ebook img

An Introduction to Atmospheric Modeling [Colo. State Univ. Course, AT604] PDF

362 Pages·2004·2.48 MB·english
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview An Introduction to Atmospheric Modeling [Colo. State Univ. Course, AT604]

An Introduction to Atmospheric Modeling Instructor: D. Randall AT604 Department of Atmospheric Science Colorado State University Fall, 2004 i Announcements Subject: A practical introduction to numerical modeling of the atmo- sphere. Text: Class notes, available at the class website: http://kiwi.at- mos.colostate.edu/group/dave/at604.html Course grade: 1/4 on homework, 1/4 on each of two midterms (closed book, in class), and 1/4 on final (closed book, in class) The final will emphasize the latter part of the course, and will be held during finals week. Access to instructor: As you may know, I have posted office hours, but students in this class are welcome to come to me with questions any time, provided only that I am not actually busy with someone else. Teaching assistant: We are fortunate to have Jonathan Vigh as a TA for this course. He will grade the homework and will be available to answer questions on a schedule which he will make known to you. He may also organized other activities, which will be an- nounced separately. Computing: Some of the homework will involve writing computer pro- grams, plotting results, etc.You can use any computing lan- guage or plotting software you want. Although you are certainly encouraged to ask questions about the homework, neither I nor the TA will help with debugging your programs. Auditing: Auditing is permitted, provided that you audit officially by fill- ing out the appropriate form. Auditors are required to attend class but are not required to hand in homeworks or take exams. Keep in mind, however, that, like skiing or swimming or bicy- cling, numerical modeling is learned largely by doing. Schedule: Classes will be missed occasionally. A calendar will be distrib- uted. An Introduction to Atmospheric Modeling ii General References Arakawa, A., 1988: Finite-difference methods in climate modeling. Physically-based modelling and simulation of climate and climatic change - Part I, M. E. Schlesing- er (ed.), 79-168. Arfken, G., 1985: Mathematical methods for physicists. Academic Press, 985 pp. Chang, J., 1977: General circulation models of the atmosphere. Meth. Comp. Phys., 17, Academic Press, 337 pp. Durran, D. R., 1999: Numerical methods for wave equations in geophysical fluid dynam- ics. Springer, 465 pp. Haltiner, G. J., and R. T. Williams, 1980: Numerical prediction and dynamic meteorology. J. Wiley and Sons, 477 pp. Kalnay, E., 2003: Atmospheric modeling, data assimilation, and predictability. Cam- bridge Univ. Press, 341 pp. Manabe, S., ed., 1985: Issues in atmospheric and oceanic modeling, Part A: Climate dy- namics. Adv. in Geophys., 28, 591 pp. Manabe, S., ed., 1985: Issues in atmospheric and oceanic modeling, Part B: Weather dy- namics. Adv. in Geophys., 28, 432 pp. Mesinger, F., and A. Arakawa, 1976: Numerical methods used in atmospheric models. GARP Publ. Ser. No. 17, 64 pp. Randall, D. A., Ed., 2000: General Circulation Model Development. Past, Present, and Future. Academic Press, 807 pp. Richtmeyer, R. D., and K. W. Morton, 1967: Difference methods for initial value problems. Wiley Interscience Publishers, New York, 405 pp. Washington, W. M., and C. L. Parkinson, 1986: An introduction to three-dimensional climate modeling. University Science Books, Mill Valley, New York, 422 pp. An Introduction to Atmospheric Modeling iii Preface The purpose of this course is to provide an introduction to the methods used in numerical modeling of the atmosphere. The ideas presented are relevant to both large- scale and small-scale models. Numerical modeling is one of several approaches to the study of the atmosphere. The others are observational studies of the real atmosphere through field measurements and remote sensing, laboratory studies, and theoretical studies. Each of these four approaches has both strengths and weaknesses. In particular, both numerical modeling and theory involve approximations. In theoretical work, the approximations often involve extreme idealizations, e.g. a dry atmosphere on a beta plane, but on the other hand solutions can sometimes be obtained in closed form with a pencil and paper. In numerical modeling, less idealization is needed, but in most cases no closed form solution is possible. Both theoreticians and numerical modelers make mistakes, from time to time, so both types of work are subject to errors in the old-fashioned human sense. Perhaps the most serious weakness of numerical modeling, as a research approach, is that it is possible to run a numerical model built by someone else without having the foggiest idea how the model works or what its limitations are. Unfortunately, this kind of thing happens all the time, and the problem is becoming more serious in this era of “community” models with large user groups. One of the purposes of this course is to make it less likely that you, the students, will use a model without having any understanding of it. This introductory survey of numerical methods in the atmospheric sciences is designed to be a practical, “how to” course, which also conveys sufficient understanding so that after completing the course students are able to design numerical schemes with useful properties, and to understand the properties of schemes that they may encounter out there in the world. The first version of these notes, put together in 1991, was heavily based on the class notes developed by Prof. A. Arakawa at UCLA, as they existed in the early 1970s, and this influence is still apparent in the current version, particularly in Chapters 2 and 3. A lot of additional material has been incorporated, mainly reflecting developments in the field since the 1970s. The explanations and problems have also been considerably revised and updated. The teaching assistants for this course have made major improvements in the material and its presentation, in addition to their help with the homework and with questions outside of class. I have learned a lot by extending and refining these notes, and also through questions and feedback from the students. The course has certainly benefitted An Introduction to Atmospheric Modeling iv considerably from such student input. Finally, Michelle McDaniel has spent countless hours patiently assisting in the production of these notes. She created the formatting that you see, and organized the notes into a “book.” An Introduction to Atmospheric Modeling v Preliminaries i CHAPTER 1 Introduction 1 What is a model? .........................................................................................................1 Fundamental physics, mathematical methods, and physical parameterizations .........3 Numerical experimentation .........................................................................................5 CHAPTER 2 Basic Concepts 7 Finite-difference quotients ..........................................................................................7 Difference quotients of higher accuracy ...................................................................11 Extension to two dimensions ....................................................................................18 An example of a finite difference-approximation to a differential equation ............21 Accuracy and truncation error of a finite-difference scheme. ..................................24 Discretization error and convergence .......................................................................25 Interpolation and extrapolation .................................................................................28 Stability .....................................................................................................................29 The effects of increasing the number of grid points .................................................38 Summary ...................................................................................................................39 Problems ..............................................................................................................42 CHAPTER 3 A Survey of Time-Differencing Schemes for the Oscillation and Decay Equations 43 Introduction ...............................................................................................................43 Non-iterative schemes. ..............................................................................................43 Explicit schemes ( ).........................................................................................47 Implicit schemes..............................................................................................49 Iterative schemes .......................................................................................................51 Finite-difference schemes applied to the oscillation equation ..................................52 Non-iterative two-level schemes for the oscillation equation ...............................54 Iterative two-level schemes for the oscillation equation ......................................57 The leapfrog scheme for the oscillation equation ...............................................58 The second-order Adams Bashforth Scheme (m=0, l=1) for the oscillation equation ..............................................................67 A survey of time differencing schemes for the oscillation equation ......................68 Finite-difference schemes for the decay equation ....................................................69 Damped oscillations ..................................................................................................72 Nonlinear damping ...................................................................................................72 An Introduction to the General Circulation of the Atmosphere vi Summary ...................................................................................................................77 A Proof that the Fourth-Order Runge-Kutta Scheme has Fourth-Order Accuracy........................................................................ 78 Problems ..............................................................................................................83 CHAPTER 4 A closer look at the advection equation 85 Introduction ...............................................................................................................85 Conservative finite-difference methods ....................................................................88 Examples of schemes with centered space differencing ...........................................93 Computational dispersion .......................................................................................100 The effect s of fourth-order space differencing on the phase speed .......................107 Space-uncentered schemes ......................................................................................108 Hole filling ..............................................................................................................112 Flux-corrected transport ..........................................................................................113 Lagrangian schemes ................................................................................................116 Semi-Lagrangian schemes ......................................................................................118 Two-dimensional advection ....................................................................................120 Summary .................................................................................................................123 Problems ............................................................................................................123 CHAPTER 5 Boundary-value problems 127 Introduction .............................................................................................................127 Solution of one-dimensional boundary-value problems .........................................128 Jacobi relaxation .....................................................................................................130 Gauss-Seidel relaxation ..........................................................................................133 Over-relaxation .......................................................................................................134 The alternating-direction implicit method ..............................................................135 Multigrid methods ...................................................................................................135 Summary .................................................................................................................136 CHAPTER 6 Diffusion 141 Introduction .............................................................................................................141 A simple explicit scheme ........................................................................................143 An implicit scheme .................................................................................................144 The DuFort-Frankel scheme ...................................................................................146 Summary .................................................................................................................147 An Introduction to the General Circulation of the Atmosphere vii Problems ............................................................................................................148 CHAPTER 7 Making Waves 149 The shallow-water equations ..................................................................................149 The wave equation ..................................................................................................150 Staggered grids ........................................................................................................152 Numerical simulation of geostrophic adjustment. as a guide to grid design ..........154 Time-differencing schemes for the shallow-water equations .................................160 Summary and conclusions ......................................................................................167 Problems ............................................................................................................168 CHAPTER 8 Schemes for the one-dimensional nonlinear shallow-water equations 169 Properties of the continuous equations ...................................................................169 Space differeencing .................................................................................................171 Summary .................................................................................................................178 Problems ............................................................................................................180 CHAPTER 9 Vertical Differencing for Quasi-Static Models 183 Introduction .............................................................................................................183 Choice of equation set .............................................................................................183 General vertical coordinate .....................................................................................184 The equation of motion and the HPGF.................................................................. 188 Vertical mass flux for a family of vertical coordinates ......................................189 Discussion of particular vertical coordinate systems ..............................................191 Height ...........................................................................................................192 Pressure ........................................................................................................196 Log-pressure .................................................................................................197 The σ-coordinate ..........................................................................................197 More on the HPGF in σ-coordinates .....................................................................200 Hybrid sigma-pressure coordinates .................................................................201 The η-coordinate ....................................................................................................202 Potential temperature .....................................................................................203 Entropy .........................................................................................................206 Hybrid σ-θ coordinates ................................................................................206 Summary of vertical coordinate systems ..........................................................206 Vertical staggering ..................................................................................................208 Conservation properties of vertically discrete models using -coordinates .............210 An Introduction to the General Circulation of the Atmosphere viii Summary and conclusions ......................................................................................221 CHAPTER 10 Aliasing instability 223 Aliasing error ..........................................................................................................223 Advection by a variable, non-divergent current .....................................................227 Fjortoft’s Theorem ..................................................................................................236 Kinetic energy and enstrophy conservation in two-dimensional non-divergent flow ............................................................................................241 Angular momentum conservation........................................................................... 251 Conservative schemes for the two-dimensional shallow water equations with rotation ......................................................................................................252 The effects of time differencing on energy conservation .......................................257 Summary .................................................................................................................259 Problems ............................................................................................................260 CHAPTER 11 Finite Differences on the Sphere 261 Introduction .............................................................................................................261 Coordinate systems and map projections ................................................................262 Latitude-longitude grids and the “pole problem” ...................................................267 Kurihara’s grid ........................................................................................................273 The Wandering Electron Grid .................................................................................274 Spherical geodesic grids .........................................................................................274 Summary .................................................................................................................280 CHAPTER 12 Spectral Methods 281 Introduction .............................................................................................................281 Spectral methods on the sphere ...............................................................................289 The “equivalent grid resolution” of spectral models ..............................................294 Semi-implicit time differencing ..............................................................................295 Conservation properties and computational stability ..............................................296 Moisture advection ..................................................................................................296 Physical parameterizations ......................................................................................297 Summary .................................................................................................................297 Problems ............................................................................................................299 An Introduction to the General Circulation of the Atmosphere

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.