ebook img

An Introduction to Groups and Their Matrices for Science Students PDF

339 Pages·2022·27.229 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview An Introduction to Groups and Their Matrices for Science Students

AN INTRODUCTION TO GROUPS AND THEIR MATRICES FOR SCIENCE STUDENTS T0; = £ 1=1 ROBERT KOLENKOW An Introduction to Groups and Their Matrices for Science Students Group theory, originating from algebraic structures in mathematics, has long been a powerful tool in many areas of physics, chemistry, and other applied sciences, but it has seldom been covered in a manner accessible to undergraduates. This book from renowned educator Robert Kolenkow introduces group theory and its applications starting with simple ideas of symmetry, through quantum numbers, and working up to particle physics. It features clear explanations, accompanying problems and exercises, and numerous worked examples from experimental research in the physical sciences. Beginning with key concepts and necessary theorems, topics are introduced systemat ically, including molecular vibrations and lattice symmetries; matrix mechanics; wave mechanics; rotation and quantum angular momentum; atomic structure; and finally particle physics. This comprehensive primer on group theory is ideal for advanced undergraduate topics courses, reading groups, or self-study, and it will help prepare graduate students for higher-level courses. Robert Kolenkow was formerly Associate Professor of Physics at Massachusetts Institute of Technology and was awarded the Everett Moore Baker Award for Outstanding Teaching. He was the lead author of Physical Geography Today and coauthor, with Daniel Kleppner, of An Introduction to Mechanics (also published by Cambridge University Press). AN INTRODUCTION TO GROUPS AND THEIR MATRICES FOR SCIENCE STUDENTS ROBERT KOLENKOW Formerly Massachusetts Institute of Technology НЯ Cambridge UNIVERSITY PRESS Cambridge UNIVERSITY PRESS University Printing House, Cambridge CB2 8BS, United Kingdom One Liberty Plaza, 20th Floor, New York, NY 10006, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia 314 321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi 110025, India 103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467 Cambridge University Press is part of the University of Cambridge. It furthers the University’s mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence. www.cambridge.org Information on this title: www.cambridge.org/9781108831086 DOI: 10.1017/9781108923217 © Robert Kolenkow 2022 This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 2022 A catalogue record for this publication is available from the British Library. Library of Congress Cataloging-in-Publication Data Names: Kolenkow, Robert J , author. Title: An introduction to groups and their matrices for science students / Robert Kolenkow. Description: Cambridge ; New York, NY : Cambridge University Press, 2022. | Includes bibliographical references and index. Identifiers: LCCN 2021051448 (print) | LCCN 2021051449 (ebook) | ISBN 9781108831086 (hardback) | ISBN 9781108923217 (ebook) Subjects: LCSH: Group theory. | Matrices. | Science-Mathematics. | BISAC: SCIENCE / Physics / Mathematical & Computational Classification: LCC QA174.2 .K64 2022 (print) |LCC QA174.2 (ebook) | DDC 512/.2-dc23/eng/20220128 LC record available at https://lccn.loc.gov/2021051448 LC ebook record available at https://lccn.loc.gov/2021051449 ISBN 978-1-108-83108-6 Hardback Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. To Marcia my help and support Contents Preface xi 1 Fundamental Concepts 1 1.1 Introduction ............................................................................................ 1 1.2 Operations ................................................................................................ 2 1.3 What Is a Group? ................................................................................... 8 1.4 Examples of Groups ................................................................................ 9 1.5 Matrix Representations of Groups ...................................................... 12 1.6 Matrix Algebra ...................................................................................... 15 1.7 Special Matrices ...................................................................................... 18 1.8 A Brief History of Group Theory ......................................................... 20 1.9 Brief Bios ............................................................................................... 21 Summary of Chapter 1 ...................................................................................... 21 Problems and Exercises ...................................................................................... 22 2 Matrix Representations of Discrete Groups 26 2.1 Introduction ............................................................................................. 26 2.2 Basis Functions and Representations ................................................... 26 2.3 Similarity Transformations ................................................................... 30 2.4 Equivalent Representations ................................................................... 31 2.5 Similarity Transformations and Unitary Matrices ............................. 33 2.6 Character and Its Invariance under Similarity Transformations . . . 34 2.7 Irreducible Representations ................................................................... 36 2.8 Kronecker (Direct) Product ................................................................... 48 2.9 Kronecker Sum ....................................................................................... 51 Summary of Chapter 2 ...................................................................................... 51 Stated Theorems in Chapter 2 ............................................................................ 52 Prob lems and Exercises .................................................................................. 53 3 Molecular Vibrations 59 3.1 Introduction ............................................................................................. 59 vii viii Contents 3.2 Oscillating Systems and Newton’s Laws ............................................. 59 3.3 Normal Modes and Group Theory ....................................................... 63 3.4 Normal Modes of a Water Molecule ................................................... 65 3.5 Visualizing Normal Modes .................................................................... 69 3.6 Infrared (IR) Spectroscopy .................................................................... 74 3.7 Raman Spectroscopy ............................................................................. 78 3.8 Brief Bios ................................................................................................ 81 Summary of Chapter 3 ...................................................................................... 81 Pro blems and Exercises ................................................................................ 83 4 Crystalline Solids 87 4.1 Introduction ............................................................................................. 87 4.2 Bravais Lattices ....................................................................................... 87 4.3 X Ray Crystallography .......................................................................... 90 4.4 Fourier Transform ................................................................................... 92 4.5 Reciprocal Lattice ................................................................................... 94 4.6 Lattice Translation Group ....................................................................... 98 4.7 Crystallographic Point Groups and Rotation Symmetry .................... 102 4.8 Crystallographic Space Groups and the Seitz Operator ....................... 104 4.9 Crystal Symmetry Operations ................................................................ 105 4.10 Lattice Vibrations ................................................................................... 108 4.11 Brief Bios ................................................................................................ 114 Summary of Chapter 4 ...................................................................................... 115 Problems and Exercises ...................................................................................... 117 5 Bohr’s Quantum Theory and Matrix Mechanics 121 5.1 Introduction ............................................................................................. 121 5.2 Bohr’s Model .......................................................................................... 121 5.3 Matrix Mechanics ................................................................................... 125 5.4 Matrix Mechanics Quantization ............................................................. 128 5.5 Consequences of Matrix Mechanics .................................................... 131 5.6 Heisenberg Uncertainty Relation .......................................................... 134 5.7 Brief Bios ................................................................................................ 136 Summary of Chapter 5 ...................................................................................... 137 Problems and Exercises ...................................................................................... 138 6 Wave Mechanics, Measurement, and Entanglement 140 6.1 Introduction ............................................................................................. 140 6.2 Schrodinger’s Wave Mechanics................................................................140 6.3 The Wave Equation ................................................................................ 142 6.4 Quantization Conditions in Wave Mechanics ....................................... 147 6.5 Matrix Diagonalization .......................................................................... 154 6.6 Quantum Measurement .......................................................................... 156 6.7 The EPR Paradox and Entanglement .................................................... 157 Contents ix 6.8 Brief Bio ................................................................................................ 163 Summary of Chapter 6 ...................................................................................... 163 Problems and Exercises ...................................................................................... 164 7 Rotation 168 7.1 Introduction ............................................................................................. 168 7.2 Two Ways of Looking at Rotation ....................................................... 168 7.3 Rotation of a Function .......................................................................... 172 7.4 The Axial Rotation Group ................................................................... 173 7.5 The U(1) and SU(2) Groups ................................................................ 176 7.6 Pauli Matrices, SU(2), and Rotation ................................................... 179 7.7 Euler Angles ............................................................................................. 182 7.8 Finite Rotations Don’t Commute .......................................................... 184 7.9 . . . But Rotations Do Commute to First Order .................................... 185 7.10 Brief Bios ................................................................................................ 185 Summary of Chapter 7 ...................................................................................... 186 Problems and Exercises ...................................................................................... 187 8 Quantum Angular Momentum 189 8.1 Introduction ............................................................................................. 189 8.2 Stern and Gerlach: An Important Experiment (1922) .......................... 189 8.3 Rotation and Angular Momentum Operators ....................................... 193 8.4 Commutation Relations .......................................................................... 196 8.5 The Axial Rotation Group Again .......................................................... 198 8.6 Raising and Lowering (Ladder) Operators .......................................... 199 8.7 Angular Momentum Operators and Representations of the Rotation Group ......................................................................................... 202 8.8 The ujm Are Spherical Harmonics ....................................................... 206 8.9 Spin Basis Functions and Pauli Matrices ............................................. 208 8.10 Coupling (Adding) Angular Momenta ................................................ 209 8.11 Wigner-Eckart Theorem........................................................................215 8.12 Selection Rules ....................................................................................... 217 8.13 Brief Bios ................................................................................................ 221 Summary of Chapter 8 ...................................................................................... 222 Problems and Exercises ...................................................................................... 223 9 The Structure of Atoms 226 9.1 Introduction ............................................................................................. 226 9.2 Zeeman: An Important Experiment (1897) .......................................... 226 9.3 Quantum Theory of the Zeeman Effect ................................................ 228 9.4 Fine Structure .......................................................................................... 233 9.5 Example: Intermediate Field Zeeman .................................................... 235 9.6 Nuclear Spin and Hyperfine Structure ................................................ 239 9.7 Multi-electron Atoms ............................................................................. 243

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.