ebook img

An Introduction to Non-Abelian Discrete Symmetries for Particle Physicists PDF

353 Pages·2022·4.064 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview An Introduction to Non-Abelian Discrete Symmetries for Particle Physicists

Lecture Notes in Physics Tatsuo Kobayashi · Hiroshi Ohki · Hiroshi Okada · Yusuke Shimizu · Morimitsu Tanimoto An Introduction to Non-Abelian Discrete Symmetries for Particle Physicists Second Edition Lecture Notes in Physics FoundingEditors Wolf Beiglböck Jürgen Ehlers Klaus Hepp Hans-Arwed Weidenmüller Volume 995 SeriesEditors RobertaCitro,Salerno,Italy PeterHänggi,Augsburg,Germany MortenHjorth-Jensen,Oslo,Norway MaciejLewenstein,Barcelona,Spain AngelRubio,Hamburg,Germany WolfgangSchleich,Ulm,Germany StefanTheisen,Potsdam,Germany JamesD.Wells,AnnArbor,MI,USA GaryP.Zank,Huntsville,AL,USA The series Lecture Notes in Physics (LNP), founded in 1969, reports new developmentsinphysicsresearchandteaching-quicklyandinformally,butwitha highqualityandtheexplicitaimtosummarizeandcommunicatecurrentknowledge in an accessible way. Books published in this series are conceived as bridging materialbetweenadvancedgraduatetextbooksandtheforefrontofresearchandto servethreepurposes: • to be a compact and modern up-to-date source of reference on a well-defined topic; • to serve as an accessible introduction to the field to postgraduate students and non-specialist researchers from related areas; • to be a source of advanced teaching material for specialized seminars, courses and schools. Bothmonographsandmulti-authorvolumeswillbeconsideredforpublication. Edited volumes should however consist of a very limited number of contributions only. Proceedings will not be considered for LNP. Volumes published in LNP are disseminated both in print and in electronic formats, the electronic archive being available at springerlink.com. The series contentisindexed,abstractedandreferencedbymanyabstractingandinformation services, bibliographic networks, subscription agencies, library networks, and consortia. Proposals should be sent to a member of the Editorial Board, or directly to the responsible editor at Springer: Dr Lisa Scalone Springer Nature Physics Tiergartenstrasse 17 69121 Heidelberg, Germany [email protected] More information about this series at https://link.springer.com/bookseries/5304 Tatsuo Kobayashi · Hiroshi Ohki · Hiroshi Okada · Yusuke Shimizu · Morimitsu Tanimoto An Introduction to Non-Abelian Discrete Symmetries for Particle Physicists Second Edition TatsuoKobayashi HiroshiOhki DepartmentofPhysics DepartmentofMathematicalandPhysical HokkaidoUniversity Sciences Sapporo,Japan NaraWomen’sUniversity Nara,Japan HiroshiOkada AsiaPacificCenterforTheoreticalPhysics YusukeShimizu Pohang,Korea(Republicof) GraduateSchoolofAdvancedScience andEngineering MorimitsuTanimoto HiroshimaUniversity DepartmentofPhysics Hiroshima,Japan NiigataUniversity Niigata,Japan ISSN0075-8450 ISSN1616-6361 (electronic) LectureNotesinPhysics ISBN978-3-662-64678-6 ISBN978-3-662-64679-3 (eBook) https://doi.org/10.1007/978-3-662-64679-3 1stedition:©Springer-VerlagBerlinHeidelberg2012 2ndedition:©Springer-VerlagGmbHGermany,partofSpringerNature2022 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringer-VerlagGmbH,DEpartofSpringer Nature. Theregisteredcompanyaddressis:HeidelbergerPlatz3,14197Berlin,Germany Preface to the Second Edition Non-Abeliandiscretegroupsarequiteusefultoolsinparticlephysics.Thepurpose of the first edition was to introduce non-Abelian discrete symmetries for particle physicists, and to present important application in particle physics. After the first edition, lots of new applications of non-Abelian discrete groups have been stud- ied in particle physics, e.g. generalized CP and modular flavor symmetries. To meet these developments, we have added Chap. 16 modular symmetry, Chap. 17 automorphism,andChap.20generalizedCPtransformation.Alsowehaverewrit- ten Chap. 19 to explain new models and developments on modular flavor models. Furthermore, we have added Chap. 15 on finite subgroups of continuous groups. We hope that the second edition with these additional chapters could be very useful for researchers in these subjects. It is pleasure to acknowledge fruitful discussions with Hiroyuki Abe, Takeshi Araki, Gustavo C. Branco, Mu-Chun Chen, Kang-Sin Choi, Kenji Hashimoto, Yasuhiro Daikoku, Gui-jun Ding, Ferruccio Feruglio, Walter Grimus, Martin K. Hirsch, Gino Isidori, Hajime Ishimori, Shota Kikuchi, Stephen F. King, Jiske Kubo, Manfred Lindner, Ernest Ma, Hans P. Nilles, Takaaki Nomura, Pavel Novichkov, Yuta Orikasa, Hajime Otsuka, João T. Penedo, Serguey T. Petcov, Felix Ploger, Stuart A. Raby, Saul Ramos-Sanchez, Michael Ratz, M. Nesbitt Rebelo,WernerRodejohann,TakashiShimomura,TakuyaH.Tatsuishi,KentaTak- agi, Arsenii V. Titov, Andreas Trautner, Hikaru Uchida, Shohei Uemura, Jose W. F. Valle, Patrick K. S. Vaudrevange, Takahiro Yoshida, and Shun Zhou. Sapporo, Japan Tatsuo Kobayashi Nara, Japan Hiroshi Ohki Pohang, Korea (Republic of) Hiroshi Okada Hiroshima, Japan Yusuke Shimizu Niigata, Japan Morimitsu Tanimoto September 2021 v Preface to the First Edition The purpose of the lecture notes is to introduce the basic framework of the non- AbelianDiscreteSymmetries,andtopresentsomeimportantapplicationinParticle Physics. Non-Abelian discrete groups have been playing an important role in par- ticle physics. However, those may not be familiar to all of particle physicists compared with non-Abelian continuous symmetries. Therefore, the lecture notes are written for particle physicists. In this respect, it is different from the standard books of the group theory. However, preliminary knowledge of the group theory is not required in advance to understand the non-Abelian Discrete Symmetries. We hope that our lecture notes could play a crucial role as a handbook in serious learners, and also as a helpful reference textbook in experts in addition to providing triggers for subject of researches. It is pleasure to acknowledge fruitful discussions with H. Abe, T. Araki, K. S. Choi, Y. Daikoku, K. Hashimoto, J. Kubo, H. P. Nilles, F. Ploger, S. Raby, S. Ramos-Sanchez, M. Ratz, and P. K. S. Vaudrevange. September 2012 Hajime Ishimori Tatsuo Kobayashi Hiroshi Ohki Hiroshi Okada Yusuke Shimizu Morimitsu Tanimoto vii Contents 1 Introduction ........................................................ 1 References .......................................................... 4 2 BasicsofFiniteGroups ............................................. 15 References .......................................................... 23 3 S .................................................................. 25 N 3.1 S ........................................................... 25 3 3.2 S ........................................................... 29 4 Reference ........................................................... 34 4 A .................................................................. 35 N 4.1 A .......................................................... 35 4 4.2 A .......................................................... 38 5 References .......................................................... 46 (cid:2) 5 T ................................................................... 47 6 D ................................................................. 55 N 6.1 D with N = Even ......................................... 56 N 6.2 D with N = Odd .......................................... 60 N 6.3 D .......................................................... 61 4 6.4 D .......................................................... 63 5 7 Q ................................................................. 65 N 7.1 Q with N =4n ............................................ 66 N 7.2 Q with N =4n+2 ........................................ 68 N 7.3 Q .......................................................... 70 4 7.4 Q .......................................................... 71 6 8 QD .............................................................. 73 2N 8.1 Generic Aspects ............................................. 73 8.2 QD ....................................................... 76 16 ix x Contents 9 Σ(2N2) ............................................................. 79 9.1 Generic Aspects ............................................. 79 9.2 Σ(18) ....................................................... 82 9.3 Σ(32) ....................................................... 84 9.4 Σ(50) ....................................................... 88 10 Δ(3N2) ............................................................. 91 10.1 Δ(3N2) with N/3(cid:2)= Integer ................................. 92 10.2 Δ(3N2) with N/3= Integer ................................. 95 10.3 Δ(27) ....................................................... 98 10.4 Δ(48) ....................................................... 99 10.4.1 Conjugacy Classes and Tensor Products .............. 100 10.4.2 The Different Bases of Δ(48) ....................... 103 References .......................................................... 104 11 T .................................................................. 105 N 11.1 Generic Aspects ............................................. 105 11.2 T ........................................................... 109 7 11.3 T Group Theory ........................................... 110 13 11.4 T Group Theory ........................................... 113 19 References .......................................................... 116 12 Σ(3N3) ............................................................. 117 12.1 Generic Aspects ............................................. 117 12.2 Σ(81) ....................................................... 120 Reference ........................................................... 127 13 Δ(6N2) ............................................................. 129 13.1 Δ(6N2) with N/3(cid:2)= Integer ................................. 129 13.2 Δ(6N2) with N/3= Integer ................................. 136 13.3 Δ(54) ....................................................... 142 13.4 Δ(96) ....................................................... 149 13.4.1 Conjugacy Classes .................................. 150 13.4.2 Characters and Representations ...................... 150 13.4.3 Tensor Products ..................................... 152 References .......................................................... 159 14 SubgroupsandDecompositionsofMultiplets ....................... 161 14.1 S ........................................................... 162 3 14.2 S ........................................................... 163 4 14.3 A .......................................................... 166 4 14.4 A .......................................................... 167 5 (cid:3) 14.5 T ........................................................... 168 14.6 General D ................................................. 169 N 14.7 D .......................................................... 171 4 14.8 General Q ................................................. 172 N 14.9 Q .......................................................... 175 4 Contents xi 14.10 QD ....................................................... 176 2N 14.11 General (cid:4)(2N2) ............................................. 177 14.12 (cid:4)(32) ....................................................... 180 14.13 General Δ(3N2) ............................................. 180 14.14 Δ(27) ....................................................... 183 14.15 General T .................................................. 185 N 14.16 T ........................................................... 186 7 14.17 General (cid:4)(3N3) ............................................. 187 14.18 (cid:4)(81) ....................................................... 188 14.19 General Δ(6N2) ............................................. 190 14.20 Δ(54) ....................................................... 192 15 FiniteSubgroupsofContinuousGroups ............................ 197 15.1 Finite Subgroups of SO(3) .................................. 198 15.1.1 SO(3)→ D ....................................... 199 N 15.1.2 SO(3)→ A ....................................... 202 4 15.1.3 SO(3)→ S ........................................ 203 4 15.2 Finite Subgroups of SU(2) .................................. 204 15.2.1 SU(2)→ Q ....................................... 205 N 15.2.2 SU(2)→T(cid:3) ........................................ 206 15.3 Finite Subgroups of SU(3) .................................. 207 15.3.1 SU(3)→ A ........................................ 208 4 15.3.2 SU(3)→ A ........................................ 209 5 15.3.3 SU(3)→ S ........................................ 209 4 15.3.4 SU(3)→ D ....................................... 210 N 15.3.5 SU(3)→T(cid:3) ........................................ 211 15.3.6 SU(3)→Δ(3N2) .................................. 213 15.3.7 SU(3)→Δ(6N2) .................................. 215 References .......................................................... 217 16 ModularSymmetry ................................................. 219 References .......................................................... 222 17 Automorphism ...................................................... 223 17.1 Z ........................................................... 224 3 17.2 Z ×Z(cid:3) ..................................................... 224 2 2 17.3 A .......................................................... 225 4 17.4 Σ(18) ....................................................... 226 17.5 Δ(27) ....................................................... 228 References .......................................................... 229 18 Anomalies .......................................................... 231 18.1 Generic Aspects ............................................. 231 18.2 Explicit Calculations ......................................... 235 18.3 Comments on Anomalies .................................... 249 References .......................................................... 250

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.