ebook img

AN INTRODUCTION TO ASTROPHYSICS AND COSMOLOGY BY ANDREW NORTON PDF

239 Pages·2012·4.36 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview AN INTRODUCTION TO ASTROPHYSICS AND COSMOLOGY BY ANDREW NORTON

Contents AN INTRODUCTION TO ASTROPHYSICS AND COSMOLOGY BY ANDREW NORTON Chapter 1 Manipulating numbers and symbols 7 Introduction 7 1.1 Algebraandphysicalquantities 7 1.1.1 Manipulating algebraic expressions 7 1.1.2 Rearranging algebraic equations 9 1.1.3 Solvingsimultaneous equations 10 1.2 Powers,rootsandreciprocals 10 1.2.1 Combiningpowers 11 1.2.2 Solvingpolynomial equations 12 1.3 Imaginary numbers 13 1.4 Unit(dimensional) analysis 14 1.5 Functionnotation 14 1.6 Powersoftenandscientificnotation 15 1.7 Significantfigures 16 1.8 Experimental uncertainties 17 1.8.1 Typesofuncertainty 17 1.8.2 Estimatingrandomuncertainties 19 1.8.3 Uncertainties whencounting randomlyoccurring events 20 1.8.4 Theuncertainty inameanvalue 21 1.8.5 Combininguncertainties inasinglequantity 21 1.9 Logarithmsandlogarithmicfunctions 22 1.10 Graphs 24 1.10.1 Straight-line graphs 25 1.10.2 Makingcurvedgraphs straight 27 1.11 Angularmeasure 28 1.12 Trigonometry 29 1.12.1 Trigonometric ratios 29 1.12.2 Thesineruleandcosinerule 30 1.12.3 Trigonometric functions 31 1.12.4 Inversetrigonometric functions 33 1.13 Vectors 34 1.13.1 Vectorcomponents 34 1.13.2 Additionandsubtraction ofvectors 35 1 Contents 1.13.3 Positionanddisplacement vectors 36 1.13.4 Unitvectors 36 1.13.5 Thescalarproduct 37 1.13.6 Thevectorproduct 37 1.14 Coordinates 38 1.15 Scalarandvectorfields 40 1.16 Matrices 42 1.16.1 Combiningmatrices 42 1.16.2 Specialtypesofmatrices 44 1.16.3 Transposing matrices 45 1.16.4 Thedeterminant ofamatrix 45 1.16.5 Adjointandreciprocal matrices 46 Chapter 2 Stars and planets 51 Introduction 51 2.1 Measuringstarsandplanets 51 2.2 Unitsinastrophysics 53 2.3 Positions, distances andvelocities 54 2.3.1 Observingthepositions ofstars 54 2.3.2 Measuringthevelocities ofstars 58 2.4 Spectraandtemperatures 59 2.5 Luminositiesandfluxes 63 2.6 Astronomicalmagnitudes 63 2.7 Coloursandextinction 66 2.8 TheHertzsprung–Russell diagram 67 2.9 Massesofstars 69 2.10 Lifecyclesofstars 76 2.11 Stellarend-points 81 2.12 Planetarystructure 81 2.12.1 Terrestrialplanets 81 2.12.2 Giantplanets 83 2.13 Extrasolarplanetsandhowtofindthem 86 2.14 Astronomicaltelescopes 89 2.14.1 Telescopecharacteristics 89 2.14.2 Telescopesinotherpartsoftheelectromagneticspectrum 92 2 Contents Chapter 3 Galaxies and the Universe 97 Introduction 97 3.1 TheMilkyWay–ourgalaxy 97 3.2 Othergalaxies 98 3.2.1 Classification ofgalaxies 98 3.2.2 Originandevolution ofgalaxies 101 3.2.3 Measuring galaxyproperties 101 3.3 Thedistances toothergalaxies 102 3.4 Activegalaxies 105 3.4.1 Thespectraofactivegalaxies 105 3.4.2 Typesofactivegalaxy 110 3.5 Thespatialdistribution ofgalaxies 113 3.6 Thestructure oftheUniverse 115 3.7 Theevolution oftheUniverse 120 3.8 Observational cosmology 123 3.9 Cosmological questions 125 Chapter 4 Calculus 129 Introduction 129 4.1 Differentiation andcurvedgraphs 129 4.2 Differentiation ofknownfunctions 131 4.3 Theexponential function 133 4.4 Thechainrule 135 4.5 Logarithmicdifferentiation 138 4.6 Expansions 139 4.7 Partialdifferentiation 142 4.8 Differentiation andvectors 143 4.9 Differential equations 144 4.10 Integration andcurvedgraphs 146 4.11 Integration ofknownfunctions 147 4.12 Integration bysubstitution 149 4.13 Integration byparts 152 4.14 Multipleintegrals 153 3 Contents Chapter 5 Physics 159 Introduction 159 5.1 Describingmotion 159 5.1.1 Motioninonedimension 159 5.1.2 Motionintwoorthreedimensions 161 5.1.3 Periodicmotion 162 5.2 Newton’slaws 163 5.2.1 Newton’slawsofmotion 164 5.2.2 Newton’slawofgravitation 165 5.3 Relativisticmotion 166 5.4 Predictingmotion 168 5.4.1 Work,energy, powerandmomentum 168 5.4.2 Relativisticmechanics 170 5.5 Rotationalmotion 171 5.6 Propertiesofgases 174 5.7 Atomsandenergylevels 178 5.7.1 Atomicstructure 178 5.7.2 Photonsandenergy levels 180 5.8 Quantumphysics 184 5.8.1 Wavemechanics 185 5.8.2 Quantummechanicsinatoms 188 5.9 Quantumphysicsofmatter 191 5.9.1 Quantumgases 191 5.9.2 Nuclearphysics 194 5.9.3 Particlephysics 199 5.10 Electromagnetism 201 5.10.1 Electricityandmagnetism 202 5.10.2 Electromagnetic waves 203 5.10.3 Spectra 206 5.10.4 Opacityandopticaldepth 210 Solutions 219 4 Introduction In order to successfully study one or both of the OpenUniversity’s Level3 courses, S382Astrophysics orS383TheRelativistic Universe, youshouldalready be familiar withvarious topics in cosmology, astronomy, planetary science, physics andmathematics. Thelevelofskills, knowledge andunderstanding that weexpect youtohavewhenyouembarkoneither ofthesecourses isequivalent totheend-points oftheOU’sLevel2courses: S282Astronomy, S283Planetary Science and theSearch for Life, SXR208Observing theUniverse, S207The PhysicalWorld andMST209Mathematical MethodsandModels. ToascertainwhetherornotyoumeettherequiredlevelbeforeembarkingonS382 and/or S383youshould workthrough thedocument entitled AreYouReadyFor S382 orS383? whichisavailable from the Courses website. If, asaresult of attemptingthequestions inthatdocument,yourealisethatyouneedtoreviseyour skills, knowledge andunderstanding incertain areas ofmathematics, physics, cosmology, astronomy andplanetary science, thenyoushouldstudy therelevant chapters ofthisdocument carefully. There are fivemain chapters to this document – one each to introduce the astronomy andplanetary science, thecosmology andthephysics background, plustwochaptersofmathematics. Itisimportanttonotethat,becausemostofthis document revisits concepts andphenomena thatarecovered indetail inLevel2 OpenUniversity courses, the treatment here ismuchlessrigorous than inthe courses themselves. Forthe mostpart, the subjects covered here aremerely presented toyouratherthandevelopedgradually throughdetailed argument. This istoenable youtogetrapidly ‘tothepoint’ andappreciate thekeyinformation you need inorder to understand whatfollows, and to allow you to progress quickly tothemainsubstance oftheLevel3courses. 5 Introduction Acknowledgements Thematerialinthisdocument hasbeendrawnfromthephysics, mathsand astronomy thatistaughtinvarious otherOUcourses, including S282,S283, SXR208,S207,S103andS151. Theauthors oftherelevantparts ofthose courses: David Adams, John Bolton, David Broadhurst, Jocelyn Bell Burnell, DerekCapper, AlanCayless, AndrewConway,AlanCooper, Dan Dubin, AlanDurrant, TonyEvans, Stuart Freake, Iain Gilmour, Simon Green, IainHalliday, CaroleHaswell, KeithHiggins, KeithHodgkinson, AnthonyJones,BarrieJones, MarkJones,SallyJordan, UlrichKolb,Robert Lambourne, RayMackintosh, LowryMcComb,JoyManners,DavidMartin, PatMurphy, Andrew Norton, LesleyOnuora, John Perring, Michael de Podesta, Shelagh Ross, DavidRothery, SeanRyan, IanSaunders, Mark Sephton, Richard Skelding, TonySudbery, Elizabeth Swinbank, John Zarnecki andStanZochowskiaregratefully acknowledged, alongwiththe othermembersoftheteamsresponsible forthosecourses. Gratefulacknowledgement isalsooffered toCarolinCrawfordforcritically reading andAmandaSmithforproof-reading thisdocument, although any remaining errorsaretheresponsibility oftheeditor. Grateful acknowledgement ismadetothe following sources offigures: Figure1.4(Photograph ofJupiter): NASA/SciencePhotoLibrary; Figure 1.4(Photograph oftheEarth): NASA;Figure1.4(Photograph ofagalaxy): TheRegents, UniversityofHawaii;Figure2.2: TillCredner, Allthesky.com; Figure 2.29: Observatoire deParis; Figure2.31: SKorzennik, Harvard UniversitySmithsonianCenterforAstrophysics; Figure3.10: Lee,J.C.etal. (2002) ‘Theshape ofthe relativistic Iron KαLinefrom MCG6-30-15 measured withtheChandra highenergy transmission grating spectrometer and theRossi X-Raytiming explorer’, Astrophysical Journal, Vol 570. c TheAmerican Astrophysical Society; Figure3.13: LeGrandAtlasde (cid:13) l’Astronomie 1983. Encyclopaedia Universalis; Figure3.14: W.N.Colley and E. Turner (Princeton University), J. A. Tyson (Bell Labs, Lucent Technologies) and NASA;Figure 3.17: Adapted from Landsberg, P.T. and Evans, D.A.Mathematical Cosmology. 1977, Oxford University Press;Figure3.21: AdaptedfromSchwarzschild, B.(1998) ‘VeryDistant Supernovae suggest that thecosmic expansion isspeeding up’, Physics Today, June 1998. American Institute ofPhysics; Figures 3.22and3.23: Bennett, C.L.etal. ‘FirstYearWilkinson Microwave Anisitrophy Probe (WMAP)Observations’, Astrophysical Journal SupplementSeries,Volume 148,Issue1. Every effort has been made to contact copyright holders. Ifany have been inadvertently overlooked wewillbepleased tomakethenecessary arrangements atthefirstopportunity. 6 Chapter 1 Manipulating numbers and symbols Introduction Inthischapter, wewillconcentrate onthevariousrulesformanipulating numbers and algebraic symbols, including how to manipulate equations containing fractions, powers,logarithms andtrigonometric functions, andhowtodealwith vectorsandmatrices. 1.1 Algebra and physical quantities Physical quantities, such asmassandposition, are commonly represented by algebraic symbolssuchasmorx. Wheneversuchsymbolsareused,itshouldbe recalledthattheycomprisetwoparts: anumericalvalueandanappropriate unitof measurement, such asm =3.4kgor x=6.0m. Theunits willgenerally be internationally recognized SIunits, although inastrophysics andcosmology, cgs unitsandotherlessconventional unitsareusedwhereconvenient. Quantities maybecombined using the standard operations of addition (+), subtraction ( ),multiplication ( )ordivision (/or ). Notethat theorderof − × ÷ addition ormultiplication isnotimportant; i.e. a+b= b+a,anda b= b a, × × buttheorderofsubtraction anddivisionis;i.e. a b = b a,anda/b = b/a. − 6 − 6 Wheneverquantities arecombined, theirunitsarecombined inthesameway. For example, ifp = mv,wheremassmismeasured inkgandspeedv ismeasured in metres persecond (m/s orm s−1), then their product p willhave units of kilograms timesmetrespersecond, orkgms−1,pronounced ‘kilogram metres persecond’. Iftwoquantities aretobeaddedorsubtracted, thentheymusthave thesameunits. (Unitanalysisisdiscussed inSection1.4.) Bothlowercase and upper case letters areused asalgebraic symbols, and in general willrepresent different quantities withdifferent units. Forinstance, g is often used to represent the acceleration due togravity near tothe Earth’s surface (9.81 m s−2), whilst G is the universal gravitational constant (6.67 10−11 Nm2 kg−2). Notealsothat(upper andlowercase)Greekletters × arefrequently usedassymbols forphysical quantities. Youwillsoon become familiarwiththelettersthatarecommonlyused. 1.1.1 Manipulating algebraic expressions Themostimportantruletonotewhenmanipulating algebraic expressions is: Algebraic symbols aremanipulated inthesamewayaspurenumbers and algebraic fractions aremanipulated inexactly thesamewayasnumerical fractions. 7 Chapter 1 Manipulating numbers and symbols Thefollowing examples illustrate someoftherules ofmanipulating algebraic expressions. Tomultiply one bracket byanother, multiply each term in the right-hand bracket byeachtermintheleft-hand one,takingcareful accountofthe signs,asinthefollowingtwocases: (a+b)(c+d)= a(c+d)+b(c+d) = ac+ad+bc+bd (a+b)(a b) = a(a b)+b(a b) = a2 ab+ba b2 = a2 b2 − − − − − − Exercise1.1 Multiplyoutthefollowing expressions toeliminate thebrackets. (a) t[2 (k/t2)] (b) (a 2b)2 − − n Tomultiply fractions, multiply thenumerators (top lines) together and then multiplythedenominators (bottomlines)together. Forexample, 2 3 = 6 = 1. 3 × 4 12 2 Soingeneral, a c ac = (1.1) b × d bd Todivide byafraction, multiply byitsreciprocal (i.e. bythefraction turned upsidedown). Forexample, 1 1 = 1 6 = 2. Soingeneral, 3 ÷ 6 3 × 1 a/b a c a d ad = = = (1.2) c/d b ÷ d b × c bc Inordertoaddorsubtract twofractions, itisnecessary forthembothtohavethe samedenominator. Innumericalwork,itisusuallyconvenient topickthesmallest possible number forthis denominator (thelowest commondenominator), for example, 1 1 2 1 2 1 1 = = − = 3 − 6 6 − 6 6 6 Ifthelowestcommondenominator isnoteasytospot, youcanalwaysmultiply thetopandbottom ofthefirstfraction bythedenominator ofthesecond fraction, andthetopandbottom ofthesecond fraction bythedenominator ofthefirst,for example, 1 1 1 6 1 3 6 3 3 1 = × × = = = 3 − 6 3 6 − 6 3 18 − 18 18 6 × × Thisisthemethodtoapplytoalgebraic fractions: 1 1 b a b+a + = + = (1.3) a b ab ab ab 1 1 b a b a = = − (1.4) a − b ab − ab ab Exercise 1.2 Simplifythefollowing expressions: (a) 2xy z (b) a2−b2 z ÷ 2 a+b (c) 2 + 5 (d) a c 3 6 b − d n Evenifthenumerical valuesofalgebraic quantities areknown,itisadvisable to retainthesymbolsinanyalgebraic manipulations untiltheverylaststepwhenthe numerical values canbesubstituted in. Thisallowsyoutoseetheroleofeach quantityinthefinalanswer,andgenerally minimizeserrors. 8 1.1 Algebraand physical quantities 1.1.2 Rearranging algebraic equations Physicallawsareoftenexpressed usingalgebraic equations whichmayhavetobe rearranged toobtain expressions forthequantity orquantities ofinterest. For example, theequation relating thepressure, volumeandtemperature ofagasis usually writtenPV = NkT,butitmaybethatwewishtoobtainanexpression forT intermsofotherquantities. Thebasicruleformanipulating anequation is thattheequality mustnotbedisturbed. Thatis, Whateveryoudoononesideofthe‘equals’ sign, youmustalsodoonthe otherside,sothattheequalityofthetwosidesismaintained. Thisisillustrated bythefollowingexamples. (Donotbeconcerned atthisstage withthemeaningofthevarioussymbols.) Worked Example 1.1 Essentialskill: (a) Rearrange PV = NkT toobtainanexpression forT. Rearranging equations (b) Rearrangev = u+attofindanexpression fort. (c) Rearrange E = 1mv2 toobtainanexpression forv. 2 (d) Rearrangeω = g toobtainanexpression forL,whereω istheGreek L letteromega. q Solution (a) Toisolate T on theright-hand side, divide both sides by Nk. So PV/Nk = NkT/Nk = T,i.e. T = PV/Nk. (b) Firstsubtractufrombothsides,togivev u= u+at u= at. Then − − dividebothsidesbyatogive(v u)/a = at/a= t. Hencet = (v u)/a. − − (c) The easiest route isfirst toisolate v2 onone side of the equation. Sofirst multiply both sides by 2and divide both sides by m to give 2E/m = 2mv2/2m = v2. Thentakingthesquarerootofbothsides, 2E v = ± m r Thesquare rootofanumberhastwovalues, onepositive andonenegative. Thesquarerootsymbol(√)denotes onlythepositivesquareroot,hencethe needfor the‘ ’sign, whichisreadas‘plus orminus’. Thisreflects the ± mathematics oftheproblem. Sometimesthephysics oftheproblem allows youtorule outone ofthese twovalues. Forexample, ifv represented a speed, thenitwouldhavetobegreater thanorequaltozero, andthusonly thepositivesquarerootwouldberetained. (d) Thefirststepistosquarebothsidesoftheequation: ω2 = g/L,andthe nextstepistomultiplybothsidesbyL/ω2,togiveL = g/ω2. 9 Chapter 1 Manipulating numbers and symbols Havingseensomeexamples,trythefollowingforyourself. Exercise1.3 Rearrange eachofthefollowingequations togiveexpressions for themassmineachcase. (a) E = GmM (b) E2 = p2c2+m2c4 (c) T = 2π m − r k n p 1.1.3 Solving simultaneous equations Twodifferent equations containing thesametwounknown quantities arecalled simultaneous equations if both equations must be satisfied (hold true) simultaneously. Itispossible tosolvesuchequations byusingoneequation to eliminateoneoftheunknownquantities fromthesecond equation. Anexample shouldmaketheprocedure clear. Worked Example1.2 Inacertainbinarystarsystemitisdetermined thatthesumofthemassesof Essentialskill: thetwostarsism +m = 3.3timesthemassoftheSun,whilsttheratioof Solvingsimultaneous equations 1 2 thetwomassesism /m = 1.2. Whataretheindividual massesofthetwo 1 2 stars? Solution Ifwerewritethefirstequation togiveanexpression form intermsofm , 1 2 thenwecaninsertthisresultintothesecondequation togiveanexpression form alone. 2 Rearrangement ofthefirstequation givesm = 3.3 m ,thensubstituting 1 2 − form inthesecondequationgives(3.3 m )/m = 1.2. Multiplyingboth 1 2 2 − sidesoftheequation bym ,wehave(3.3 m ) = 1.2m ;thenaddingm 2 2 2 2 − toboth sidesgives3.3 = 2.2m ;fromwhichclearly m = 3.3/2.2 = 1.5 2 2 timesthemassoftheSun. Substitution form into eitherofthefirsttwo 2 equations showsthatm = 1.8timesthemassoftheSun. 1 Notetheimportantfactthatinordertofindtwounknowns,twodifferentequations relating themarerequired. Byextension, itisalwaysnecessary tohaveasmany equations asthereareunknowns. Youwillfindyourself constantly applying this principleasyousolvenumerical problemsinastrophysics andcosmology. Exercise1.4 Solvethefollowing pairsofequations tofindthevaluesofaand b. (a) a b= 1anda+b= 5 (b) 2a 3b = 7anda+4b = 9 − − n 1.2 Powers, roots and reciprocals Thepowertowhichanumberisraised isalsocalled itsindex orexponent. So 24 = 2 2 2 2 = 16canbesaidas‘twotothepoweroffour’orsimply‘two × × × 10

Description:
Contents AN INTRODUCTION TO ASTROPHYSICS AND COSMOLOGY BY ANDREW NORTON Chapter 1 Manipulating numbers and symbols 7 Introduction 7 1.1 Algebra and physical quantities 7
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.