ebook img

An Introductory Course in Lebesgue Spaces PDF

463 Pages·2016·4.069 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview An Introductory Course in Lebesgue Spaces

CMS Books in Mathematics Canadian Mathematical Society René Erlín Castillo Société mathématique Humberto Rafeiro du Canada An Introductory Course in Lebesgue Spaces CanadianMathematicalSociety Socie´te´ mathe´matiqueduCanada Editors-in-Chief Re´dacteurs-en-chef K.Dilcher K.Taylor AdvisoryBoard Comite´ consultatif M.Barlow H.Bauschke L.Edelstein-Keshet N.Kamran M.Kotchetov Moreinformationaboutthisseriesathttp://www.springer.com/series/4318 Rene´ Erl´ın Castillo • Humberto Rafeiro An Introductory Course in Lebesgue Spaces 123 Rene´Erl´ınCastillo HumbertoRafeiro UniversidadNacionaldeColombia PontificiaUniversidadJaveriana Bogota´,Colombia Bogota´,Colombia ISSN1613-5237 ISSN2197-4152 (electronic) CMSBooksinMathematics ISBN978-3-319-30032-0 ISBN978-3-319-30034-4 (eBook) DOI10.1007/978-3-319-30034-4 LibraryofCongressControlNumber:2016935410 MathematicsSubjectClassification(2010):46E30,26A51,42B20,42B25 ©SpringerInternationalPublishingSwitzerland2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAGSwitzerland AlamemoriadeJulietamimama´-abuela AmiesposaHilciadelCarmen Amishijos:Rene´ Jose´ ManuelAlejandro IreneGabrielay RenzoRafael R.E.C. a` Danielapeloseuamorepacieˆncia H.R. Preface This book is not a treatise on Lebesgue spaces, since this would not be a feasible work due to the extension of their usage, e.g., in physics, probability, statistics, economy,engineering,amongothers.Theobjectiveismorerealistic,beingthein- troductionofthereadertothestudyofdifferentvariantsofLebesguespacesandthe commontechniquesusedinthisarea.SincetheLebesguespacesmeasureintegra- bilityofafunction,theycanbeseenasthefatherofallintegrablefunctionspaces wheremorefinepropertiesoffunctionsaresought. WecanfindmanybookswherethesubjectofLebesguespacesistouchedupon, for example, books dealing with measure theory and integration. In the literature, we can also find some books dealing with Sobolev spaces and they dedicate, in general, not more than one chapter to Lebesgue spaces. A book dedicated solely to Lebesgue spaces is unknown to the authors. With this in mind, we decided to writeabookdevotedexclusivelytoLebesguespacesandtheirdirectderivedspaces, viz.,Marcinkiewiczspaces,Lorentzspaces,andthemorerecentvariableexponent LebesguespacesandgrandLebesguespacesandalsotobasicharmonicanalysisin those spaces. We think this will be a welcome to any serious student of analysis, since it will give access to information that otherwise is spread among different booksandarticles,aswellasmorethantwohundredproblems. Forexample,oneoftheattractiveness ofLorentzandweakLebesgue spacesis that the subject is sufficiently concrete and yet the spaces have fine structure and importanceinapplications.Moreover,theareaisquiteaccessibleforyoungpeople, leading them to gain sophistication in mathematical analysis in a relatively short timeduringtheirgraduatestudies.Thesefeatures,amongothers,makethesubject particularlyinteresting. Wethinkitisappropriatetocommentonthechoiceofthewritingstyleandsome peculiarities.Inthefirstpartdealingwithfunctionspaces,wetriedtobeasthorough aspossibleintheproofs,althoughthiscouldsoundprolixforsomereaders.Another aspect is the inclusion of proofs of classical results that deviate from the standard ones,e.g.,intheproofoftheMinkowskiinequality,weusedtheclassicalapproach vii viii Preface via Ho¨lder’s inequality for the Lebesgue sequence space and the less-known di- rectapproachfortheLebesguespaces.Wealsodecidedtoincludeachapterbriefly touchingupontheso-callednonstandardLebesguespaces,namely,onvariableex- ponentLebesguespacesandongrandLebesguespacessincetheseareareaswhere intenseresearchisbeingmadenowadays.Thetopicofvariableexponentspacesbe- came very fashionable in recent years, not only due to mathematical curiosity, but alsotothewidevarietyoftheirapplications,e.g.,inthemodelingofelectrorheolog- icalfluidsaswellasthermorheologicalfluids,inthestudyofimageprocessing,and indifferentialequationswithnonstandardgrowth.GrandLebesguespacesattracted the attention of many researchers and turned out to be the right spaces in which somenonlinearequationsinthetheoryofPDEshavetobeconsidered,amongother applications. Thistextisaddressedtoanyonethatknowsmeasuretheoryandintegration,func- tionalanalysis,andrudimentsofcomplexanalysis. Part of the content of this book has been tested with the students from Univer- sidadNacionaldeColombiaandalsofromthePontificiaUniversidadJaverianain theclassesofadvancedtopicsinanalysisandalsoinmeasuretheoryandintegration. Since many of the results were collected in personal notebooks throughout the years,aconsiderablenumberofexactreferenceswerelost.Wewanttoemphasize that the content is NOT original of the authors, except maybe the rearrangement of the topics and some (hopefully a small number) mistakes. If the reader finds misprintsanderrors,pleaseletusknow. H.R. was partially supported by the research project “Study of non-standard Banach spaces”, ID-PPTA: 6326 in the Faculty of Sciences of the Pontificia Uni- versidadJaveriana,Bogota´,Colombia. Bogota´,Colombia Rene´ Erl´ınCastillo Bogota´,Colombia HumbertoRafeiro October2015 Contents Preface............................................................ vii 1 ConvexFunctionsandInequalities ............................... 1 1.1 ConvexFunctions .......................................... 1 1.2 YoungInequality........................................... 7 1.3 Problems ................................................. 14 1.4 NotesandBibliographicReferences........................... 19 PartI FunctionSpaces 2 LebesgueSequenceSpaces ...................................... 23 2.1 Ho¨lderandMinkowskiInequalities............................ 23 2.2 LebesgueSequenceSpaces .................................. 26 2.3 SpaceofBoundedSequences................................. 31 2.4 HardyandHilbertInequalities................................ 35 2.5 Problems ................................................. 40 2.6 NotesandBibliographicReferences........................... 42 3 LebesgueSpaces ............................................... 43 3.1 EssentiallyBoundedFunctions ............................... 43 3.2 LebesgueSpaceswith p≥1 ................................. 45 3.3 Approximations............................................ 63 3.4 Duality ................................................... 70 3.5 Reflexivity ................................................ 88 3.6 WeakConvergence ......................................... 90 3.7 ContinuityoftheTranslation .................................101 3.8 WeightedLebesgueSpaces ..................................103 3.9 UniformConvexity .........................................108 3.10 Isometries.................................................114 3.11 LebesgueSpaceswith0<p<1..............................120 ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.