ebook img

An introduction to ARMA and GARCH processes 402KB (by Fulvio PDF

46 Pages·2010·0.39 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview An introduction to ARMA and GARCH processes 402KB (by Fulvio

Introduction to ARMA and GARCH processes FulvioCorsi SNSPisa 3March2010 FulvioCorsi IntroductiontoARM(A)andGARCHprocesses SNSPisa3March2010 1/24 Stationarity Strictstationarity: (X1,X2,...,Xn)=d (X1+k,X2+k,...,Xn+k) foranyinteger n>1,k Weak/second-order/covariancestationarity: E[x]=µ t E[X −µ]2 =σ2 <+∞(i.e. constantandindipendentoft) t E[(X −µ)(X −µ)]=γ(|k|)(i.e. indipendentoftforeachk) t t+k Interpretation: meanandvarianceareconstant meanreversion shocksaretransient covariancebetweenX andX tendsto0ask→∞ t t−k FulvioCorsi IntroductiontoARM(A)andGARCHprocesses SNSPisa3March2010 2/24 Stationarity Strictstationarity: (X1,X2,...,Xn)=d (X1+k,X2+k,...,Xn+k) foranyinteger n>1,k Weak/second-order/covariancestationarity: E[x]=µ t E[X −µ]2 =σ2 <+∞(i.e. constantandindipendentoft) t E[(X −µ)(X −µ)]=γ(|k|)(i.e. indipendentoftforeachk) t t+k Interpretation: meanandvarianceareconstant meanreversion shocksaretransient covariancebetweenX andX tendsto0ask→∞ t t−k FulvioCorsi IntroductiontoARM(A)andGARCHprocesses SNSPisa3March2010 2/24 Stationarity Strictstationarity: (X1,X2,...,Xn)=d (X1+k,X2+k,...,Xn+k) foranyinteger n>1,k Weak/second-order/covariancestationarity: E[x]=µ t E[X −µ]2 =σ2 <+∞(i.e. constantandindipendentoft) t E[(X −µ)(X −µ)]=γ(|k|)(i.e. indipendentoftforeachk) t t+k Interpretation: meanandvarianceareconstant meanreversion shocksaretransient covariancebetweenX andX tendsto0ask→∞ t t−k FulvioCorsi IntroductiontoARM(A)andGARCHprocesses SNSPisa3March2010 2/24 Withe noise weak(uncorrelated) E(ǫ)=0 ∀t t V(ǫ)=σ2 ∀t t ρ(ǫ,ǫ)=0 ∀s6=t where ρ≡ γ(|t−s|) t s γ(0) strong(independence) ǫ ∼I.I.D.(0,σ2) t Gaussian(weak=strong) ǫ ∼N.I.D.(0,σ2) t FulvioCorsi IntroductiontoARM(A)andGARCHprocesses SNSPisa3March2010 3/24 Lag operator theLagoperatorisdefinedas: LXt≡Xt−1 isalinearoperator: L(βXt) = β·LXt=βXt−1 L(Xt+Yt) = LXt+LYt=Xt−1+Yt−1 andadmitspowerexponent,forinstance: L2Xt = L(LXt)=LXt−1=Xt−2 LkXt = Xt−k L−1Xt = Xt+1 Someexamples: ∆Xt = Xt−Xt−1=Xt−LXt=(1−L)Xt yt = (θ1+θ2L)LXt=(θ1L+θ2L2)Xt=θ1Xt−1+θ2Xt−2 Expressionlike (θ0+θ1L+θ2L2+...+θnLn) withpossiblyn= ,arecalledlagpolynomialandareindicatedasθ(L) ∞ FulvioCorsi IntroductiontoARM(A)andGARCHprocesses SNSPisa3March2010 4/24 Lag operator theLagoperatorisdefinedas: LXt≡Xt−1 isalinearoperator: L(βXt) = β·LXt=βXt−1 L(Xt+Yt) = LXt+LYt=Xt−1+Yt−1 andadmitspowerexponent,forinstance: L2Xt = L(LXt)=LXt−1=Xt−2 LkXt = Xt−k L−1Xt = Xt+1 Someexamples: ∆Xt = Xt−Xt−1=Xt−LXt=(1−L)Xt yt = (θ1+θ2L)LXt=(θ1L+θ2L2)Xt=θ1Xt−1+θ2Xt−2 Expressionlike (θ0+θ1L+θ2L2+...+θnLn) withpossiblyn= ,arecalledlagpolynomialandareindicatedasθ(L) ∞ FulvioCorsi IntroductiontoARM(A)andGARCHprocesses SNSPisa3March2010 4/24 Lag operator theLagoperatorisdefinedas: LXt≡Xt−1 isalinearoperator: L(βXt) = β·LXt=βXt−1 L(Xt+Yt) = LXt+LYt=Xt−1+Yt−1 andadmitspowerexponent,forinstance: L2Xt = L(LXt)=LXt−1=Xt−2 LkXt = Xt−k L−1Xt = Xt+1 Someexamples: ∆Xt = Xt−Xt−1=Xt−LXt=(1−L)Xt yt = (θ1+θ2L)LXt=(θ1L+θ2L2)Xt=θ1Xt−1+θ2Xt−2 Expressionlike (θ0+θ1L+θ2L2+...+θnLn) withpossiblyn= ,arecalledlagpolynomialandareindicatedasθ(L) ∞ FulvioCorsi IntroductiontoARM(A)andGARCHprocesses SNSPisa3March2010 4/24 Lag operator theLagoperatorisdefinedas: LXt≡Xt−1 isalinearoperator: L(βXt) = β·LXt=βXt−1 L(Xt+Yt) = LXt+LYt=Xt−1+Yt−1 andadmitspowerexponent,forinstance: L2Xt = L(LXt)=LXt−1=Xt−2 LkXt = Xt−k L−1Xt = Xt+1 Someexamples: ∆Xt = Xt−Xt−1=Xt−LXt=(1−L)Xt yt = (θ1+θ2L)LXt=(θ1L+θ2L2)Xt=θ1Xt−1+θ2Xt−2 Expressionlike (θ0+θ1L+θ2L2+...+θnLn) withpossiblyn= ,arecalledlagpolynomialandareindicatedasθ(L) ∞ FulvioCorsi IntroductiontoARM(A)andGARCHprocesses SNSPisa3March2010 4/24 Moving Average (MA) process Thesimplestwaytoconstructastationaryprocessistousealagpolynomialθ(L)with ∞j=0θj2<∞toconstructasortof“weightedmovingaverage”ofwithenoisesǫt,i.e. P MA(q) Yt=θ(L)ǫt=ǫt+θ1ǫt−1+θ2ǫt−2+...++θqǫt−q Example,MA(1) Yt=ǫt+θǫt−1=(1+θL)ǫt beingE[Yt]=0 γ(0) = E[YtYt]=E[(ǫt+θǫt−1)(ǫt+θǫt−1)]=σ2(1+θ2); γ(1) = E[YtYt−1]=E[(ǫt+θǫt−1)(ǫt−1+θǫt−2)]=σ2θ; γ(k) = E[YtYt−k]=E[(ǫt+θǫt−1)(ǫt−k+θǫt−k−1)]=0 ∀k>1 and, γ(1) θ ρ(1) = = γ(0) 1+θ2 γ(k) ρ(k) = =0 k>1 γ(0) ∀ hence,whileawithenoiseis“0-correlated”,MA(1)is1-correlated (i.e.ithasonlythefirstcorrelationρ(1)differentfromzero) FulvioCorsi IntroductiontoARM(A)andGARCHprocesses SNSPisa3March2010 5/24

Description:
Mar 3, 2010 covariance between Xt and Xt−k tends to 0 as k → ∞. Fulvio Corsi. (). Introduction to ARMA and GARCH processes. SNS Pisa 3 March 2010.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.