An Introduction to Wavelet Theory in Finance A Wavelet Multiscale Approach 8431hc_9789814397834_tp.indd 2 16/8/12 8:34 AM August 31, 2012 11:38 9in x 6in An Introduction to Wavelet Theory in Finance . . . b1346-fm This page intentionally left blank ii An Introduction to Wavelet Theory in Finance A Wavelet Multiscale Approach Francis In Monash University, Australia Sangbae Kim Kyungpook National University, Korea World Scientifc NE W J E R S E Y • L O N D O N • S I N G A P O R E • BE IJ ING • S H A N G H A I • H O N G K O N G • TA I P E I • C H E N N A I 8431hc_9789814397834_tp.indd 1 16/8/12 8:34 AM Published by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE Library of Congress Cataloging-in-Publication Data In, Francis. An introduction to wavelet theory in finance : a wavelet multiscale approach / by Francis In & Sangbae Kim. p. cm. Includes bibliographical references and index. ISBN 978-9814397834 -- ISBN 9814397830 1. Finance--Mathematical models. 2. Wavelets (Mathematics) I. Kim, Sangbae, 1965– II. Title. HG106.I5 2012 332.01'5152433--dc23 2012030894 British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. Copyright © 2013 by World Scientific Publishing Co. Pte. Ltd. All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. In-house Editor: Alisha Nguyen Typeset by Stallion Press Email: August 31, 2012 11:38 9in x 6in An Introduction to Wavelet Theory in Finance . . . b1346-fm Contents 1. Methodology: Introduction to Wavelet Analysis 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Fourier Analysis and Spectral Analysis . . . . . . . . . . 2 1.2.1 Fourier analysis . . . . . . . . . . . . . . . . . . . 2 1.2.2 Spectral analysis . . . . . . . . . . . . . . . . . . 5 1.2.3 Comparison between Fourier transform and wavelet transform . . . . . . . . . . . . . . . 9 1.3 Wavelet Analysis . . . . . . . . . . . . . . . . . . . . . . 11 1.3.1 Continuous wavelet transform . . . . . . . . . . . 11 1.3.2 Discrete wavelet transform . . . . . . . . . . . . . 14 1.3.3 Maximal overlap discrete wavelet transform . . . 24 1.3.4 Boundary condition . . . . . . . . . . . . . . . . . 27 1.4 Wavelet Variance, Covariance and Correlation . . . . . . 29 1.4.1 Wavelet variance . . . . . . . . . . . . . . . . . . 29 1.4.2 Wavelet covariance and correlation . . . . . . . . 32 1.4.3 Cross wavelet covariance and correlation . . . . . 35 1.5 Long Memory Estimation Using Wavelet Analysis . . . . 36 1.5.1 Definitions of long memory . . . . . . . . . . . . . 36 1.5.2 Wavelet ordinary least square . . . . . . . . . . . 37 1.5.3 Approximate maximum-likelihood estimation of the long memory parameter . . . . . . . . . . . 37 1.5.4 Another estimation method of the long memory parameter . . . . . . . . . . . . . . . . . 38 v August 31, 2012 11:38 9in x 6in An Introduction to Wavelet Theory in Finance . . . b1346-fm vi An Introduction to Wavelet Theory in Finance: A Wavelet Multiscale Approach 2. Multiscale Hedge Ratio Between the Stock and Futures Markets: A New Approach Using Wavelet Analysis and High Frequency Data 41 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.2 Minimum Variance Hedge . . . . . . . . . . . . . . . . . 44 2.3 Empirical Results . . . . . . . . . . . . . . . . . . . . . . 46 2.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . 53 3. Modeling the International Links Between the Dollar, Euro and Yen Interest Rate Swap Markets Through a Multiscaling Approach 57 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.2 Data and Descriptive Statistics . . . . . . . . . . . . . . 60 3.3 Empirical Results . . . . . . . . . . . . . . . . . . . . . . 62 3.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . 73 4. Long Memory in Rates and Volatilities of LIBOR: Wavelet Analysis 75 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.2 Data and Empirical Results . . . . . . . . . . . . . . . . 78 4.3 Summary and Concluding Remarks . . . . . . . . . . . . 84 5. Cross-Listing and Transmission of Pricing Information of Dually-Listed Stocks: A New Approach Using Wavelet Analysis 87 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.2 Data Description and Basic Statistics . . . . . . . . . . . 92 5.3 Empirical Results . . . . . . . . . . . . . . . . . . . . . . 98 5.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . 103 6. On the Relationship Between Stock Returns and Risk Factors: New Evidence From Wavelet Analysis 105 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.2 Data and Basic Statistics . . . . . . . . . . . . . . . . . . 108 6.3 Empirical Results . . . . . . . . . . . . . . . . . . . . . . 110 6.3.1 Results from the traditional CAPM . . . . . . . . 111 6.3.2 Results using two risk factors: Excess market returns and SMB . . . . . . . . . . . . . . . . . . 115 August 31, 2012 11:38 9in x 6in An Introduction to Wavelet Theory in Finance . . . b1346-fm Contents vii 6.3.3 Results using three factors: Excess market returns, SMB and HML . . . . . . . . . . . . . . . . . . . 118 6.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . 122 7. Can the Risk Factors Explain the Cross-Section of Average Stock Returns in the Long Run? 125 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 125 7.2 Data and Basic Statistics . . . . . . . . . . . . . . . . . . 128 7.3 Empirical Results . . . . . . . . . . . . . . . . . . . . . . 132 7.3.1 Traditional CAPM context . . . . . . . . . . . . . 132 7.3.2 Fama–French three factor model . . . . . . . . . . 135 7.3.3 Fama–French three-factor model augmented by the momentum factor . . . . . . . . . . . . . . 141 7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 146 8. Multiscale Relationships Between Stock Returns and Inflations: International Evidence 147 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 147 8.2 Research Methodologies . . . . . . . . . . . . . . . . . . 149 8.2.1 The multi-scale hedge ratio . . . . . . . . . . . . 149 8.2.2 The bootstrap approach . . . . . . . . . . . . . . 150 8.3 Data and Empirical Results . . . . . . . . . . . . . . . . 151 8.4 Summary and Concluding Remarks . . . . . . . . . . . . 157 9. Mutual Fund Performance and Investment Horizon 161 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 161 9.2 Sharpe Ratio at Different Investment Horizons . . . . . . 164 9.3 Data and Empirical Results . . . . . . . . . . . . . . . . 164 9.3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . 164 9.3.2 Rank correlation between investment horizons . . 165 9.3.3 Robustness of the findings . . . . . . . . . . . . . 167 9.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . 174 10. A New Assessment of US Mutual Fund Returns Through a Multiscaling Approach 177 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 177 10.2 Empirical Method . . . . . . . . . . . . . . . . . . . . . . 179 10.2.1 Multiscaling approach . . . . . . . . . . . . . . . 179 August 31, 2012 11:38 9in x 6in An Introduction to Wavelet Theory in Finance . . . b1346-fm viii An Introduction to Wavelet Theory in Finance: A Wavelet Multiscale Approach 10.2.2 The bootstrap approach . . . . . . . . . . . . . . 180 10.3 Data and Empirical Results . . . . . . . . . . . . . . . . 181 10.3.1 Estimation results for the three aggregate groups 183 10.3.2 Estimation results for individual mutual funds . . 186 10.4 Summary and Concluding Remarks . . . . . . . . . . . . 190 References 191 Index 203 August 31, 2012 10:30 9in x 6in An Introduction to Wavelet Theory in Finance . . . b1346-ch01 Chapter 1 Methodology: Introduction to Wavelet Analysis 1.1. Introduction The multiscale relationship is important in economics and finance because each investor has a different investment horizon. Consider the large number of investors who participate in the stock market and make decisions over different time scales. Stock market participants are a diverse group that include intraday traders, hedging strategists, international portfolio man- agers, commercial banks, large multinational corporations, and national central banks. It is notable that these market participants operate on very different time scales. In fact, due to the different decision-making time scales among traders, the true dynamic structure of the relationship between variables will vary over different time scales associated with those different horizons. However, most previous studies focus on a two-scale analysis — short-run and long-run. The reason being for this is mainly a lack of empirical tools. Recently, wavelet analysis has attracted attention in the fields of economic and finance as a means of filling this gap. Wavelet analysis is relatively new in economics and finance, although the literature on wavelets is growing rapidly. The studies, related to economics and finance, can be divided into four categories: general wavelet transform, stationary process (long memory), denoising, and variance/covariance analysis. The first category includes Davidson et al. (1998), Pan and Wang (1998), Ramsey and Lampart (1998a, 1998b), and Chew (2001). Another stream of research is related to the long memory 1