Politecnico di Milano Facoltà di Ingegneria Industriale Corso di Laurea Magistrale in Ingegneria Aeronautica OpenNOSE: an open-source procedure for the simulation of nasal aerodynamics Relatore: Tesi di Laurea di: Prof. Maurizio Quadrio Chiara Pesci Matricola 755599 Anno Accademico 2012 - 2013 “Fu così che a sei anni io rinunziai a quella che avrebbe potuto essere la mia gloriosa carriera da pittore. Il fallimento del mio disegno numero uno e del mio disegno numero due mi aveva disanimato. I grandi non capiscono mai niente da soli e i bambini si stancano di spiegargli tutto ogni volta. Allora scelsi un’altra professione e imparai a pilotare gli aeroplani”. da Il Piccolo Principe – Antoine De Saint-Exupéry [1943] Contents Contents v List of Figures vii List of Tables xi 1 Introduction 1 1.1 The project . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Nasal Cavity Flow 5 2.1 The Upper Human Respiratory Tract . . . . . . . . . . . . 5 2.1.1 Physiology . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2 Anatomy . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Experiments and numerical simulation . . . . . . . . . . . 9 2.2.1 Experimental results . . . . . . . . . . . . . . . . . 9 2.2.2 CFD results . . . . . . . . . . . . . . . . . . . . . . 10 3 Numerical simulation of the nasal cavity flow 21 3.1 Navier-Stokes Equations . . . . . . . . . . . . . . . . . . . 21 3.1.1 Reynolds averaged Navier-Stokes equations . . . . . 22 3.2 Turbulence models . . . . . . . . . . . . . . . . . . . . . . 24 3.2.1 k −ω −SST Model . . . . . . . . . . . . . . . . . 25 3.2.2 k −k −ω Model . . . . . . . . . . . . . . . . . . 27 T L 4 Simulation setup 35 4.1 Creation of the geometry . . . . . . . . . . . . . . . . . . . 35 4.1.1 3D-Slicer . . . . . . . . . . . . . . . . . . . . . . . . 35 4.1.2 FreeCAD . . . . . . . . . . . . . . . . . . . . . . . 36 4.1.3 Blender . . . . . . . . . . . . . . . . . . . . . . . . 36 4.2 OpenFOAM . . . . . . . . . . . . . . . . . . . . . . . . . . 37 v Contents 4.2.1 Mesh generation . . . . . . . . . . . . . . . . . . . 38 4.2.2 Initial and boundary condition . . . . . . . . . . . . 41 5 Results 47 5.1 Laminar and turbulence models . . . . . . . . . . . . . . . 47 5.1.1 Velocity and Pressure Fields . . . . . . . . . . . . . 47 5.1.2 Wall Shear Stress . . . . . . . . . . . . . . . . . . . 54 5.1.3 Turbulent Kinetic Energy . . . . . . . . . . . . . . 56 5.1.4 Turbulence Frequency ω . . . . . . . . . . . . . . . 60 5.2 Pre- and Post-Virtual Surgery . . . . . . . . . . . . . . . . 61 5.2.1 Global Quantities . . . . . . . . . . . . . . . . . . . 61 5.2.2 Local Quantities . . . . . . . . . . . . . . . . . . . 64 6 Conclusions 75 6.1 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.2 Future development . . . . . . . . . . . . . . . . . . . . . . 76 A 3D-Slicer 77 A.1 Introduction to CT . . . . . . . . . . . . . . . . . . . . . . 78 A.2 Slicer Procedure . . . . . . . . . . . . . . . . . . . . . . . . 79 B FreeCAD Geometry Decomposition 83 C Geometry Morphing: Blender 87 C.1 Introduction to Blender . . . . . . . . . . . . . . . . . . . . 88 C.2 Sculpt Mode . . . . . . . . . . . . . . . . . . . . . . . . . . 90 C.3 Edit Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 D Generation of the Mesh 97 D.1 blockMesh Utility . . . . . . . . . . . . . . . . . . . . . . . 97 D.2 snappyHexMesh Utility . . . . . . . . . . . . . . . . . . . . 100 D.2.1 Castellated Mesh . . . . . . . . . . . . . . . . . . . 101 D.2.2 Snap Phase . . . . . . . . . . . . . . . . . . . . . . 105 D.2.3 Adding layers . . . . . . . . . . . . . . . . . . . . . 107 Bibliography 113 vi List of Figures 2.1 Anatomical features of the nose . . . . . . . . . . . . . . . 6 2.2 Views of nasal cavity . . . . . . . . . . . . . . . . . . . . . 7 2.3 Sagittal view of nasal cavity: cells and sinuses highlighted . 8 2.4 (a). Silicone nasal cavity flow phantom viewed sagittally from the left and (b) axially from the bottom. Figure from Spence et al. [33] . . . . . . . . . . . . . . . . . . . . . . . 10 2.5 Geometry and the post-surgery models, figures from [22] . . 16 2.6 Virtualsurgerymodelsandrealpre-andpost-surgery, figure from [29] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1 Illustrationofwall-limitingconceptfork production, figure L from [39] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.1 Three surfaces divided, back view . . . . . . . . . . . . . . 36 4.2 Pre-surgery mesh . . . . . . . . . . . . . . . . . . . . . . . 41 5.1 Coronal section highlighted in the nasal cavity. . . . . . . . 48 5.2 Velocity magnitude [m/s], coronal section. . . . . . . . . . 49 5.3 ν [m2/s], coronal section. . . . . . . . . . . . . . . . . . . 49 T 5.4 U velocity component [m/s], sagittal section. . . . . . . . 50 Y 5.5 Sagittal section highlighted in the nasal cavity. . . . . . . . 51 5.6 U velocity component [m/s], sagittal section. . . . . . . . 52 Y 5.7 Pressure field [m2/s2], sagittal section. . . . . . . . . . . . . 53 5.8 Wall Shear Stresses, particular of the pharynx. . . . . . . . 54 5.9 Wall Shear Stresses, particular of the nasal valve. . . . . . . 55 5.10 Turbulent and laminar fluctuations [m2/s2] with k −k −ω T L model. Sagittal section, refer to figure 5.5 for the position in the nasal cavity. . . . . . . . . . . . . . . . . . . . . . . . 56 5.11 Turbulent fluctuations with turbulence models, throat section 57 5.12 Turbulent kinetic energy [m2/s2]. . . . . . . . . . . . . . . . 58 5.13 Turbulent kinetic energy [m2/s2]. . . . . . . . . . . . . . . . 59 5.14 Turbulence frequency ω [s−1], section from figure 5.13(f). . 60 vii List of Figures 5.15 Pre-surgery. U for flow rates computation. . . . . . . . . . 62 y 5.16 Post-surgery. U for flow rates computation. . . . . . . . . 62 y 5.17 Pressure [m2/s2], sagittal view. . . . . . . . . . . . . . . . . 64 5.18 Velocity streamlines. . . . . . . . . . . . . . . . . . . . . . . 65 5.19 Exampleofvelocitymagnitude[m/s], sagittalview, location in the nasal cavity highlighted in figure 5.13(e). . . . . . . . 65 5.20 U at the septal deviation [m/s], coronal section. . . . . . . 66 y 5.21 U after the septal deviation [m/s], coronal section. . . . . 67 y 5.22 U streamlines in the obstruction region. . . . . . . . . . . . 67 y 5.23 Highest turbulent kinetic energy regions [m2/s2]. . . . . . . 68 5.24 Turbulent kinetic energy [m2/s2]; sagittal section, refer to figure 5.13(e). . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.25 Turbulent kinetic energy [m2/s2]; sagittal section, 5.13(f). . 69 5.26 Turbulent kinetic energy [m2/s2]; coronal section. . . . . . . 70 5.27 Turbulencefrequencyω [s−1]; coronalsection, refertofigure 5.12(f). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.28 Vorticity component ω [s−1]; sagittal section. . . . . . . . 71 X 5.29 Vorticity component ω [s−1]; sagittal section, deviated side. 72 X 5.30 Wall shear stresses. . . . . . . . . . . . . . . . . . . . . . . 73 A.1 Sagittal view in gray scale from a CT . . . . . . . . . . . . 77 A.2 Slicer start-up module . . . . . . . . . . . . . . . . . . . . . 78 A.3 Interface of Slicer after applying the Editor module . . . . . 80 A.4 Slicer frame meanwhile the user is setting the HU threshold 81 A.5 Slicer frame meanwhile the user is excluding ears . . . . . . 81 A.6 Slicer frame with 3D reconstruction . . . . . . . . . . . . . 82 B.1 Back view of entire surface in transparency . . . . . . . . . 83 B.2 FreeCAD frames . . . . . . . . . . . . . . . . . . . . . . . . 84 B.3 Side view of nasal cavity in transparency . . . . . . . . . . 84 B.4 Three surfaces divided, back view . . . . . . . . . . . . . . 85 C.1 Opening scene of Blender with default objects . . . . . . . 88 C.2 Blender scene with more views, icon highlighted . . . . . . 89 C.3 Sculpt mode: brush types . . . . . . . . . . . . . . . . . . . 91 C.4 Stl geometry imported in Blender . . . . . . . . . . . . . . 93 C.5 Particular of the geometry . . . . . . . . . . . . . . . . . . 93 C.6 Particular of the region to modify . . . . . . . . . . . . . . 94 C.7 Particular of the geometry modified . . . . . . . . . . . . . 95 C.8 Particular of the geometry modified . . . . . . . . . . . . . 96 D.1 Resultant block mesh for this work . . . . . . . . . . . . . . 99 viii List of Figures D.2 ParaView frames . . . . . . . . . . . . . . . . . . . . . . . . 99 D.3 Different values for nCellsBetweenLevels . . . . . . . . . . . 101 D.4 Examples of level entries producing different refinement . . 102 D.5 Refinement levels . . . . . . . . . . . . . . . . . . . . . . . 103 D.6 Resultant castellated mesh, sagittal view of the nasal cavity 104 D.7 ParaView frames, castellated mesh . . . . . . . . . . . . . . 105 D.8 Comparison between different nSmoothPatch . . . . . . . . 106 D.9 ParaView frames, snapped mesh . . . . . . . . . . . . . . . 106 D.10 Layers distrubution scheme . . . . . . . . . . . . . . . . . . 107 D.11 Comparison between differen featureAngle . . . . . . . . . . 109 D.12 Throat, mesh with layers . . . . . . . . . . . . . . . . . . . 111 D.13 Mesh with layers, axial view . . . . . . . . . . . . . . . . . 111 ix
Description: