SIGGRAPH!Asia!2014!–!Course!“An!Introduction!to!Ricci!Flow!and!Volumetric! Approximation!with!Applications!to!Shape!Modeling”! G.!Patanè!(CNR-IMATI,!Italy),!X.S.!Li!(Lousiana!State!Univ.,!USA),!X.D.!Gu!(Stony!Brook!Univ.,!USA)! ! ! ! ! ! ! Table&of&Contents! ! Course'Overview! ! Course'Notes! ! Course'Slides! SIGGRAPH!Asia!2014!–!Course!“An!Introduction!to!Ricci!Flow!and!Volumetric! Approximation!with!Applications!to!Shape!Modeling”! G.!Patanè!(CNR-IMATI,!Italy),!X.S.!Li!(Lousiana!State!Univ.,!USA),!X.D.!Gu!(Stony!Brook!Univ.,!USA)! ! ! ! ! ! ! Course'Overview! SIGGRAPH Asia 2014 Course Notes � An Introduction to Ricci Flow and Volumetric Approximation with Applications to Shape Modeling GiuseppePatane´ XinShaneLi† DavidXianfengGu‡ ⇤ Abstract essential to address a wide range of problems. For instance, vol- umetric Laplacian eigenfunctions are suited to define volumetric Extending a shape-driven map to the interior of the input shape descriptors,whichareconsistentwiththeirsurface-basedcounter- and to the surrounding volume is a difficult problem since it parts. Inasimilarway, harmonicvolumetricfunctionshavebeen typically relies on the integration of shape-based and volumetric appliedtovolumetricparameterizationandtothedefinitionofpoly- information, together with smoothness conditions, interpolating cubesplines. constraints, preservation of feature values at both a local and Thissurveydiscussesthemainvolumetricapproximationschemes global level. This survey discusses the main volumetric approxi- forboth3Dshapesandd-dimensionaldata,andprovidesaunified mation schemes for both 3D shapes and d-dimensional data, and discussion on the integration of surface-based and volume-based provides a unified discussion on the integration of surface-based shapeinformation. Italsodescribestheapplicationofshape-based and volume-based shape information. Then, it describes the andvolumetrictechniquestoshapeprocessingwithvolumetricpa- application of shape-based and volumetric techniques to shape rameterizationandtothefeature-drivenapproximationwithmov- modeling through volumetric parameterization and polycube ingleast-squarestechniquesandradialbasisfunctions. Whilepre- splines; feature-driven approximation through kernels and radial viousworkhasaddressedtheprocessingandanalysisof3Dshapes basisfunctions. WealsodiscusstheHamilton’sRicciflow,which throughmethodsthatexploiteithertheirsurface-basedorvolumet- isapowerfultooltocomputetheconformalshapestructureandto ricrepresentations,thissurveypresentsaunifiedoverviewonthese designRiemannianmetricsofmanifoldsbyprescribedcurvatures. works through volumetric approximations of surface-based scalar We conclude the presentation by discussing applications to shape functions. Thisunifiedschemealsoprovidesabasisforgeneraliz- analysisandmedicine. ingthosemethodsthathavebeenprimarilydefinedonsurfacesbut areopentoandbenefitoftheintegrationwithvolumetricinforma- Keywords: Riemannian surface and metric; Ricci flow; con- tion. Furthermore,itsystematicallypresentsthetheory,algorithm, formal structure; Laplace-Beltrami operator; heat diffusion andapplicationsofdiscreteRicciflow.Inthefollowing,weprovide equation;implicitapproximation;volumeparameterization;shape adetaileddescriptionofthemainpartsofourcontribution. modeling;medicine PartI Introduction 1 Course description � Wepresenttheoutlineandthemainaimsofthiscourseonspectral Shapemodelingtypicallyhandlesa3Dshapeasatwo-dimensional surface-basedandvolume-basedtechniques,anddiscretecurvature surface,whichdescribestheshapeboundaryandisrepresentedas flowmethodsforshapemodelingandanalysis. a triangular mesh or a point cloud. However, in several applica- tionsavolumetricrepresentationismoresuitedtohandlethecom- Part II Differential operators and spaces for plexity of the input shape. For instance, volumetric representa- shapem�odeling tionsaccuratelymodelthebehaviorofnon-rigiddeformationsand volumeconstraintsareimposedtoavoiddeformationartifacts. In We start with an introduction to the spectral surface-based and shape matching, volumetric descriptors, such as Laplacian eigen- volume-basedtechniques,anddiscretecurvatureflowmethodsfor functions,heatkernels,anddiffusiondistances,aredefinedstarting shapemodeling,togetherwithapresentationofthebackgroundun- fromtheirsurface-basedcounterparts. derlyingthemainspectralandcurvatureflowtechniquesforshape modeling. Keyconceptsfromsmoothgeometry,suchasRieman- In the aforementioned applications, the underlying problem re- nian metric, Gaussian curvature, Laplace-Beltrami operator, heat quirestheprolongationofthesurface-basedinformation,whichis diffusion equation, and Ricci flow are systematically introduced. typicallyrepresentedasashape-drivenmap, totheinteriorofthe Wealsopresentthemainresultsontheconvergenceandtheunique- inputshapeor,moregenerally,tothesurroundingvolume.Extend- nessofthesolutiontoRicciflowandthegeometricapproximation ingasurface-basedscalarfunctiontoavolumetricmapisadifficult theorem. Starting from this background on the main differential problemsinceittypicallyreliesontheintegrationofshape-based propertiesofmanifolds,wedefineanddiscussthepropertiesofthe andvolumetricinformation,togetherwithsmoothnessconditions, harmonicmaps,theLaplacianeigenfunctions,andthesolutionsto interpolating constraints, preservation of features at both a local theheatequation. andgloballevel.Besidestheunderlyingcomplexityanddegreesof freedominthedefinitionofvolumetricapproximationsofsurface- based maps, volumetric approximations (e.g., the extension of a Part III From surface-based to volume-based � surface-basedscalarfunctiontoavolume-basedapproximation)are shapemodeling ⇤ConsiglioNazionaledelleRicerche,IstitutodiMatematicaApplicatae UsingtheconceptsintroducedinPartII,weaddressthevolumetric TecnologieInformatiche,Genova,Italy,[email protected] approximationproblem. Afteranoverviewontheaimsofthevol- †LouisianaStateUniversity,SchoolofElectricalEngineering&Com- umetricapproximationinthecontextofshapemodelingandanal- puterScience,USA,[email protected] ysis, weclassifythemainapproachesproposedbypreviouswork ‡StateUniversityofNewYorkatStonyBrook,DepartmentofComputer and detail the following approximation schemes: (i) linear preci- Science,NewYork,USA,[email protected] sionmethodsthroughgeneralizedbarycentriccoordinates;(ii)im- plicit methods with radial basis functions; (iii) surface-based and Part III From surface-based to volume-based � cross-volumeparameterization; (iv)polycubesplines; (v)moving shapemodeling(70minutes) least squares techniques. More precisely, we introduce the com- putationoftheinter-surfaceharmonicmap,extendittovolumetric 1. The volumetric approximation problem (5 minutes: G. harmonicmap,andconstructthepolycubeshapeparameterization Patane`) andsplines. Then,wediscussvolumetricapproximationsthrough radial basis function with constraints on the approximation error Definition • andthepreservationofthecriticalpoints. Aimsandmotivations • PartIV Applications&Conclusions 2. Mainapproaches(25minutes:G.Patane`) � Linear precision methods and generalized barycentric Oncethecontinuousanddiscretesettingshavebeenintroduced,we • coordinates focusonthemainapplicationsofthevolumetricapproximationto shapemodelingandmedicine. Inthe context ofshapemodeling, Functionapproximationwithradialbasisfunctions we outline how the Laplacian eigenvectors of a given surface are • extended into the shape interior, thus providing the basis for the Movingleast-squaresapproximation • definitionofshape-awarebarycentriccoordinatesandofvolumet- [Break(15minutes)] ricdescriptors,suchasthevolumetricglobalpointsignature,bihar- monic and diffusion embeddings, which have been primarily de- 3. Fromcross-surfacetocross-volumemapping(40minutes:X. finedforthesurfacesetting. Wealsopresenttemplate-basedshape Li) descriptorsandthecomputationofharmonicvolumetricmappings between solid objects with the same topology for volumetric pa- Cross-surfaceandcross-volumemapping • rameterization, solid texture mapping, and hexahedral remeshing. Volumetricharmonicmapping In the context of medicine, we discuss applications to respiratory • motion modeling, medical and forensic skull modeling and facial Polycubeparameterization reconstruction. Finally, weconcludethecoursewithadiscussion • ofopenproblemsandfutureperspectives,alsoaddressingquestions PartIV Applications&Conclusions(50minutes) andanswerswithallpresenters. � 1. Applicationstoshapemodelingandanalysis(20minutes: D. 2 Schedule Gu,G.Patane`) Surface-basedandvolume-baseddescriptorsforshape PartI Introduction(10minutes) • � correspondenceandcomparison 1. Outlineandmotivations(10minutes:D.Gu,G.Patane`) Volumepreservingmappingsbetweensurfacesandim- • agerestoration Part II Differential operators and spaces for 2. Applicationstomedicine(20minutes:D.Gu,X.Li) � shapemodeling(80minutes) Motionmodelingforradiotherapyplanning • 1. MappingsonRiemannsurfaces(20minutes:D.Gu) Skullandfacialmodelingandrestoration • Riemannianmetric,isothermalcoordinates Conformalbrainmappingandbraincortexanalysis • • Virtualcolonoscopy Holomorphicdifferentials • • 3. Conclusions,Questions&Answers(10minutes: G.Patane`, Quasi-conformalmappingandBeltramiequation • X.Li,D.Gu) 2. Ricciflow(30minutes:D.Gu) 3 Targeted audience and background Yamabe equation and convergence theorem of Ricci • flow Intendedaudience Thetargetaudienceofthistutorialincludes graduatestudentsandresearchersinterestedinRiemanniangeome- DiscreteRicciflow,convergence,uniqueness • try,spectralgeometryprocessing,andimplicitmodeling.Ourgoals arethreefold:(i)toshowthepossibilityofintegratingshape-based Discreteconformalmappingandmetricdeformation • and volume-based information; (ii) to introduce and discuss the 3. Laplacian operator and spectral processing (30 minutes: G. fundamentalresultsanditsapplicationsthatarerelevanttoshape Patane`) modelingand,moregenerally,computergraphics;(iii)toidentify open problems and future work. The main topics cover volumet- Laplace-Beltramioperatoron3Dshapes ricparameterizationandpolycubesplines;implicitmodelingwith • radialbasisfunctionsandkernelmethods; spectralshapeanalysis Harmonicequation,Laplacianeigenproblem,andheat throughdescriptorsanddistances;discreteRicciflow;applications • diffusionequation to medicine. Several topics are of interest for a wider audience; among them, we mention shape correspondence, descriptors and Spectral distances and kernels: commute-time, bi- comparison; shape driven scalar functions for shape and volume • harmonic,anddiffusiondistances analysis. Prerequisites Knowledge about differential geometry, mesh (T7) SIGGRAPHAsia’2010“SpectralGeometryProcessing”(B. processing,functionapproximation. Levy,R.H.Zhang); (T8) Eurographics’2010 State if the Art Reports “A Survey on Levelofdifficulty: Advancedcourse. Shape Correspondence (O. van Kaick, R. H. Zhang, G. Hamarneh,D.Cohen-Or). 4 Course Rationale CourseT6focusedonthediscreteexteriorcalculusanditsrelation withdigitalgeometryprocessinganddiscretedifferentialgeometry. Tutorialoriginality Whileprevioustutorialshaveaddressedthe TutorialT7presentedthemainconceptsbehindspectralmeshpro- processing and analysis of 3D shapes through methods that ex- cessingon3Dshapesanditsapplicationstofiltering,shapematch- ploit either their surface-based or volumetric representations, we ing, remeshing, segmentation, and parameterization. Tutorial T8 will present a unified overview on these works through volumet- reviewedthemainmethodsforthecomputationofthecorrespon- ricapproximationsofsurface-basedscalarfunctions. Thisunified dencesbetweengeometricshapes. schemewillalsoprovideabasisforgeneralizingthosemethodsthat havebeenprimarilydefinedonsurfacesbutareopentoandbenefit 5 Lecturers biographies oftheintegrationwithvolumetricinformation. Furthermore, itis thefirsttutorialthatsystematicallypresentsthetheory,algorithm, DavidXiangfengGu andapplicationsofdiscreteRicciflow.Inthefollowing,weprovide alistofpreviousworkonthetopicsthatisrelatedtothistutorial. Affiliation StateUniv.ofNewYorkatStonyBrook e-mail [email protected] Relatedtutorialsorganizedbythelecturers URL http://www.cs.sunysb.edu/ gu/ David Gu is an associate professor in Computer Science de- (T1) SIGGRAPHAsia2013Course“Surface-BasedandVolume- partment, Stony Brook University. He received a Ph.D. from Based Techniques for Shape Modeling and Analysis” (G. Harvard university (2003), supervised by a Fields medalist, Prof. Patane`,X.S.Li,X.D.Gu); Shing-TungYau.Hisresearchfocusesoncomputationalconformal geometry, and its applications in graphics, vision, geometric (T2) Shape Modeling International’2012 Tutorial “Spectral, Cur- modelingnetworksandmedicalimaging. vatureFlowSurface-BasedandVolume-BasedTechniquesfor ShapeModelingandAnalysis”(G.Patane`,X.D.Gu,X.S.Li, XinShaneLi M.Spagnuolo); Affiliation LouisianaStateUniversity (T3) Eurographics’2007 Tutorial “3D shape description and e-mail [email protected] matchingbasedonpropertiesofrealfunctions”(S.Biasotti, URL http://www.ece.lsu.edu/xinli B.Falcidieno, P.Frosini, D.Giorgi, C.Landi, S.Marini, G. Patane`,M.Spagnuolo); Xin Li is an assistant professor in School of Electrical En- gineering and Computer Science, Louisiana State University. (T4) ICIAM’2007 Mini-Symposium “Geometric-Topological He received his Ph.D. in Computer Science from Stony Brook Methods for 3D Shape Classification and Matching” (M. University (SUNY) in 2008. His research focus is on geometric Spagnuolo,G.Patane`); modelingandcomputing,andtheirapplicationsingraphics,vision, medicalimaging,andcomputationalforensics. (T5) SMI’2008 Mini-Symposium on “Shape Understanding via SpectralAnalysisTechniques”(B.Levy,R.Zhang,M.Retuer, GiuseppePatane` G.Patane`,M.Spagnuolo). Affiliation CNR-IMATI,Genova,Italy ThiscourseproposalrevisesandextendsourT1SIGGRAPHAsia e-mail [email protected] 2013 Course “Surface-Based and Volume-Based Techniques for URL http://www.ge.imati.cnr.it ShapeModelingandAnalysis”. Accordingtorecentresultsofthe authorsandthefeedbacktothepreviouscourse, additionalmate- Giuseppe Patane` is researcher at CNR-IMATI (2001-today). rialon(i)spectrum-freecomputationoftheheatkernelanddiffu- HereceivedaPh.D.in”MathematicsandApplications”fromthe siondistances;(ii)applicationstomedicinehavebeenincludedin University of Genova (2005) and a Post Lauream Degree Master the notes and slides of this new course proposal. Tutorial T2 ad- fromthe”F.SeveriNationalInstituteforAdvancedMathematics” dressed the main volumetric approximation schemes for both 3D (2000).From2001,hisresearchactivitieshavebeenfocusedonthe shapes and n-dimensional data, and provides a unified discussion definitionofparadigmsandalgorithmsformodelingandanalyzing ontheintegrationofsurface-basedandvolume-basedshapeinfor- digitalshapesandmultidimensionaldata. mation. TutorialsT3andT4coveredavarietyofmethodsfor3D shapematchingandretrieval,whicharecharacterizedbytheuseof areal-valuedfunctiondefinedontheshapetoderiveitssignature. TutorialT5addressedspectralanalysisforshapeunderstandingand severalapplications,whichincludesurfaceparameterization,defor- mation,compression,andnon-rigidshaperetrieval. Relatedtutorials (T6) SIGGRAPH’2013 Course “Geometry Processing with Dis- creteExteriorCalculus”(F.deGoes,K.Crane,M.Desbrun, P.Schroeder); SIGGRAPH!Asia!2014!–!Course!“An!Introduction!to!Ricci!Flow!and!Volumetric! Approximation!with!Applications!to!Shape!Modeling”! G.!Patanè!(CNR-IMATI,!Italy),!X.S.!Li!(Lousiana!State!Univ.,!USA),!X.D.!Gu!(Stony!Brook!Univ.,!USA)! ! ! ! ! ! Course'Notes! Course'Notes!–!Index! ! Contents 1 Introduction 2 2 RiemannsurfacesandRicciflow 3 2.1 MappingsonRiemannSurfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 SurfaceRicciflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 Differentialoperatorsandspacesforshapemodeling 9 3.1 Laplace-Beltramioperatoron3Dshapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2 Laplacianmatrixandequations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4 Fromsurface-basedtovolume-basedshapemodeling 14 4.1 Linearprecisionapproximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.2 FunctionapproximationwithRBFs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.3 Fromsurface-tocross-volumeparameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.4 Polycubeparameterizationandpolycubesplines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.5 Movingleast-squaresandlocalapproximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.6 Topology-drivenapproximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.7 Computationalcost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5 Applications 23 5.1 Shapemodelingandanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.2 Medicalapplications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 6 Conclusionsandfuturework 26 ! SIGGRAPH Asia 2014 Course Notes � An Introduction to Ricci Flow and Volumetric Approximation with Applications to Shape Modeling GiuseppePatane´ DavidXianfengGu† XinShaneLi‡ ⇤ Abstract Extendingashape-drivenmaptotheinterioroftheinputshapeandtothesurroundingvolumeisadifficultproblemsince ittypicallyreliesontheintegrationofshape-basedandvolumetricinformation,togetherwithsmoothnessconditions,interpo- latingconstraints, preservationoffeaturevaluesatbothalocalandgloballevel. Thissurveydiscussesthemainvolumetric approximation schemes for both 3D shapes and d-dimensional data, and provides a unified discussion on the integration of surface-basedandvolumetricshapeinformation.Then,itdescribestheapplicationofsurface-basedandvolumetrictechniques to shape modeling through volumetric parameterization and polycube splines; feature-driven approximation through kernels andradialbasisfunctions.WealsodiscusstheHamilton’sRicciflow,whichisapowerfultooltocomputetheconformalshape structureandtodesignRiemannianmetricsofmanifoldsbyprescribedcurvatures.Weconcludethepresentationbydiscussing applicationstoshapeanalysisandmedicine. Keywords:Riemanniansurfaceandmetric;Ricciflow;conformalstructure;Laplace-Beltramioperator;heatdiffusionequation; implicitapproximation;volumeparameterization;shapemodeling;medicine 1 Introduction Shape modeling typically handles a 3D shape as a two-dimensional surface, which describes the shape boundary and is rep- resentedasatriangularmeshorapointcloud. However,inseveralapplicationsavolumetricrepresentationismoresuitedto handlethecomplexityoftheinputshape. Forinstance,volumetricrepresentationsaccuratelymodelthebehaviorofnon-rigid deformations and volume constraints are imposed to avoid deformation artifacts. In shape matching, volumetric descriptors, suchasLaplacianeigenfunctions,heatkernels,anddiffusiondistances,aredefinedstartingfromtheirsurface-basedcounter- parts. Intheaforementionedapplications,theunderlyingproblemrequirestheprolongationofthesurface-basedinformation,which istypicallyrepresentedasashape-drivenmap,totheinterioroftheinputshapeor,moregenerally,tothesurroundingvolume. Extendingasurface-basedscalarfunctiontoavolumetricmapisadifficultproblemsinceittypicallyreliesontheintegration ofshape-basedandvolumetricinformation,togetherwithsmoothnessconditions,interpolatingconstraints,preservationoffea- turesatbothalocalandgloballevel. Besidestheunderlyingcomplexityanddegreesoffreedominthedefinitionofvolumetric approximationsofsurface-basedmaps, volumetricapproximations(e.g., theextensionofasurface-basedscalarfunctiontoa volume-basedapproximation)areessentialtoaddressawiderangeofproblems. Forinstance,volumetricLaplacianeigenfunc- tionsaresuitedtodefinevolumetricdescriptors,whichareconsistentwiththeirsurface-basedcounterparts. Inasimilarway, harmonicvolumetricfunctionshavebeenappliedtovolumetricparameterizationandtothedefinitionofpolycubesplines. Thissurveydiscussesthemainvolumetricapproximationschemesforboth3Dshapesandd-dimensionaldata,andprovidesa unified discussion on the integration of surface-based and volumetric information. It also describes the application of shape- basedandvolumetrictechniquestoshapeprocessingwithvolumetricparameterizationandtothefeature-drivenapproximation withmovingleast-squarestechniquesandradialbasisfunctions.Whilepreviousworkhasaddressedtheprocessingandanalysis of 3D shapes through methods that exploit either their surface-based or volumetric representations, this survey presents a unified overview on these works through volumetric approximations of surface-based scalar functions. This unified scheme alsoprovidesabasisforgeneralizingthosemethodsthathavebeenprimarilydefinedonsurfacesbutareopentoandbenefitof theintegrationwithvolumetricinformation. Furthermore,itsystematicallypresentsthetheory,algorithm,andapplicationsof discreteRicciflow. Inthefollowing,weprovideadetaileddescriptionofthemainpartsofourcontribution. ⇤ConsiglioNazionaledelleRicerche,IstitutodiMatematicaApplicataeTecnologieInformatiche,Genova,Italy,[email protected] †StateUniversityofNewYorkatStonyBrook,DepartmentofComputerScience,NewYork,USA,[email protected] ‡LouisianaStateUniversity,SchoolofElectricalEngineering&ComputerScience,USA,[email protected] 1+ µ | | U↵ U� 1 µ �| | ✓ � � � ↵ K = 11+|µµ| � �| | ↵� ✓= 1argµ 2 z↵ z� (a) (b) Figure1: (a)Riemannsurface. Alltransitionsf arebiholomorphic. (b)Beltramicoefficient. ab Outline and contribution We start with an introduction to the spectral surface-based and volumetric techniques, and discrete curvature flow methods for shape modeling, together with a presentation of the background underlying the main spectralandcurvatureflowtechniquesforshapemodeling(Sect.2). Keyconceptsfromsmoothgeometry,suchasRiemannian metric, Gaussian curvature, Laplace-Beltrami operator, heat diffusion equation, and Ricci flow are systematically introduced (Sect.3).WealsopresentthemainresultsontheconvergenceandtheuniquenessofthesolutiontoRicciflowandthegeometric approximationtheorem. Startingfromthisbackgroundonthemaindifferentialpropertiesofmanifolds,wedefineanddiscuss thepropertiesoftheharmonicmaps,theLaplacianeigenfunctions,andthesolutionstotheheatequation. After an overview on the aims of the volumetric approximation in the context of shape modeling and analysis, we classify themainapproachesproposedbypreviousworkanddetailthefollowingapproximationschemes(Sect.4): (i)linearprecision methodsthroughgeneralizedbarycentriccoordinates;(ii)implicitmethodswithradialbasisfunctions;(iii)surface-basedand cross-volume parameterization; (iv) polycube splines; (v) moving least squares techniques; (vi) and topology-driven approx- imation. More precisely, we introduce the computation of the inter-surface harmonic map, extend it to volumetric harmonic map, and construct the polycube shape parameterization and splines. Then, we discuss volumetric approximations through radialbasisfunctionwithconstraintsontheapproximationerrorandthepreservationofthecriticalpoints. Oncethecontinuousanddiscretesettingshavebeenintroduced,wefocusonthemainapplicationsofthevolumetricapproxi- mationtoshapemodelingandmedicine(Sect.5). Inthecontextofshapemodeling,weoutlinehowtheLaplacianeigenvectors of a given surface are extended into the shape interior, thus providing the basis for the definition of shape-aware barycentric coordinates and of volumetric descriptors, such as the volumetric global point signature, biharmonic and diffusion embed- dings, which have been primarily defined for the surface setting. We also present template-based shape descriptors and the computationofharmonicvolumetricmappingsbetweensolidobjectswiththesametopologyforvolumetricparameterization, solid texture mapping, and hexahedral remeshing. In the context of medicine, we discuss applications to respiratory motion modeling, medical and forensic skull modeling and facial reconstruction. Finally (Sect. 6), we conclude the presentation by discussingopenproblemsandfutureperspectives. 2 Riemann surfaces and Ricci flow Firstly,weintroducemappingsonRiemannsurfaces,andquasi-conformalmappingandTeichmullerspaces(Sect.2.1). Then, wediscussthesurfaceRicciflowanditsdiscretization(Sect.2.2). 2.1 Mappings on Riemann Surfaces SupposeN beadifferentialmanifoldofdimensionn. ARiemannianmetriconN isafamilyofinnerproductsg :T N p p ⇥ TpN !R, p2N , such that, for all differentiable vector fields X,Y on N , p!gp(X(p),Y(p)) defines a smooth surface N !R. Selectingasetoflocalcoordinates(x1,x2,···,xn),themetrictensorcanbewrittenasg=Âi,jgijdxidxj. Considering the differential map f :(M,g) (N ,h) between two Riemannian manifolds, the pull back metric on M induced by f is ! givenby f⇤h=JThJ,whereJ=(∂∂xyij)istheJacobianmatrixof f. Surfacesareexamplesof2dimensionalmanifolds. Figure2: Holomorphic1-formbasisonagenustwosurface. SupposeN isanorientablesurfaceembeddedinE3 andgtheinducedEuclideanmetric;let(x,y)bethelocalparametersof the metric surface (N ,g). If the Riemannian metric has the local representation g=e2l(x,y)(dx2+dy2), then (x,y) is called isothermalcoordinatesofthesurface. Inparticular,l :N Riscalledtheconformalfactor. Thefollowingtheoremshows ! theexistenceofisothermalcoordinates[Chern1955]. Theorem2.1 Suppose(N ,g)isasmoothorientedmetricsurface,thenforeachpointpthereexistsaneighborhoodU(p)ofp suchthatlocalcoordinatesexistonU(p). Throughtheisothermalcoordinates,weintroducetheGaussiancoordinatesasfollows. Let(N ,g)beanorientedsurfacewith aRiemannianmetricand(u,v)anisothermalcoordinates. Then,theGaussiancurvatureofthesurfaceisgivenby ∂2 ∂2 K(u,v)=�Dgl, Dg=e�2l(u,v) ∂u2 +∂v2 , ✓ ◆ where D is the Laplace-Beltrami operator induced by g. The Gauss curvature is intrinsic to the Riemannian metric and the g totalcurvatureisatopologicalinvariant. AccordingtotheGauss-Bonnettheorem[SchoenandYau1994;DoCarmo1976],the totalGaussiancurvatureisgivenby KdA+ k ds=2pc(N ), g ZN Z∂N wherec(N )istheEulernumberofthesurface,k isthegeodesiccurvatureontheboundary,and∂N istheboundaryofthe g surface. HolomorphicDifferentialsWenowintroduceholomorphic1-formsonReimanniansurfaces.Suppose f :Cˆ Cˆ beacomplex function,whereCˆ =C • istheextendedcomplexplane. Definingthecomplexdifferentialoperators, ! [{ } ∂ 1 ∂ ∂ ∂ 1 ∂ ∂ = i , = +i , ∂z 2 ∂x� ∂y ∂z¯ 2 ∂x ∂y ✓ ◆ ✓ ◆ thefunction f iscalledholomorphicif ∂f =0everywhere. If f isinvertibleand f 1 isalsoholomorphic,then f iscalledbi- ∂z¯ � holomorphic. If f istreatedasamappingbetweencomplexplanes,thenholomorphicfunctionsareangle-preserving,namely, conformal. SupposeN isatopologicalsurface,withanatlas (Uk,fk) ,wherefk:Uk Cisalocalcomplexcoordinatechart. Ifallthe { } ! localcoordinatetransitions(Fig.1(a)) fij=fj�fi�1:fi(Ui\Uj)!fj(Ui\Uj), arebi-holomorphic,thentheatlasiscalledaconformalatlasandthesurfaceN iscalledaRiemannsurface. Werecallthatall orientedmetricsurfacesareRiemannsurfaces. Suppose (N ,g) is an oriented surface with a Riemannian metric, the atlas formed by local isothermal coordinate charts is a conformal structure. Hence, all oriented metric surfaces are Riemann surfaces, their Riemannian metrics induce conformal structures. A holomorphic 1-form on a Riemann surface N is an assignment of a function f(z) on each chart z such that i i i if z is another local coordinate, then f(z)=f (z ) dzj . All holomorphic 1-forms form a group with 2g real dimension, j i i j j dzi denoted as W(N ), where g is the genus of N . Fig.⇣2 sh⌘ows the basis of holomorphic 1-forms on a genus two surface. A holomorphic 1-form can be decomposed to two real harmonic 1-forms. According to Hodge theory [Schoen and Yau 1997],
Description: