PANTONESolidCoated313C An introduction to Characteristic Classes C C M M Y Y CM CM MY MY CY CY CMY CMY K Jean-Paul Brasselet K a a impa ISBN 978-65-89124-15-3 impa Institutode Matemática PuraeAplicada 9 786589 124153 Jean-Paul Brasselet An introduction to Characteristic Classes AnintroductiontoCharacteristicClasses Primeiraimpressão,julhode2021 Copyright©2021Jean-PaulBrasselet. PublicadonoBrasil/PublishedinBrazil. ISBN 978-65-89124-15-3 MSC(2020)Primary: 14C17,Secondary:55R40,57R20,57R25,58K45 CoordenaçãoGeral CarolinaAraujo Produção BooksinBytes Capa IzabellaFreitas&JackSalvador RealizaçãodaEditoradoIMPA IMPA www.impa.br EstradaDonaCastorina,110 [email protected] JardimBotânico 22460-320RiodeJaneiroRJ Contents Preface vi 1 Introduction 1 1.1 Manifoldsandpseudomanifolds . . . . . . . . . . . . . . . . . . . . 1 1.2 Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.1 Orientationofpseudomanifolds . . . . . . . . . . . . . . . . 6 1.2.2 Orientationofmanifolds . . . . . . . . . . . . . . . . . . . . 7 1.2.3 Orienteddoublecovering . . . . . . . . . . . . . . . . . . . 9 1.3 Poincaréisomorphism(manifolds) . . . . . . . . . . . . . . . . . . 10 1.4 Boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.5 TheGaußmap(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.5.1 GeneralisationoftheGaußmap . . . . . . . . . . . . . . . . 16 1.6 Fibrebundles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.6.1 Fibrebundles . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.6.2 Vectorbundles . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.6.3 Examplesoffibrebundles–realcase . . . . . . . . . . . . . 18 1.6.4 Examplesoffibrebundles–complexcase . . . . . . . . . . 20 2 The“Euler–Poincaré”characteristic 24 2.1 TheGreekperiod . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2 Maurolico–Descartes–Euler . . . . . . . . . . . . . . . . . . . . . 26 2.2.1 Maurolico(1494–1575) . . . . . . . . . . . . . . . . . . . . 26 2.2.2 Descartes(1596–1650) . . . . . . . . . . . . . . . . . . . . 26 2.2.3 Euler(1707–1783) . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.4 Descartes’TheoremisequivalenttoEulerFormula . . . . . . 29 2.2.5 ProofsofEulerFormula . . . . . . . . . . . . . . . . . . . . 29 2.2.6 Thegeneralization: Euler–Poincarécharacteristic . . . . . . . 29 2.3 Poincaré–HopfTheorem . . . . . . . . . . . . . . . . . . . . . . . . 30 2.3.1 Theindexofavectorfield. . . . . . . . . . . . . . . . . . . . 31 2.3.2 RelationwiththeGaußmap . . . . . . . . . . . . . . . . . . 36 2.4 ProofofPoincaré–HopfTheorem . . . . . . . . . . . . . . . . . . . 40 2.4.1 Thesmoothcasewithoutboundary . . . . . . . . . . . . . . 40 2.4.2 Thesmoothcasewithboundary . . . . . . . . . . . . . . . . 44 3 Characteristicclasses: smoothcase 47 3.1 Generalobstructiontheory . . . . . . . . . . . . . . . . . . . . . . . 48 3.1.1 Indexofanr-frame . . . . . . . . . . . . . . . . . . . . . . 50 3.1.2 Generalobstructiontheory . . . . . . . . . . . . . . . . . . . 52 3.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.2.1 Stiefel–Whitneyclasses . . . . . . . . . . . . . . . . . . . . 56 3.2.2 Chernclasses . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4 Singularvarieties 64 4.1 Stratifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.2 Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.3 Whitneystratifications . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.4 FundamentalpropertiesofWhitneystratifications . . . . . . . . . . 69 4.5 Poincaréhomomorphism . . . . . . . . . . . . . . . . . . . . . . . 71 4.6 Alexanderisomorphism . . . . . . . . . . . . . . . . . . . . . . . . 72 4.6.1 Cellulartubes . . . . . . . . . . . . . . . . . . . . . . . . . 72 5 Poincaré–HopfTheorem(singularvarieties) 75 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.2 Whytheradialvectorfields? . . . . . . . . . . . . . . . . . . . . . 76 5.3 Whythedualcellsdecomposition? . . . . . . . . . . . . . . . . . . 80 5.4 Radialvectorfields . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.4.1 Radialvectorfields–Localconstruction . . . . . . . . . . . 81 5.4.2 Radialvectorfields–Globalconstruction . . . . . . . . . . . 84 5.4.3 Poincaré–HopfTheoremforsingularvarieties. . . . . . . . . 86 6 Schwartzclasses 88 6.1 Radialextensionofframes. . . . . . . . . . . . . . . . . . . . . . . 89 6.1.1 Localradialextensionofr-frames . . . . . . . . . . . . . . . 89 6.1.2 Globalradialextensionofr-frames . . . . . . . . . . . . . . 90 6.2 Obstructioncocyclesandclasses . . . . . . . . . . . . . . . . . . . 92 7 MacPhersonclasses 93 7.1 Nashtransformation . . . . . . . . . . . . . . . . . . . . . . . . . . 93 7.2 localEulerobstruction . . . . . . . . . . . . . . . . . . . . . . . . . 95 7.3 Constructiblesetsandfunctions . . . . . . . . . . . . . . . . . . . . 97 7.4 Matherclasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 7.5 MacPhersonclasses . . . . . . . . . . . . . . . . . . . . . . . . . . 98 8 Developmentsandperspectives 103 8.1 Remarksandcomplements. . . . . . . . . . . . . . . . . . . . . . . 103 8.2 AboutthefundamentalChernarticle. . . . . . . . . . . . . . . . . . 104 8.3 ThepolarvarietiesandMatherclasses. . . . . . . . . . . . . . . . . 106 8.4 MoredevelopmentsofChernclassesforsingularvarieties . . . . . . 106 8.4.1 Bivariantclasses . . . . . . . . . . . . . . . . . . . . . . . . 106 8.4.2 Othergeneralizationsofclassesinthesingularcase. . . . . . 107 8.4.3 Hirzebruchformalism . . . . . . . . . . . . . . . . . . . . . 108 8.5 TheEulerlocalobstruction . . . . . . . . . . . . . . . . . . . . . . 108 8.6 Someapplicationsinothermathematicaldomainsandintheoretical physics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Bibliography 110 IndexofAuthors 117 Index 120 List of Figures 1.1 Triangulationsofthesphere. . . . . . . . . . . . . . . . . . . . . 2 1.2 TheWhitneyumbrella. . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Thepinchedtorusandthesuspensionofthetorus . . . . . . . . . 6 1.4 Compatibleorientations. . . . . . . . . . . . . . . . . . . . . . . 7 1.5 Thedoublecone. . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.6 Dualcells1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.7 Dualcells2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1 ThePythagoraspolyhedra. . . . . . . . . . . . . . . . . . . . . . 25 2.2 TheTheaetetuspolyedra . . . . . . . . . . . . . . . . . . . . . . . 25 2.3 Hexahedra,(6faces)and5,6,7ou8vertices . . . . . . . . . . . . 28 2.4 ThemapSn 1 Rn 0 . . . . . . . . . . . . . . . . . . . . . . 33 (cid:0) ! nf g 2.5 Vectorfieldsindimension2. . . . . . . . . . . . . . . . . . . . . 34 2.6 Singularityofsecondtype(n 2). . . . . . . . . . . . . . . . . . 35 D 2.7 The"-neighbourhoodofM . . . . . . . . . . . . . . . . . . . . . 38 2.8 Thevectorfieldw.x/. . . . . . . . . . . . . . . . . . . . . . . . . 39 2.9 Vectorfieldsonthesphereandthetorus. . . . . . . . . . . . . . . 41 2.10 BarycentersandbarycentricsubdivisionK . . . . . . . . . . . . . 42 0 2.11 TheHopfvectorfieldH inatriangle(cid:140)(cid:27)0;(cid:27)1;(cid:27)2(cid:141): . . . . . . . . 42 2.12 Poincaré–HopfTheoremfortherealpr(cid:128)ojec(cid:128)tive(cid:128)plane. . . . . . . . 43 3.1 Themappr v.r/ Sk 1 V .Kn/.. . . . . . . . . . . . . . . 50 2 (cid:0) r (cid:14) W ! 4.1 Thepinchedtorusandthesuspensionofthetorus . . . . . . . . . 65 4.2 Astratification. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.3 Whitneycondition(a) . . . . . . . . . . . . . . . . . . . . . . . . 67 4.4 Whitneycondition(b) . . . . . . . . . . . . . . . . . . . . . . . . 68 4.5 Stratificationofthecone. . . . . . . . . . . . . . . . . . . . . . . 69 4.6 Stratificationsofthe(realpartofthe)varietyV. . . . . . . . . . . 69 4.7 Distinguishedneighbourhood. . . . . . . . . . . . . . . . . . . . 71 5.1 M.-H.Schwartz’scounterexample. . . . . . . . . . . . . . . . . . 77 5.2 Vectorfieldsonthepinchedtorus . . . . . . . . . . . . . . . . . . 79 5.3 Parallelextension. . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.4 transversevectorfield. . . . . . . . . . . . . . . . . . . . . . . . 82 5.5 A“tapered”neighbourhood. . . . . . . . . . . . . . . . . . . . . 83 5.6 Localradialextensionofavectorfield . . . . . . . . . . . . . . . 84 5.7 Theradialvectorfield . . . . . . . . . . . . . . . . . . . . . . . . 86 7.1 TheNashtransformation. . . . . . . . . . . . . . . . . . . . . . . 96 Preface Definingthebirthofcharacteristicclassesisnotclear. WhoofPythagoras,Plato,Maurolico,Descartes,Euler,Poincaré,Hopf... can beconsideredasthecreatorofthecharacteristicclasses? ThisisthereasonwhyIinviteyouduringthecourseforacruiseinwhichwe willmeetthesepeopleandothers... whowillsharetheircontributionwithus. Our cruise starts on the island of Samos, Greece in 570 BC where we meet Pythagorasplayingwithrepresentationsofthetetrahedron,thehexahedron(cube) and the octahedron. Thales comes from Miletus not far from the island to play with us. We leave the island for Athens where we meet Theaetetus, less known thanPlato,althoughheisthefinderofthe5platonicpolyhedra. After playing with the polyhedra, through the Mediterranean Sea we leave GreeceforSicilywherewehaveawalkontheSyracusebeachwithArchimedes in230BC.StillinSicily,inMessina,muchlater,inDecember26,1537,wemeet an Italian priest, Francesco Maurolico who, apparently does not care of the war between Charles V and the Pope against the Turks and prefers to spend his time describingtheplanarrepresentationsoftheplatonicpolyhedra. Maurolicotellsus thatheobservedthatthe5platonicpolyhedrasatisfytheformula: #vertices #edges #faces 2: (cid:0) C D C The boat takes us to Stockholm, in January 1650, where Descartes is invited by the Queen Christina of Sweden. Descartes is very ill. He entrusts us with his manuscripts, containing among other things a “nice theorem”. When Descartes dies,fewdayslater,wetaketheboatwhichtransportshismanuscriptstoParisin asafe. ArrivinginParis,theboatsinks(doyouknowhowtoswim?). Fortunately, after3daysintheriverSeine,thesafeisrecovered,allowinglaterLeibniztocopy Descartes’manuscriptsandtotakethesecopiestoHanoverinGermany. Still in Germany, in 1750 we go to the Jean-Sebastien Bach’s funerals. Then in Berlin, on November 14, we meet Euler who just sent a letter to his friend Goldbachsayingthathediscoveredtheformulathatnowbearshisname,thisfor allconvexpolyhedrainR3. Theformulaappearsnowinfactasacorollaryofthe theoremthatDescartesshowedus. We return in Paris, in 1885, for the Victor Hugo’s funerals. Poincaré is there and he says us that he has been able to generalize the Euler characteristic for all dimensions. We stay in Paris to follow the construction of the Eiffel Tower and ofthefirstmetroline. WemeetagainPoincaréin1899whotellsusthatthechar- acteristic, now called Euler–Poincaré, is the obstruction to the construction of a vectorfieldtangenttoacompactsmoothsurface. BackinBerlin,in1927,wegotothecinematoseethenewsilentfilm“Metropo- lis”byFritzLang. WearesittingnexttoHopfwhoinvitesustoknowhowhegen- eralizesthePoincaréresultforalldimensions,obtainingthenowcalledPoincaré– Hopftheorem. HopfadviseshisstudentStiefeltostudytheobstructiontoconstructanr-frame tangenttoasmoothmanifold. Forus,wecontinueourcruise,thistimeontheliner “Normandie”, on May 29, 1935 for its inaugural crossing to USA. In a festive atmosphere,hewinsthe“blueribbon”. WereachWeston,whereWhitneyshows usaroundhismarveloushouse. HetakesustoclimbthepeaksofMassachusetts (don’tyoufeeldizzy?). Whitneytellsusthathehasasimilarconstructiontothe Stiefel’sone. TheStiefel–Whitneyclassesareborn. WestayintheUnitedStatesduringWWIIandCherninvitesustoPrincetonin 1946toreadushispoemsandtellushowheconstructs,inthecomplexsetting,the “Chern classes” in so many ways, not just using the obstruction theory but also, amongothers,bydecompositionofGrassmannianmanifoldsintoSchubertcycles and by differential forms. Chern gets us so excited that we forget our cruise. He suggestsustofollowevolutionofthetheories: Chern–Gauß–Bonnet,Chern–Weil, Chern–Simons. BackinFrance,in1965,wetakethetrainfromParistoLilleinwhichwemeet a woman making strange drawings on sheets of paper. Marie-Hélène Schwartz explains to us that she understood why, in general, the Poincaré–Hopf Theorem does not work for singular varieties and, radiant, she explains to us that we must