ebook img

an open-source procedure for the simulation of nasal aerodynamics PDF

137 Pages·2013·17.82 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview an open-source procedure for the simulation of nasal aerodynamics

Politecnico di Milano Facoltà di Ingegneria Industriale Corso di Laurea Magistrale in Ingegneria Aeronautica OpenNOSE: an open-source procedure for the simulation of nasal aerodynamics Relatore: Tesi di Laurea di: Prof. Maurizio Quadrio Chiara Pesci Matricola 755599 Anno Accademico 2012 - 2013 “Fu così che a sei anni io rinunziai a quella che avrebbe potuto essere la mia gloriosa carriera da pittore. Il fallimento del mio disegno numero uno e del mio disegno numero due mi aveva disanimato. I grandi non capiscono mai niente da soli e i bambini si stancano di spiegargli tutto ogni volta. Allora scelsi un’altra professione e imparai a pilotare gli aeroplani”. da Il Piccolo Principe – Antoine De Saint-Exupéry [1943] Contents Contents v List of Figures vii List of Tables xi 1 Introduction 1 1.1 The project . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Nasal Cavity Flow 5 2.1 The Upper Human Respiratory Tract . . . . . . . . . . . . 5 2.1.1 Physiology . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2 Anatomy . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Experiments and numerical simulation . . . . . . . . . . . 9 2.2.1 Experimental results . . . . . . . . . . . . . . . . . 9 2.2.2 CFD results . . . . . . . . . . . . . . . . . . . . . . 10 3 Numerical simulation of the nasal cavity flow 21 3.1 Navier-Stokes Equations . . . . . . . . . . . . . . . . . . . 21 3.1.1 Reynolds averaged Navier-Stokes equations . . . . . 22 3.2 Turbulence models . . . . . . . . . . . . . . . . . . . . . . 24 3.2.1 k −ω −SST Model . . . . . . . . . . . . . . . . . 25 3.2.2 k −k −ω Model . . . . . . . . . . . . . . . . . . 27 T L 4 Simulation setup 35 4.1 Creation of the geometry . . . . . . . . . . . . . . . . . . . 35 4.1.1 3D-Slicer . . . . . . . . . . . . . . . . . . . . . . . . 35 4.1.2 FreeCAD . . . . . . . . . . . . . . . . . . . . . . . 36 4.1.3 Blender . . . . . . . . . . . . . . . . . . . . . . . . 36 4.2 OpenFOAM . . . . . . . . . . . . . . . . . . . . . . . . . . 37 v Contents 4.2.1 Mesh generation . . . . . . . . . . . . . . . . . . . 38 4.2.2 Initial and boundary condition . . . . . . . . . . . . 41 5 Results 47 5.1 Laminar and turbulence models . . . . . . . . . . . . . . . 47 5.1.1 Velocity and Pressure Fields . . . . . . . . . . . . . 47 5.1.2 Wall Shear Stress . . . . . . . . . . . . . . . . . . . 54 5.1.3 Turbulent Kinetic Energy . . . . . . . . . . . . . . 56 5.1.4 Turbulence Frequency ω . . . . . . . . . . . . . . . 60 5.2 Pre- and Post-Virtual Surgery . . . . . . . . . . . . . . . . 61 5.2.1 Global Quantities . . . . . . . . . . . . . . . . . . . 61 5.2.2 Local Quantities . . . . . . . . . . . . . . . . . . . 64 6 Conclusions 75 6.1 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.2 Future development . . . . . . . . . . . . . . . . . . . . . . 76 A 3D-Slicer 77 A.1 Introduction to CT . . . . . . . . . . . . . . . . . . . . . . 78 A.2 Slicer Procedure . . . . . . . . . . . . . . . . . . . . . . . . 79 B FreeCAD Geometry Decomposition 83 C Geometry Morphing: Blender 87 C.1 Introduction to Blender . . . . . . . . . . . . . . . . . . . . 88 C.2 Sculpt Mode . . . . . . . . . . . . . . . . . . . . . . . . . . 90 C.3 Edit Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 D Generation of the Mesh 97 D.1 blockMesh Utility . . . . . . . . . . . . . . . . . . . . . . . 97 D.2 snappyHexMesh Utility . . . . . . . . . . . . . . . . . . . . 100 D.2.1 Castellated Mesh . . . . . . . . . . . . . . . . . . . 101 D.2.2 Snap Phase . . . . . . . . . . . . . . . . . . . . . . 105 D.2.3 Adding layers . . . . . . . . . . . . . . . . . . . . . 107 Bibliography 113 vi List of Figures 2.1 Anatomical features of the nose . . . . . . . . . . . . . . . 6 2.2 Views of nasal cavity . . . . . . . . . . . . . . . . . . . . . 7 2.3 Sagittal view of nasal cavity: cells and sinuses highlighted . 8 2.4 (a). Silicone nasal cavity flow phantom viewed sagittally from the left and (b) axially from the bottom. Figure from Spence et al. [33] . . . . . . . . . . . . . . . . . . . . . . . 10 2.5 Geometry and the post-surgery models, figures from [22] . . 16 2.6 Virtualsurgerymodelsandrealpre-andpost-surgery, figure from [29] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1 Illustrationofwall-limitingconceptfork production, figure L from [39] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.1 Three surfaces divided, back view . . . . . . . . . . . . . . 36 4.2 Pre-surgery mesh . . . . . . . . . . . . . . . . . . . . . . . 41 5.1 Coronal section highlighted in the nasal cavity. . . . . . . . 48 5.2 Velocity magnitude [m/s], coronal section. . . . . . . . . . 49 5.3 ν [m2/s], coronal section. . . . . . . . . . . . . . . . . . . 49 T 5.4 U velocity component [m/s], sagittal section. . . . . . . . 50 Y 5.5 Sagittal section highlighted in the nasal cavity. . . . . . . . 51 5.6 U velocity component [m/s], sagittal section. . . . . . . . 52 Y 5.7 Pressure field [m2/s2], sagittal section. . . . . . . . . . . . . 53 5.8 Wall Shear Stresses, particular of the pharynx. . . . . . . . 54 5.9 Wall Shear Stresses, particular of the nasal valve. . . . . . . 55 5.10 Turbulent and laminar fluctuations [m2/s2] with k −k −ω T L model. Sagittal section, refer to figure 5.5 for the position in the nasal cavity. . . . . . . . . . . . . . . . . . . . . . . . 56 5.11 Turbulent fluctuations with turbulence models, throat section 57 5.12 Turbulent kinetic energy [m2/s2]. . . . . . . . . . . . . . . . 58 5.13 Turbulent kinetic energy [m2/s2]. . . . . . . . . . . . . . . . 59 5.14 Turbulence frequency ω [s−1], section from figure 5.13(f). . 60 vii List of Figures 5.15 Pre-surgery. U for flow rates computation. . . . . . . . . . 62 y 5.16 Post-surgery. U for flow rates computation. . . . . . . . . 62 y 5.17 Pressure [m2/s2], sagittal view. . . . . . . . . . . . . . . . . 64 5.18 Velocity streamlines. . . . . . . . . . . . . . . . . . . . . . . 65 5.19 Exampleofvelocitymagnitude[m/s], sagittalview, location in the nasal cavity highlighted in figure 5.13(e). . . . . . . . 65 5.20 U at the septal deviation [m/s], coronal section. . . . . . . 66 y 5.21 U after the septal deviation [m/s], coronal section. . . . . 67 y 5.22 U streamlines in the obstruction region. . . . . . . . . . . . 67 y 5.23 Highest turbulent kinetic energy regions [m2/s2]. . . . . . . 68 5.24 Turbulent kinetic energy [m2/s2]; sagittal section, refer to figure 5.13(e). . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.25 Turbulent kinetic energy [m2/s2]; sagittal section, 5.13(f). . 69 5.26 Turbulent kinetic energy [m2/s2]; coronal section. . . . . . . 70 5.27 Turbulencefrequencyω [s−1]; coronalsection, refertofigure 5.12(f). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.28 Vorticity component ω [s−1]; sagittal section. . . . . . . . 71 X 5.29 Vorticity component ω [s−1]; sagittal section, deviated side. 72 X 5.30 Wall shear stresses. . . . . . . . . . . . . . . . . . . . . . . 73 A.1 Sagittal view in gray scale from a CT . . . . . . . . . . . . 77 A.2 Slicer start-up module . . . . . . . . . . . . . . . . . . . . . 78 A.3 Interface of Slicer after applying the Editor module . . . . . 80 A.4 Slicer frame meanwhile the user is setting the HU threshold 81 A.5 Slicer frame meanwhile the user is excluding ears . . . . . . 81 A.6 Slicer frame with 3D reconstruction . . . . . . . . . . . . . 82 B.1 Back view of entire surface in transparency . . . . . . . . . 83 B.2 FreeCAD frames . . . . . . . . . . . . . . . . . . . . . . . . 84 B.3 Side view of nasal cavity in transparency . . . . . . . . . . 84 B.4 Three surfaces divided, back view . . . . . . . . . . . . . . 85 C.1 Opening scene of Blender with default objects . . . . . . . 88 C.2 Blender scene with more views, icon highlighted . . . . . . 89 C.3 Sculpt mode: brush types . . . . . . . . . . . . . . . . . . . 91 C.4 Stl geometry imported in Blender . . . . . . . . . . . . . . 93 C.5 Particular of the geometry . . . . . . . . . . . . . . . . . . 93 C.6 Particular of the region to modify . . . . . . . . . . . . . . 94 C.7 Particular of the geometry modified . . . . . . . . . . . . . 95 C.8 Particular of the geometry modified . . . . . . . . . . . . . 96 D.1 Resultant block mesh for this work . . . . . . . . . . . . . . 99 viii List of Figures D.2 ParaView frames . . . . . . . . . . . . . . . . . . . . . . . . 99 D.3 Different values for nCellsBetweenLevels . . . . . . . . . . . 101 D.4 Examples of level entries producing different refinement . . 102 D.5 Refinement levels . . . . . . . . . . . . . . . . . . . . . . . 103 D.6 Resultant castellated mesh, sagittal view of the nasal cavity 104 D.7 ParaView frames, castellated mesh . . . . . . . . . . . . . . 105 D.8 Comparison between different nSmoothPatch . . . . . . . . 106 D.9 ParaView frames, snapped mesh . . . . . . . . . . . . . . . 106 D.10 Layers distrubution scheme . . . . . . . . . . . . . . . . . . 107 D.11 Comparison between differen featureAngle . . . . . . . . . . 109 D.12 Throat, mesh with layers . . . . . . . . . . . . . . . . . . . 111 D.13 Mesh with layers, axial view . . . . . . . . . . . . . . . . . 111 ix

Description:
5.11 Turbulent fluctuations with turbulence models, throat section 57 . Key-words: fluid dynamics, nasal cavity flow, nasal pathology, virtual surgery, CFD, 3D .. above and behind the middle turbinate, and also attaches to the skull.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.