Moduli Theory is one of those areas of Mathematics that has fascinated minds from classical T. E. Venkata Balaji to modern times. This has been so because it reveals beautiful Geometry naturally hidden in questions involving classification of geometric objects and because of the profound use of the methods of several areas of Mathematics like Algebra, Number Theory, Topology and Analysis to achieve this revelation. A study of Moduli Theory would therefore give senior An Introduction to undergraduate and graduate students an integrated view of Mathematics. The present book is a humble introduction to some aspects of Moduli Theory. Families, Deformations and Moduli uli d o M d n a s n o ti a m r o f e D s, e mili a F o t n o ti c u d o r t n n I A aji al B a t a k n e V E. T. ISBN: 978-3-941875-32-6 Universitätsdrucke Göttingen Universitätsdrucke Göttingen T. E. Venkata Balaji An Introduction to Families, Deformations and Moduli This work is licensed under the Creative Commons License 3.0 “by-nd”, allowing you to download, distribute and print the document in a few copies for private or educational use, given that the document stays unchanged and the creator is mentioned. You are not allowed to sell copies of the free version. erschienen in der Reihe der Universitätsdrucke im Universitätsverlag Göttingen 2010 T. E. Venkata Balaji An Introduction to Families, Deformations and Moduli Universitätsverlag Göttingen 2010 Bibliographische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie; detaillierte bibliographische Daten sind im Internet über <http://dnb.ddb.de> abrufbar. Address of the Author T. E. Venkata Balaji Department of Mathematics Indian Institute of Technology Madras Chennai 600036, India. e-mail: [email protected] This work is protected by German Intellectual Property Right Law. It is also available as an Open Access version through the publisher’s homepage and the Online Catalogue of the State and University Library of Goettingen (http://www.sub.uni-goettingen.de). Users of the free online version are invited to read, download and distribute it. Users may also print a small number for educational or private use. However they may not sell print versions of the online book. Satz und Layout: T. E. Venkata Balaji Umschlaggestaltung: Jutta Pabst Titelabbildung: T. E. Venkata Raghavan © 2010 Universitätsverlag Göttingen http://univerlag.uni-goettingen.de ISBN: 978-3-941875-32-6 to my father Shri T. E. Parthasarathy Contents Preface ix Introduction xi The Goals of this Book xxi A Historical Note xxiii 1 Classification of Annuli and Elliptic Curves 1 1.1 Overview of this Chapter . . . . . . . . . . . . . . . . . . . 1 1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Topological Coverings . . . . . . . . . . . . . . . . . 2 1.2.2 Branched and Unbranched Coverings of Riemann Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.3 Relations betweenπππ (((MMM))) and Coverings ofMMM . . . 6 111 1.3 Uniformization of Riemann Surfaces . . . . . . . . . . . . . 8 1.3.1 The Fundamental Theorem . . . . . . . . . . . . . . 9 1.3.2 Surfaces with Universal Covering the Sphere . . . . 10 1.3.3 Surfaces with Universal CoveringCCC. . . . . . . . . . 10 1.3.4 Surfaces with abelianπππ and CoveringUUU . . . . . . 11 111 1.4 Classification of Annuli up to Conformal Equivalence . . . . 15 1.5 Classification of Elliptic Curves . . . . . . . . . . . . . . . . 17 1.5.1 Set-theoretic Classification of Elliptic Curves . . . . 17 1.5.2 Quotients, Projective Embeddings and Automorphic Functions . . . . . . . . . . . . . . . . . . . . . . . . 19 1.5.3 The Riemann Surface Structure onUUU///PPPSSSLLL(((222,,,ZZZ))) . . 30 2 Families: Global Deformations 33 2.1 Overview of this Chapter . . . . . . . . . . . . . . . . . . . 33 2.2 Differentiable Families . . . . . . . . . . . . . . . . . . . . . 34 2.2.1 The Definition of a Differentiable Family. . . . . . . 34 iii iv CONTENTS 2.2.2 Examples of Differentiable Families . . . . . . . . . . 36 2.2.3 NotionsofTrivialityandOperationsonDifferentiable Families . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.3 The Fundamental Idea of Kodaira-Spencer . . . . . . . . . . 40 2.3.1 The Local Triviality of Differentiable Families . . . . 40 2.3.2 CCC∞∞∞-Deformations of Complex Structure . . . . . . . 40 2.4 Complex Analytic Families . . . . . . . . . . . . . . . . . . 45 2.4.1 The Definition of a Complex Analytic Family . . . . 46 2.4.2 Examples of Complex Analytic Families . . . . . . . 48 2.4.3 Notions of Triviality and Operations on Complex Analytic Families . . . . . . . . . . . . . . . . . . . . 48 2.4.4 Remarks on Holomorphic Deformations of Complex Structure . . . . . . . . . . . . . . . . . . . . . . . . 50 2.5 Functorial Properties of Families . . . . . . . . . . . . . . . 51 2.5.1 The Functor of Families . . . . . . . . . . . . . . . . 51 2.5.2 The Functor of Equivalence Classes of Families . . . 53 2.6 Two Motivating Examples of Families of Complex Tori . . . 53 2.6.1 The Complex Analytic FamilyBBB of Complex Tori . 53 2.6.2 The Complex Analytic FamilyCCC of Complex Tori . . 54 2.7 Algebraizability and Analytic Deformations . . . . . . . . . 57 2.7.1 Algebraizability of Complex Tori . . . . . . . . . . . 58 2.7.2 Non-algebraic Deformations of Complex Algebraic Tori . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 2.8 Discontinuous/Continuous Variation of Complex Structure. 60 2.8.1 Continuous Variation of Complex Structure . . . . . 60 2.8.2 DiscontinuousVariationofComplexStructure: Jump Phenomena . . . . . . . . . . . . . . . . . . . . . . . 60 3 Theory of Local Moduli: Infinitesimal Deformations 63 3.1 Overview of this Chapter . . . . . . . . . . . . . . . . . . . 63 3.2 InfinitesimalDeformations&DeformationMapsofKodaira- Spencer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.2.1 Infinitesimal Deformations for Differentiable Families . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.2.2 InfinitesimalKodaira-SpencerMapsforDifferentiable Families . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.2.3 The Fundamental Sequence of Vector Bundles for a Differentiable Family . . . . . . . . . . . . . . . . . . 69 3.2.4 Reformulation of the Definition of Differentiable Family in Terms of Differentiable Fiber Bundles . . 70 3.2.5 The Fundamental Sequence of Sheaves for a Differentiable Family . . . . . . . . . . . . . . . . . . 71