SPRINGER BRIEFS IN MATHEMATICS Gabriel Ponce Régis Varão An Introduction to the Kolmogorov– Bernoulli Equivalence 123 SpringerBriefs in Mathematics SeriesEditors NicolaBellomo MicheleBenzi PalleJorgensen TatsienLi RoderickMelnik OtmarScherzer BenjaminSteinberg LotharReichel YuriTschinkel GeorgeYin PingZhang SpringerBriefsinMathematicsshowcasesexpositionsinallareasofmathematics andappliedmathematics.Manuscriptspresentingnewresultsorasinglenewresult inaclassicalfield,newfield,oranemergingtopic,applications,orbridgesbetween newresultsandalreadypublishedworks,areencouraged.Theseriesisintendedfor mathematiciansandappliedmathematicians. Moreinformationaboutthisseriesathttp://www.springer.com/series/10030 SBMAC SpringerBriefs EditorialBoard LuisGustavoNonato UniversityofSãoPaulo(USP) InstituteofMathematicalandComputerSciences(ICMC) DepartmentofAppliedMathematicsandStatistics SãoCarlos,Brazil PauloJ.S.Silva UniversityofCampinas(UNICAMP) InstituteofMathematics,StatisticsandScientificComputing(IMECC) DepartmentofAppliedMathematics Campinas,Brazil The SBMAC SpringerBriefs series publishes relevant contributions in the fields ofappliedandcomputationalmathematics,mathematics,scientificcomputing,and related areas. Featuring compact volumes of 50 to 125 pages, the series covers a rangeofcontentfromprofessionaltoacademic. The Sociedade Brasileira de Matemática Aplicada e Computacional (Brazilian Society of Computational and Applied Mathematics, SBMAC) is a professional association focused on computational and industrial applied mathematics. The societyisactiveinfurtheringthedevelopmentofmathematicsanditsapplications inscientific,technological,andindustrialfields.TheSBMAChashelpedtodevelop theapplicationsofmathematicsinscience,technology,andindustry,toencourage the development and implementation of effective methods and mathematical tech- niques for the benefit of science and technology, and to promote the exchange of ideasandinformationbetweenthediverseareasofapplication. http://www.sbmac.org.br/ ˜ Gabriel Ponce • Régis Varao An Introduction to the Kolmogorov–Bernoulli Equivalence 123 GabrielPonce RégisVara˜o IMECC IMECC UniversityofCampinas-UNICAMP UniversityofCampinas-UNICAMP Campinas Campinas Sa˜oPaulo,Brazil Sa˜oPaulo,Brazil ISSN2191-8198 ISSN2191-8201 (electronic) SpringerBriefsinMathematics ISBN978-3-030-27389-7 ISBN978-3-030-27390-3 (eBook) https://doi.org/10.1007/978-3-030-27390-3 MathematicsSubjectClassification:37-XX,28-XX,46-XX,37A35,37C40,37D30 ©TheAuthor(s),underexclusivelicencetoSpringerNatureSwitzerlandAG2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG. Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland GabrielPoncewouldliketodedicatethis booktoHelio,Ana,Pedro,Davi,Tiago,and Juliafortheirconstantsupportand encouragement. RégisVarãowouldliketodedicatethisbook toImecc—Unicamp. Preface Dynamical systems is a broad and active research field in mathematics, part of its success has made into the general population by the name of “Chaos Theory” or “The Butterfly Effect.” Ergodic theory is a dynamical system from a probabilistic pointofview,andfromtheergodictheorypointofviewwemayevenlistsystems according to their chaotic behavior. On the bottom of this list are the Ergodic systems,butonthetopofthislistareKolmogorovsystemsandBernoullisystems (themostchaoticones).Inmanysituations,Kolmogorovsystemsareequivalentto Bernoullisystems,andwhetherornotaKolmogorovsystemisaBernoullisystem isaclassicalprobleminergodictheory. Thisequivalenceproblemisoneofthemostbeautifulchaptersinergodictheory. It has the quality of combining an incredible amount of techniques and concepts ofabstractergodictheory(suchasentropytheoryandOrnsteintheory)andsmooth dynamics (suchasnonuniformlyhyperbolic dynamics andPesin’stheory).Onthe other hand, what makes this theory so interesting, that is, so many different and profound beautiful tools, might be a barrier for those willing to enter this area of research.Therearenobooksthatcouldguideagraduatedynamicalsystemsstudent into this research area (i.e., the Kolmogorov–Bernoulli equivalence problem from the smooth dynamical system point of view) although there are plenty of good books on ergodic theory and smooth dynamics. If one tries to study directly the Kolmogorov–Bernoulli problem for nonuniformly hyperbolic systems, one could easily get stuck into many technicalities (e.g., Pesin’s theory) and not grasp the mainideasbehindtheproblem. This book has been written with the primary purpose of filling this gap so that graduate students could feel comfortable with the idea of working on some of the open problems related to the Kolmogorov–Bernoulli equivalence (or nonequiva- lence)problem.Thewaywehopewehaveaccomplishedthisgoalinarathersmall bookisfocusingonthemainideasbehindtheproblem.Wemaysaythatthemost importantpartofthisbookisChap.3,whereweproveindetailstheKolmogorov– Bernoulliequivalenceinthecontextofatoymodel(linearAnosovdiffeomorphism). This will help the reader to understand main ideas. The subsequent chapter deals with the problem in the context of hyperbolic dynamics. In the last chapter, we vii viii Preface briefly go through some more general contexts (such as nonuniformly hyperbolic systems)andpresentsomeinterestingrecentideasinthearea.Thefirsttwochapters aretheintroductionandsomepreliminariesinergodictheory. Thereaderisassumedtohaveaworkingknowledgeinergodictheoryandhyper- bolic dynamics so that we can focus on the Kolmogorov–Bernoulli equivalence problem itself. We hope the reader may find this book very stimulating and feel interestedindoingresearchontheopenproblemsrelatedtothesubject. Campinas,Brazil GabrielPonce Campinas,Brazil RégisVarão September2019 Acknowledgements GabrielPoncewaspartiallysupportedbyFAPESP(Grant#2016/05384-0).Régis VarãowaspartiallysupportedbyFAPESP(Grant#2016/22475-9)andCNPq. ix Contents 1 Introduction .................................................................. 1 1.1 GeneralErgodicTheory ................................................ 1 1.2 ChaoticHierarchy....................................................... 2 1.3 KolmogorovandBernoulliSystems ................................... 3 1.4 SmoothErgodicTheoryandHyperbolicStructures................... 5 1.5 TheGoalofThisBook ................................................. 6 References..................................................................... 7 2 PreliminariesinErgodicTheory........................................... 9 2.1 MeasurePreservingDynamicalSystems .............................. 10 2.2 Birkhoff’sErgodicTheoremandtheErgodicProperty............... 12 2.3 OperationswithPartitions.............................................. 15 2.4 MeasureDisintegration................................................. 17 2.4.1 Rokhlin’sDisintegrationTheorem............................. 18 2.5 BasicsonLebesgueSpaces............................................. 19 2.6 SomeResultsonEntropyTheory ...................................... 20 2.6.1 ThePinskerPartitionandSystemswithCompletely PositiveEntropy ................................................ 22 2.7 TheBernoulliProperty ................................................. 24 2.7.1 BernoulliShifts ................................................. 24 2.7.2 BernoulliPartitions............................................. 27 2.8 TheKolmogorovProperty.............................................. 29 References..................................................................... 32 3 Kolmogorov–BernoulliEquivalenceforErgodicAutomorphisms ofT2 ........................................................................... 33 3.1 FiniteandVeryWeakBernoulliPartitions............................. 33 3.1.1 Thed-DistanceintheSpaceofFinitePartitions.............. 34 3.1.2 VeryWeakBernoulliPartitionsandOrnsteinTheorems...... 42 3.2 ErgodicAutomorphismsofT2AreKolmogorov...................... 44 xi