Progress in Mathematics Volume 259 Series Editors H. Bass J. Oesterlé A. Weinstein Luca Capogna Donatella Danielli Scott D. Pauls Jeremy T. Tyson An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem Birkhäuser Basel (cid:120)(cid:3)Boston (cid:120)(cid:3)Berlin(cid:3) Authors: Luca Capogna Donatella Danielli Department of Mathematics Department of Mathematics University of Arkansas Purdue University Fayetteville, AR 72701 West Lafayette, IN 47907-1395 USA USA e-mail: [email protected] e-mail: [email protected] Scott D. Pauls Jeremy T. Tyson Department of Mathematics Department of Mathematics 6188 Kemeny Hall University of Illinois at Urbana-Champaign Dartmouth College 1409 West Green Street Hanover, NH 03755 Urbana, IL 61801 USA USA e-mail: [email protected] e-mail: [email protected] (cid:21)(cid:19)(cid:19)(cid:19)(cid:3)(cid:48)(cid:68)(cid:87)(cid:75)(cid:72)(cid:80)(cid:68)(cid:87)(cid:76)(cid:70)(cid:86)(cid:3)(cid:54)(cid:88)(cid:69)(cid:77)(cid:72)(cid:70)(cid:87)(cid:3)(cid:38)(cid:79)(cid:68)(cid:86)(cid:86)(cid:76)(cid:191)(cid:70)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:29)(cid:3)(cid:83)(cid:85)(cid:76)(cid:80)(cid:68)(cid:85)(cid:92)(cid:3)(cid:24)(cid:22)(cid:38)(cid:20)(cid:26)(cid:30)(cid:3)(cid:86)(cid:72)(cid:70)(cid:82)(cid:81)(cid:71)(cid:68)(cid:85)(cid:92)(cid:3)(cid:21)(cid:21)(cid:40)(cid:22)(cid:19)(cid:15)(cid:3)(cid:22)(cid:19)(cid:38)(cid:25)(cid:24)(cid:15)(cid:3) 32T27, 32V15, 43A80, 46E35, 49Q05, 49Q20, 53A35, 53C42, 53C44, 53D10, 70Q05, 92C55, 93C85 Library of Congress Control Number : 2007922258 Bibliographic information published by Die Deutsche Bibliothek (cid:39)(cid:76)(cid:72)(cid:3)(cid:39)(cid:72)(cid:88)(cid:87)(cid:86)(cid:70)(cid:75)(cid:72)(cid:3)(cid:37)(cid:76)(cid:69)(cid:79)(cid:76)(cid:82)(cid:87)(cid:75)(cid:72)(cid:78)(cid:3)(cid:79)(cid:76)(cid:86)(cid:87)(cid:86)(cid:3)(cid:87)(cid:75)(cid:76)(cid:86)(cid:3)(cid:83)(cid:88)(cid:69)(cid:79)(cid:76)(cid:70)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:3)(cid:76)(cid:81)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:39)(cid:72)(cid:88)(cid:87)(cid:86)(cid:70)(cid:75)(cid:72)(cid:3)(cid:49)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:68)(cid:79)(cid:69)(cid:76)(cid:69)(cid:79)(cid:76)(cid:82)(cid:74)(cid:85)(cid:68)(cid:191)(cid:72)(cid:30)(cid:3) detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>. ISBN 978-3-7643-8132-5 Birkhäuser Verlag AG, Basel - Boston - Berlin This work is subject to copyright. All rights are reserved, whether the whole or part (cid:82)(cid:73)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:80)(cid:68)(cid:87)(cid:72)(cid:85)(cid:76)(cid:68)(cid:79)(cid:3)(cid:76)(cid:86)(cid:3)(cid:70)(cid:82)(cid:81)(cid:70)(cid:72)(cid:85)(cid:81)(cid:72)(cid:71)(cid:15)(cid:3)(cid:86)(cid:83)(cid:72)(cid:70)(cid:76)(cid:191)(cid:70)(cid:68)(cid:79)(cid:79)(cid:92)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:85)(cid:76)(cid:74)(cid:75)(cid:87)(cid:86)(cid:3)(cid:82)(cid:73)(cid:3)(cid:87)(cid:85)(cid:68)(cid:81)(cid:86)(cid:79)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:15)(cid:3)(cid:85)(cid:72)(cid:83)(cid:85)(cid:76)(cid:81)(cid:87)(cid:76)(cid:81)(cid:74)(cid:15)(cid:3)(cid:85)(cid:72)(cid:16)(cid:88)(cid:86)(cid:72)(cid:3)(cid:82)(cid:73)(cid:3) (cid:76)(cid:79)(cid:79)(cid:88)(cid:86)(cid:87)(cid:85)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:86)(cid:15)(cid:3)(cid:69)(cid:85)(cid:82)(cid:68)(cid:71)(cid:70)(cid:68)(cid:86)(cid:87)(cid:76)(cid:81)(cid:74)(cid:15)(cid:3)(cid:85)(cid:72)(cid:83)(cid:85)(cid:82)(cid:71)(cid:88)(cid:70)(cid:87)(cid:76)(cid:82)(cid:81)(cid:3)(cid:82)(cid:81)(cid:3)(cid:80)(cid:76)(cid:70)(cid:85)(cid:82)(cid:191)(cid:79)(cid:80)(cid:86)(cid:3)(cid:82)(cid:85)(cid:3)(cid:76)(cid:81)(cid:3)(cid:82)(cid:87)(cid:75)(cid:72)(cid:85)(cid:3)(cid:90)(cid:68)(cid:92)(cid:86)(cid:15)(cid:3)(cid:68)(cid:81)(cid:71)(cid:3)(cid:86)(cid:87)(cid:82)(cid:85)(cid:68)(cid:74)(cid:72)(cid:3)(cid:76)(cid:81)(cid:3) data banks. For any kind of use whatsoever, permission from the copyright owner must be obtained. © 2007 Birkhäuser Verlag AG Basel · Boston · Berlin P.O. Box 133, CH-4010 Basel, Switzerland Part of Springer Science+Business Media Printed on acid-free paper produced of chlorine-free pulp. TCF (cid:146) Printed in Germany ISBN-10: 3-7643-8132-9 e-ISBN-10: 3-7643-8133-7 ISBN-13: 978-3-7643-8132-5 e-ISBN-13: 978-3-7643-8133-2 9 8 7 6 5 4 3 2 1 www.birkhauser.ch Dedicated to Nicola Garofalo on the occasion of his 50th birthday ...mercatique solum, facti de nomine Byrsam, taurino quantum possent circumdare tergo. (Virgil, Eneid, Book I, 367–368) Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi 1 The Isoperimetric Problem in Euclidean Space 1.1 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 The Heisenberg Group and Sub-Riemannian Geometry 2.1 The first Heisenberg group H . . . . . . . . . . . . . . . . . . . . . 11 2.1.1 The horizontal distribution in H . . . . . . . . . . . . . . . 14 2.1.2 Higher-dimensional Heisenberg groups Hn . . . . . . . . . . 15 2.1.3 Carnot groups . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 Carnot–Carath´eodorydistance . . . . . . . . . . . . . . . . . . . . 16 2.2.1 Constrained dynamics . . . . . . . . . . . . . . . . . . . . . 16 2.2.2 Sub-Riemannian structure . . . . . . . . . . . . . . . . . . . 19 2.2.3 Carnot groups . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3 Geodesics and bubble sets . . . . . . . . . . . . . . . . . . . . . . . 22 2.4 Riemannian approximants to the Heisenberg group . . . . . . . . . 24 2.4.1 The g metrics . . . . . . . . . . . . . . . . . . . . . . . . . 25 L 2.4.2 Levi-Civita connection and curvature. . . . . . . . . . . . . 26 2.4.3 Gromov–Hausdorffconvergence . . . . . . . . . . . . . . . . 28 2.4.4 Carnot–Carath´eodorygeodesics . . . . . . . . . . . . . . . . 30 2.4.5 Riemannian approximants to Hn and Carnot groups . . . . 33 2.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3 Applications of Heisenberg Geometry 3.1 Jet spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2 Applied models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2.1 Nonholonomic path planning . . . . . . . . . . . . . . . . . 42 3.2.2 Geometry of the visual cortex . . . . . . . . . . . . . . . . . 43 3.3 CR structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 viii Contents 3.4 Boundary of complex hyperbolic space . . . . . . . . . . . . . . . . 48 3.4.1 Gromov hyperbolic spaces . . . . . . . . . . . . . . . . . . . 48 3.4.2 Gromov boundary and visual metric . . . . . . . . . . . . . 48 3.4.3 Complex hyperbolic space H2 and C its boundary at infinity . . . . . . . . . . . . . . . . . . . . 50 3.4.4 The Bergman metric . . . . . . . . . . . . . . . . . . . . . . 51 3.4.5 Boundary at infinity of H2 and the Heisenberg group . . . 53 C 3.5 Further results: geodesics in the roto-translationspace . . . . . . . 55 3.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4 Horizontal Geometry of Submanifolds 4.1 Invariance of the Sub-Riemannian Metric with respect to Riemannian extensions . . . . . . . . . . . . . . . . . . . 64 4.2 The second fundamental form in (R3,g ) . . . . . . . . . . . . . . 65 L 4.3 Horizontal geometry of hypersurfaces in H . . . . . . . . . . . . . . 69 4.3.1 Horizontal geometry in Hn . . . . . . . . . . . . . . . . . . 72 4.3.2 Legendrian foliations . . . . . . . . . . . . . . . . . . . . . . 75 4.4 Analysis at the characteristic set and fine regularity of surfaces . . 77 4.4.1 The Legendrian foliation near non-isolated points of the characteristic locus . . . . . . . . . . . . . . . . . . . 79 4.4.2 The Legendrian foliation near isolated points of the characteristic locus . . . . . . . . . . . . . . . . . . . 84 4.5 Further results: intrinsically regular surfaces and the Rumin complex. . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5 Sobolev and BV Spaces 5.1 Sobolev spaces, perimeter measure and total variation . . . . . . . 95 5.1.1 Riemannian perimeter approximation . . . . . . . . . . . . 98 5.2 A sub-Riemannian Green’s formula and the fundamental solution of the Heisenberg Laplacian . . . . . . . . . . 100 5.3 Embedding theorems for the Sobolev and BV spaces . . . . . . . . 101 5.3.1 The geometric case (Sobolev–Gagliardo–Nirenberginequality) . . . . . . . . . . 102 5.3.2 The subcritical case . . . . . . . . . . . . . . . . . . . . . . 105 5.3.3 The supercritical case . . . . . . . . . . . . . . . . . . . . . 106 5.3.4 Compactness of the embedding BV ⊂L1 on John domains . . . . . . . . . . . . . . . . . . . . . . . . 107 5.4 Further results: Sobolev embedding theorems . . . . . . . . . . . . 109 5.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Contents ix 6 Geometric Measure Theory and Geometric Function Theory 6.1 Area and co-area formulas . . . . . . . . . . . . . . . . . . . . . . . 117 6.2 Pansu–Rademachertheorem . . . . . . . . . . . . . . . . . . . . . . 123 6.3 Equivalence of perimeter and Minkowski content . . . . . . . . . . 126 6.4 First variation of the perimeter . . . . . . . . . . . . . . . . . . . . 127 6.4.1 Parametric surfaces and noncharacteristic variations . . . . 128 6.4.2 General variations . . . . . . . . . . . . . . . . . . . . . . . 133 6.5 Mostow’s rigidity theorem for H2 . . . . . . . . . . . . . . . . . . . 135 C 6.5.1 Quasiconformalmappings on H . . . . . . . . . . . . . . . . 139 6.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 7 The Isoperimetric Inequality in H 7.1 Equivalence of the isoperimetric and geometric Sobolev inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . 143 7.2 Isoperimetric inequalities in Hadamard manifolds . . . . . . . . . . 144 7.3 Pansu’s proof of the isoperimetric inequality in H . . . . . . . . . . 147 7.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 8 The Isoperimetric Profile of H 8.1 Pansu’s conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 8.2 Existence of minimizers . . . . . . . . . . . . . . . . . . . . . . . . 154 8.3 Isoperimetric profile has constant mean curvature . . . . . . . . . . 157 8.3.1 Parametrizationof C2 CMC t-graphs in H . . . . . . . . . 159 8.4 Minimizers with symmetries . . . . . . . . . . . . . . . . . . . . . . 162 8.5 The C2 isoperimetric profile in H . . . . . . . . . . . . . . . . . . . 168 8.6 The convex isoperimetric profile of H . . . . . . . . . . . . . . . . . 172 8.7 Other approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 8.7.1 Riemannian approximation approach . . . . . . . . . . . . . 176 8.7.2 Failure of the Brunn–Minkowski approach to isoperimetry in H . . . . . . . . . . . . . . . . . . . . . . 180 8.7.3 Horizontal mean curvature flow . . . . . . . . . . . . . . . . 181 8.8 Further results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 8.8.1 The isoperimetric problem in the Grushin plane . . . . . . 183 8.8.2 The classification of symmetric CMC surfaces in Hn . . . . 185 8.9 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186