ebook img

An Introduction to Redox Polymers for Energy-Storage Applications PDF

537 Pages·2023·26.188 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview An Introduction to Redox Polymers for Energy-Storage Applications

An Introduction toRedox Polymers for Energy-Storage Applications An Introduction to Redox Polymers for Energy-Storage Applications Ulrich S. Schubert, Andreas Winter, and George R. Newkome Authors All books published by WILEY-VCH are carefully produced. Nevertheless, authors, editors, and Prof. Dr. Ulrich S. Schubert publisher do not warrant the information Friedrich Schiller University Jena contained in these books, including this book, Germany to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, Dr. Andreas Winter procedural details or other items may Friedrich Schiller University Jena inadvertently be inaccurate. Germany Library of Congress Card No.: applied for Dr. George R. Newkome British Library Cataloguing-in-Publication Data: Florida Atlantic University A catalogue record for this book is available USA from the British Library. Cover Design: Adam Design, Weinheim, Bibliographic information published by the Germany Deutsche Nationalbibliothek Cover Image: Polyethylene Terephthalate The Deutsche Nationalbibliothek © Shutterstock, Fondmotif and chip lists this publication in the Deutsche © Getty Images Nationalbibliografie; detailed bibliographic data are available on the Internet at <http:// dnb.d-nb.de>. © 2023Wiley‐VCH GmbH, Boschstr. 12, 69469Weinheim, Germany All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form– by photoprinting, microfilm, or any other means– nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law. Print ISBN: 9783527350902 ePDF ISBN: 9783527839285 ePub ISBN: 9783527839292 oBook ISBN: 9783527843466 Typesetting Straive, Chennai, India v Contents List of Abbreviations xi 1 The Emergence of “Redox Polymers” in the Field of Energy-Storage Applications 1 Study Goals 1 1.1 An Introduction toBattery Systems 1 1.2 Redox Polymers:A Short View onTheir Long History 3 1.2.1 The First Era ofRedox Polymers 4 1.2.2 The Second Era ofRedox Polymers 5 1.2.3 The Third Era ofRedox Polymers 9 References 10 2 Polymer-Containing Batteries 17 Study Goals 17 2.1 Introduction 17 2.2 Working Principles 21 2.3 Characterization ofEnergy-Storage Devices 23 2.3.1 Performance Parameters 23 2.3.2 Charging/Discharging Characteristics 25 2.4 Battery Housing 27 2.5 Solid-State Batteries Incorporating Polymers, asActive Materials 30 2.5.1 Working Principle 31 2.5.2 Material Requirements 33 2.6 Capacitors Incorporating Polymers, asActive Materials 37 2.6.1 Historic Development and Working Principle 37 2.6.2 Material Requirements 41 2.7 Redox-Flow Batteries Incorporating Polymers asActive Materials 44 2.7.1 Working Principle 46 2.7.2 Materials Requirements 47 2.7.3 Aqueous pRFBs 50 2.7.4 Organic pRFBs 51 2.7.5 Suspension RFBs 53 2.8 Concluding Remarks 58 References 59 vi Contents 3 Redox Polymers:Architectures, Synthesis, and Characterization 69 Study Goals 69 3.1 Introduction 69 3.2 Polymer Architecture vs. Battery Cell Performance 70 3.3 Polymer Architectures 72 3.3.1 Homopolymers 72 3.3.2 Copolymers 73 3.3.2.1 Alternating Copolymers 74 3.3.2.2 Statistical and Gradient Copolymers 76 3.3.2.3 Block Copolymers 77 3.3.3 Miscellaneous Polymer Architectures 80 3.4 Polymerization Methods 88 3.4.1 Step-Growth Polymerizations 89 3.4.2 Chain-Growth Polymerizations 91 3.4.2.1 Free-Radical Polymerization 91 3.4.2.2 Controlled Radical Polymerization 92 3.4.2.3 Anionic Polymerization 100 3.4.2.4 Cationic Polymerizations 102 3.4.2.5 Ring-Opening Metathesis Polymerizations (ROMP) 102 3.4.3 Redox Polymerizations 103 3.5 TEMPO-Containing Redox Polymers: A Case Study on How the Backbone Structure Influences the Polymeric Properties 105 3.6 Characterization ofRedox Polymers 109 3.6.1 Cyclic Voltammetry (CV) 109 3.6.2 Electrochemical Impedance Spectroscopy (EIS) 115 3.6.3 Electrochemical Methods Coupled toOther Analytical Techniques 117 3.7 Concluding Remarks 120 References 121 4 Conjugated Polymers inthe Context ofEnergy-Storage Applications 133 Study Goals 133 4.1 Introduction 133 4.2 The Classic Conjugated Polymers at aGlance 137 4.2.1 Polyaniline (Pani) 137 4.2.2 Polypyrrole (PPy) 141 4.2.3 Polythiophene (PT) and PEDOT:PSS 144 4.2.4 Conjugated Polymers forEnergy-Storage Applications:General Considerations 147 4.3 Conjugated Polymers, asActive Materials forBattery Systems 150 4.3.1 Polyacetylene 151 4.3.2 Polyaniline 156 4.3.3 Polypyrrole 164 4.3.4 Polythiophene, PEDOT, and Related Polymers 175 4.3.5 Beyond the“Big Three”: Miscellaneous Conjugated Polymers 182 4.3.5.1 Poly(p-phenylene) 182 Contents vii 4.3.5.2 Polyindole 184 4.4 Concluding Remarks 187 References 188 5 Redox-Active, Sulfur-Containing Polymers 203 Study Goals 203 5.1 Introduction 203 5.2 Fundamentals ofSulfur-Containing Batteries 204 5.3 Composite Electrodes Incorporating Sulfur and Conductive Polymers 206 5.3.1 Polypyrrole, asthe Matrix Polymer 207 5.3.2 Polyaniline, asthe Matrix Polymer 210 5.3.3 Polythiophene, asthe Matrix Polymer 214 5.3.4 Miscellaneous Matrix Polymers 216 5.4 Sulfur-Containing Polymers inBattery Applications 220 5.4.1 Polymers Containing Disulfide Moieties 220 5.4.2 Polymers Containing Oligosulfide or Polysulfide Moieties 226 5.4.3 Beyond Sulfides: Polymers Containing Other Redox-Active Organosulfur Moieties 237 5.5 Concluding Remarks 245 References 246 6 Radical-Containing Polymers for Energy-Storage Applications 255 Study Goals 255 6.1 Introduction 255 6.2 Organic Radical Polymers 258 6.2.1 Free-Radical Moieties Used in ORPs 258 6.2.2 Influence of the Backbone Structure on the ORP Properties 262 6.2.3 Influence of the Polymer Architecture on the ORP Properties 263 6.3 TEMPO-Containing Polymers for Energy-Storage Applications 272 6.3.1 TEMPO-Containing Polymers in Solid-State Batteries 272 6.3.1.1 The Success Story of PTMA 272 6.3.1.2 Beyond PTMA: Polymers with Various Backbone Structures 279 6.3.2 TEMPO-Containing Polymers in Flow-Cell Applications 286 6.4 Beyond TEMPO: Other Nitroxyl Moieties in ORPs 292 6.5 Miscellaneous Free-Radical Moieties in ORPs 295 6.6 Concluding Remarks 299 References 301 7 Polymers Equipped withRedox-Active Quinone Moieties 309 Study Goals 309 7.1 Introduction 309 7.2 General Considerations Regarding Carbonyl Compounds, asActive Electrode Materials 312 7.3 Quinone-Containing Polymers forEnergy-Storage Applications 313 viii Contents 7.3.1 Polymers withQuinone Moieties Within theBackbone 315 7.3.2 Polymers withQuinone Moieties, asSide Chains 326 7.4 Polyketone-Containing Polymers forEnergy-Storage Applications 330 7.5 Polymers, Which Contain Miscellaneous Redox-Active Carbonyl Moieties 334 7.5.1 Side-Chain Polymers, Which Contain Redox-Active Carbonyl Moieties 334 7.5.2 Main-Chain Polymers, Which Contain Redox-Active Carbonyl Moieties 338 7.6 Concluding Remarks 343 References 344 8 Polyimides and Related Polymers in Battery Applications 349 Study Goals 349 8.1 Introduction 349 8.2 Conventional PIs, as Active Materials 353 8.3 Non-conventional PIs, as Active Materials 363 8.3.1 Polyimides withNon-innocent Moieties Within theSpacer 363 8.3.2 Polyimides withSubstituents onthe Diimide Core 371 8.4 Conjugated Polymers Incorporating theCore ofDiimide Moieties 374 8.5 Multidimensional Polyimides 377 8.6 Miscellaneous Polymer Structures Incorporating Redox-Active Imide Moieties 380 8.7 Concluding Remarks 383 References 384 9 Polymers Containing Redox-Active Viologen-Type Moieties 391 Study Goals 391 9.1 Introduction 391 9.2 Viologen-Containing Polymers forSolid-State Batteries 393 9.3 Viologen-Containing Polymers forSupercapacitors 403 9.4 Viologen-Containing Polymers forRedox-Flow Batteries 406 9.4.1 Aqueous Redox-Flow Batteries 407 9.4.2 Nonaqueous Redox-Flow Batteries 409 9.5 Concluding Remarks 413 References 414 10 Polymers: Containing Redox-Active N-Heterocyclic Moieties 419 10.1 Introduction 419 10.2 Polymers: Containing Triphenylamine Moieties 421 10.3 Polymers: Containing Redox-Active Carbazole Moieties 435 10.4 Polymers: Containing Redox-Active 5,10-Dihydrophenazine Moieties 443 Contents ix 10.5 Polymers: Containing Redox-Active Phenazine Moieties 450 10.6 Polymers: Containing Redox-Active Phenothiazine or Phenoxazine Moieties 462 10.7 Concluding Remarks 470 References 471 11 Redox-Active Metallopolymers 479 Study Goals 479 11.1 Introduction 479 11.2 Applications Related toRedox-Active Metallopolymers 481 11.3 Ferrocene-Containing Polymers forEnergy-Storage Applications 482 11.4 Beyond Ferrocene: Other Types ofRedox-Active Metallopolymers 493 11.5 Concluding Remarks 502 References 502 12 Students’ Section: Representative Exercises onRedox Polymers and Their Usage inEnergy-Storage Applications 509 12.1 Introduction 509 12.2 Problems 509 References 519 Index 521 xi List ofAbbreviations ADMET acyclic diene metathesis AFM atomic‐force microscopy AIBN 2,2′‐azobis(2‐methylpropionitrile) aRFID active radio‐frequency identification ATRP atom‐transfer radical polymerization bdt 1,2‐benzenedithiolate BHJ bulk heterojunction BODIPY boron‐dipyrromethene (i.e. 4,4‐difluoro‐4‐bora‐3a,4a‐diaza‐s‐indacene) BOP benzoxazine polymer BTMAPV 1,1‐bis‐[3‐(trimethylammonium)propyl]‐4,4‐bipyridinium tetrachloride CC current collector CCP conjugated coordination polymers CD circular dichroism CDSA crystallization‐driven self‐assembly CE coulombic efficiency CNT carbon nanotube COF covalent organic framework CONASH coordination nanosheets CRP controlled‐radical polymerization CSIRO Commonwealth Scientific and Industrial Research Organization CuAAC Cu(I)‐catalyzed alkyne‐azide cycloaddition CV cyclovoltammetry Đ dispersity DIB 1,3‐diisopropenylbenzene DP degree of polymerization DPE 1,1‐diphenylethylene DPV differential‐pulse voltammetry EDLC electrical double‐layer capacitor EDX energy‐dispersive X‐ray EE energy efficiency

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.