationandsignalprocessing.Moreover,thisframework may be useful for other engineering applications. Finally, the applications and examples may provide some additional insight into other mathematical problems. August, 2009 The authors Contents Preface v I Basic Operator Theory 1 1 The Wold Decomposition 3 1.1 The Unilateral Shift . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 The Eigenvalues for the BackwardShift . . . . . . . . . . . . . . . 6 1.3 The Wold Decomposition . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 The Bilateral Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.5 Abstract Toeplitz Operators . . . . . . . . . . . . . . . . . . . . . . 16 1.5.1 Abstract Toeplitz operators viewed as a compression . . . . 19 1.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2 Toeplitz and Laurent Operators 23 2.1 The Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.1.1 The subspace L2(E) . . . . . . . . . . . . . . . . . . . . . . 24 + 2.2 Hardy Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3 Multiplication Operators . . . . . . . . . . . . . . . . . . . . . . . . 29 2.4 Laurent Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.5 Toeplitz Operators and Matrices . . . . . . . . . . . . . . . . . . . 34 2.6 Toeplitz Matrices and H∞ Functions . . . . . . . . . . . . . . . . . 36 2.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3 Inner and Outer Functions 41 3.1 The Beurling-Lax-HalmosTheorem . . . . . . . . . . . . . . . . . . 41 3.1.1 The invariant subspaces for the backward shift . . . . . . . 43 3.2 Inner-Outer Factorizations . . . . . . . . . . . . . . . . . . . . . . . 45 3.3 Invertible Outer Functions . . . . . . . . . . . . . . . . . . . . . . . 49 3.4 The Determinant of Inner and Outer Functions . . . . . . . . . . . 51 3.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 viii Contents 4 Rational Inner and Outer Functions 55 4.1 Blaschke Products . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.2 State Space Realizations for Rational Inner Functions . . . . . . . 58 4.3 Rational Two-Sided Inner Functions . . . . . . . . . . . . . . . . . 64 4.4 Rational Outer Functions . . . . . . . . . . . . . . . . . . . . . . . 68 4.5 Inner-Outer Factorization and McMillan Degree. . . . . . . . . . . 72 4.6 Inner-Outer Factorization and Finite Sections . . . . . . . . . . . . 78 4.7 The Douglas-Shapiro-Shields Factorization. . . . . . . . . . . . . . 81 4.8 The Douglas-Shapiro-Shields Factorization for Rational Functions . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.8.1 A Factorization for rational L∞ functions . . . . . . . . . . 86 4.9 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5 The Naimark Representation 91 5.1 The Naimark Representation Theorem . . . . . . . . . . . . . . . . 92 5.2 The Maximal Outer Spectral Factor . . . . . . . . . . . . . . . . . 97 5.2.1 The eigenspace for the unitary part . . . . . . . . . . . . . 102 5.3 The Inner-Outer Factorization Revisited . . . . . . . . . . . . . . . 103 5.4 Positive Real Functions . . . . . . . . . . . . . . . . . . . . . . . . 106 5.5 Minimal Isometric Liftings . . . . . . . . . . . . . . . . . . . . . . . 110 5.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6 The Rational Case 117 6.1 Rational Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 6.2 The Positive Real Lemma . . . . . . . . . . . . . . . . . . . . . . . 123 6.3 Finite Dimensional Unitary Part . . . . . . . . . . . . . . . . . . . 125 6.4 A Classical Ergodic Result. . . . . . . . . . . . . . . . . . . . . . . 127 6.5 Another Ergodic Result . . . . . . . . . . . . . . . . . . . . . . . . 130 6.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 II Finite Section Techniques 143 7 The Levinson Algorithm and Factorization 145 7.1 The Case when T is Invertible . . . . . . . . . . . . . . . . . . . . 145 R 7.2 The Classical Schur Inversion Formula . . . . . . . . . . . . . . . . 148 7.3 The Schur Complement and Toeplitz Matrices. . . . . . . . . . . . 149 7.4 Schur Complement and Maximal Outer Factor . . . . . . . . . . . 151 7.5 Carath´eodoryInterpolation . . . . . . . . . . . . . . . . . . . . . . 155 7.6 A Finite Sections Approach to Factorization . . . . . . . . . . . . . 159 7.6.1 A finite section approach to outer factorization . . . . . . . 160 7.7 An Inner-Outer Factorization Procedure . . . . . . . . . . . . . . . 162 7.8 Rational Contractive Analytic Functions . . . . . . . . . . . . . . . 165 7.8.1 A contractive realization procedure . . . . . . . . . . . . . . 169 Contents ix 7.9 A Spectral Factorization Approach to Filtering . . . . . . . . . . . 171 7.10 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 8 Isometric Representations and Factorization 179 8.1 Isometric Representations and Finite Sections . . . . . . . . . . . . 179 8.2 A Basic Optimization Problem . . . . . . . . . . . . . . . . . . . . 185 8.3 The Lower Triangular Cholesky Factorization . . . . . . . . . . . . 188 8.4 Cholesky Factorization and Maximal Outer Spectral Factors . . . . . . . . . . . . . . . . . . . . . . . . . 194 8.5 Some Examples of the Cholesky Factorization . . . . . . . . . . . . 197 8.5.1 Scalar-valued outer function . . . . . . . . . . . . . . . . . . 197 8.5.2 Multi-input multi-output square outer function . . . . . . . 198 8.5.3 Non-square outer function . . . . . . . . . . . . . . . . . . . 199 8.5.4 Non-square outer function and a unitary part . . . . . . . . 201 8.6 An Inner-Outer Factorization Algorithm . . . . . . . . . . . . . . . 202 8.6.1 A scalar inner-outer factorization example . . . . . . . . . . 203 8.6.2 A non-square inner-outer factorization example . . . . . . . 204 8.6.3 An outer function and a unitary part. . . . . . . . . . . . . 205 8.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 9 Signal Processing 209 9.1 A Fundamental Optimization Problem . . . . . . . . . . . . . . . . 209 9.2 Sinusoid Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 213 9.3 Sinusoid Estimation: Capon-Geronimus . . . . . . . . . . . . . . . 221 9.4 A Nested Optimization Problem . . . . . . . . . . . . . . . . . . . 223 9.5 Limit Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 9.6 The Outer Function K (z,α) . . . . . . . . . . . . . . . . . . . . . 233 n 9.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 III Riccati Methods 245 10 Riccati Equations and Factorization 247 10.1 Algebraic Riccati Equations . . . . . . . . . . . . . . . . . . . . . . 247 10.2 The Case when T is Strictly Positive . . . . . . . . . . . . . . . . 253 R 10.3 The Riccati Difference Equation . . . . . . . . . . . . . . . . . . . 256 10.4 A Riccati Approach to Inner-Outer Factorizations . . . . . . . . . 260 10.5 The Outer Factor for γ2I −G∗G . . . . . . . . . . . . . . . . . . . 265 10.6 Darlington Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . 268 10.7 Riccati Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 10.7.1 The minimum principle . . . . . . . . . . . . . . . . . . . . 274 10.7.2 Proof of Theorem 10.7.1 . . . . . . . . . . . . . . . . . . . . 276 10.8 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281