ebook img

An Introduction to Distance Geometry applied to Molecular Geometry PDF

59 Pages·2017·1.417 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview An Introduction to Distance Geometry applied to Molecular Geometry

SPRINGER BRIEFS IN COMPUTER SCIENCE Carlile Lavor Leo Liberti Weldon A. Lodwick Tiago Mendonça da Costa An Introduction to Distance Geometry applied to Molecular Geometry 123 SpringerBriefs in Computer Science Serieseditors StanZdonik,BrownUniversity,Providence,RhodeIsland,USA ShashiShekhar,UniversityofMinnesota,Minneapolis,Minnesota,USA XindongWu,UniversityofVermont,Burlington,Vermont,USA LakhmiC.Jain,UniversityofSouthAustralia,Adelaide,SouthAustralia,Australia DavidPadua,UniversityofIllinoisUrbana-Champaign,Urbana,Illinois,USA Xuemin(Sherman)Shen,UniversityofWaterloo,Waterloo,Ontario,Canada BorkoFurht,FloridaAtlanticUniversity,BocaRaton,Florida,USA V.S.Subrahmanian,UniversityofMaryland,CollegePark,Maryland,USA MartialHebert,CarnegieMellonUniversity,Pittsburgh,Pennsylvania,USA KatsushiIkeuchi,UniversityofTokyo,Tokyo,Japan BrunoSiciliano,UniversitàdiNapoliFedericoII,Napoli,Italy SushilJajodia,GeorgeMasonUniversity,Fairfax,Virginia,USA NewtonLee,NewtonLeeLaboratories,LLC,Tujunga,California,USA Moreinformationaboutthisseriesathttp://www.springer.com/series/10028 Carlile Lavor (cid:129) Leo Liberti (cid:129) Weldon A. Lodwick Tiago Mendonça da Costa An Introduction to Distance Geometry applied to Molecular Geometry 123 CarlileLavor LeoLiberti UniversityofCampinas CNRSandÉcolePolytechnique Campinas,SãoPaulo,Brazil Palaiseau,France WeldonA.Lodwick TiagoMendonçadaCosta UniversityofColoradoDenver UniversityofColoradoDenver Denver,CO,USA Denver,CO,USA ISSN2191-5768 ISSN2191-5776 (electronic) SpringerBriefsinComputerScience ISBN978-3-319-57182-9 ISBN978-3-319-57183-6 (eBook) DOI10.1007/978-3-319-57183-6 LibraryofCongressControlNumber:2017943518 ©TheAuthor(s)2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Distance geometry (DG) is a distinct mathematical research area which includes mathematics and computer science as fundamental components. The fundamental problemofDGistodeterminethespatiallocations(coordinates)forasetofpoints, inagivengeometricspace,usingdistancesbetweensomeofthem. DG is considered to have originated in 1928, when Menger [62] characterized severalgeometricconceptsusingtheideaofdistance[16].However,onlywiththe resultsofBlumenthal[10],in1953,didthetopicbecomeanewareaofknowledge knownasDG. The main challenge of DG at that time was to find necessary and sufficient conditions in order to decide if a given matrix is a distance matrix D. That is, decidewhetherornotagivenmatrixDisasymmetricmatrixsuchthatthereisan integernumberK andasetofpointsinRK,wheretheEuclideandistancesbetween thesepointsareequaltotheentriesofthematrixD[51].Notethat,inthiscase,all distancesareconsideredknown. To the best of our knowledge, the first explicit mention of the fundamental problem of DG delineated above, where not all distances are known, was given byYemini[81],in1978.Inthiscase,theproblemmaybeharder. Another important moment in the history of DG is related to its application to the calculation of molecular structures, with the 1988 publication of Crippen and Havel’sbook[15],consideredpioneersofDGintheanalysisofproteinstructures. MoreinformationontheDGhistorycanbefoundin[52]. The first edited book fully dedicated to DG was published by Springer in 2013 [67]. ThebookbroughttogetherdifferentapplicationsandresearchersinDG.Inthe sameyear,inJune2013,thefirstinternationalworkshopdedicatedtoDGwasheld withspeakersfromvariousinternationalinstitutions(PrincetonUniversity,IBMTJ Watson Research Center, University of Cambridge, École Polytechnique, Institut Pasteur, École Normale Supérieure, SUTD-MIT International Design Center). The event also had the support of several international scientific societies and universities, indicating the importance of DG in many areas of knowledge (more detailsathttp://dga2013.icomp.ufam.edu.br/). v vi Preface TheinterestinDGasatopicofresearcharisesfromthewealthanddiversityof its applications, in addition to its mathematical depth and beauty. Recent surveys on DG highlighting the theory and applications can be found in [9, 18, 57]. For example, applications can be found in problems from astronomy, biochemistry, statistics,nanotechnology,robotics,andtelecommunications. Inastronomy,theproblemisrelatedtothedeterminationofstarpositionsusing information about the distances between some of them [60]. In biochemistry, the problem appears in the determination of three-dimensional structures of protein moleculesusingtheinformationobtainedfromnuclearmagneticresonance(NMR) experiments. In statistics, there are problems related to visualization of data [22] and dimensionality reduction [50]. In these cases, points and distances are given in a high dimensional space Rn and the problem is how represent them in a lower dimension,sayR2orR3,inordertohaveavisualideaofthedata.Thisapplicationis alsolinkedtoacurrenttopicofresearchcalledBigData[2,61]. Innanotechnology, the problem is similar to the problem in biochemistry, but on a “nano” scale [21,39]. There is a direct relationship between the application to robotics and the calculations related to molecular geometry [23,70]. That is, given a set of robotic arm lengths (distances), the problem is to find the locus of points that the robot armcanreach[68].Intelecommunications,theproblemisrelatedtothepositioning of a wireless sensor network, where the distances can be estimated by the amount ofpowernecessaryforperformingpeer-to-peersensorcommunication.Thefurther thesensors,themorepowerisnecessary.Sincebothsensorsknowhowmuchpower theyused,bothsensorscancomputetheirdistance.Anexampleofthisisforrouter positioning[24,81]. ThetheoreticalnatureandthewidevarietyofapplicationshaveresultedinDG becomingitsownresearchareainappliedmathematics,whichincludesfundamental concepts from mathematics (measures, norms, geometry, optimization, combina- torics, graph theory, symmetry, uncertainty) and computer science (algorithms, solvability,complexity). Campinas,SãoPaulo,Brazil CarlileLavor Palaiseau,France LeoLiberti Denver,CO,USA WeldonA.Lodwick Denver,CO,USA TiagoMendonçadaCosta March2017 Acknowledgements WewouldliketothanktheBrazilianresearchagenciesCNPq,CAPES,andFAPESP fortheirfinancialsupport,andProf.PauloJ.S.Silva(fromUniversityofCampinas) andProf.DouglasS.Gonçalves(fromFederalUniversityofSantaCatarina)fortheir importantcommentsandsuggestionsthatimprovethefinalversionofthebook. WealsothanktheBrazilianSocietyofComputationalandAppliedMathematics (SBMAC) for the opportunity to give a Distance Geometry course that resulted in thefirstversionofthismonographinPortuguese(http://www.sbmac.org.br/p_notas. php). vii Contents 1 Introduction ................................................................... 1 1.1 NotationandBasicConcepts............................................ 1 1.2 Outline.................................................................... 4 2 TheDistanceGeometryProblem(DGP)................................... 5 2.1 DefinitionoftheDGP.................................................... 5 2.2 NumberofSolutionsoftheDGP........................................ 6 2.3 ComplexityoftheDGP.................................................. 7 2.4 DGPInstances............................................................ 10 3 FromContinuoustoDiscrete................................................ 13 3.1 ContinuousOptimizationandtheDGP................................. 13 3.2 FinitenessoftheDGP.................................................... 15 3.3 VertexOrderfortheDGP................................................ 18 4 TheDiscretizableDistanceGeometryProblem(DDGP3)................ 21 4.1 DefinitionoftheDDGP3 ................................................ 21 4.2 ComplexityoftheDDGP3............................................... 25 4.3 TheBPAlgorithmfortheDDGP3 ...................................... 26 5 TheDiscretizableMolecularDistance GeometryProblem(DMDGP)............................................... 31 5.1 DefinitionoftheDMDGP............................................... 31 5.2 ComplexityoftheDMDGP ............................................. 34 5.3 DMDGPSymmetry ..................................................... 36 6 DistanceGeometryandMolecularGeometry............................. 41 6.1 TheDMDGPand3DProteinStructures................................ 41 6.2 OrderinginProteinMolecules .......................................... 43 6.3 ThePolynomialPerformanceoftheBPAlgorithm.................... 46 7 Conclusion..................................................................... 49 References.......................................................................... 51 ix Chapter 1 Introduction This monograph introduces distance geometry, based on problems related to 3D protein structure calculations using distance information provided by Nuclear MagneticResonance(NMR)experiments.Ourpresentationisasshortaspossible, withexercisestohelpthereadertobetterunderstandthecontents. Thetextisbasedonthecombinatorialstructureofdistancegeometryproblems, differentlyfromtheclassicalapproach,whichfocusesoncontinuousmethods.This discreteapproachisimportantfortheunderstandingofthemainconceptsinvolved andprovidesanewwaytoconsidertheproblem. Curiously,thiscombinatorialview aroseinthequantumcomputingcontext,whenGrover’salgorithm[3,33,42]was proposedasamethodtosolveadistancegeometryproblemrelatedtothecalculation ofmolecularstructures[41]. 1.1 NotationandBasicConcepts Itisassumedthatanelementaryknowledgeofanalyticgeometrywillbesufficient tofollowthetext.Obviously,thereaderwillalsoneedtohavesomefamiliaritywith themathematicallanguageinvolvingbasicconceptsfromlogic,sets,andfunctions. Next, we list the main concepts that will be used in this text with the associated notation. (cid:129) Sets – x2AmeansthatxisanelementofsetA. – A (cid:2) B means that the set A is contained in B, that is, all elements in A are elementsofB. – A\BDfx:x2Aandx2Bgisthesetformedbytheelementsthatareboth inAandB. ©TheAuthor(s)2017 1 C.Lavoretal.,AnIntroductiontoDistanceGeometryappliedtoMolecular Geometry,SpringerBriefsinComputerScience,DOI10.1007/978-3-319-57183-6_1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.