Introduction to ARMA and GARCH processes FulvioCorsi SNSPisa 3March2010 FulvioCorsi IntroductiontoARM(A)andGARCHprocesses SNSPisa3March2010 1/24 Stationarity Strictstationarity: (X1,X2,...,Xn)=d (X1+k,X2+k,...,Xn+k) foranyinteger n>1,k Weak/second-order/covariancestationarity: E[x]=µ t E[X −µ]2 =σ2 <+∞(i.e. constantandindipendentoft) t E[(X −µ)(X −µ)]=γ(|k|)(i.e. indipendentoftforeachk) t t+k Interpretation: meanandvarianceareconstant meanreversion shocksaretransient covariancebetweenX andX tendsto0ask→∞ t t−k FulvioCorsi IntroductiontoARM(A)andGARCHprocesses SNSPisa3March2010 2/24 Stationarity Strictstationarity: (X1,X2,...,Xn)=d (X1+k,X2+k,...,Xn+k) foranyinteger n>1,k Weak/second-order/covariancestationarity: E[x]=µ t E[X −µ]2 =σ2 <+∞(i.e. constantandindipendentoft) t E[(X −µ)(X −µ)]=γ(|k|)(i.e. indipendentoftforeachk) t t+k Interpretation: meanandvarianceareconstant meanreversion shocksaretransient covariancebetweenX andX tendsto0ask→∞ t t−k FulvioCorsi IntroductiontoARM(A)andGARCHprocesses SNSPisa3March2010 2/24 Stationarity Strictstationarity: (X1,X2,...,Xn)=d (X1+k,X2+k,...,Xn+k) foranyinteger n>1,k Weak/second-order/covariancestationarity: E[x]=µ t E[X −µ]2 =σ2 <+∞(i.e. constantandindipendentoft) t E[(X −µ)(X −µ)]=γ(|k|)(i.e. indipendentoftforeachk) t t+k Interpretation: meanandvarianceareconstant meanreversion shocksaretransient covariancebetweenX andX tendsto0ask→∞ t t−k FulvioCorsi IntroductiontoARM(A)andGARCHprocesses SNSPisa3March2010 2/24 Withe noise weak(uncorrelated) E(ǫ)=0 ∀t t V(ǫ)=σ2 ∀t t ρ(ǫ,ǫ)=0 ∀s6=t where ρ≡ γ(|t−s|) t s γ(0) strong(independence) ǫ ∼I.I.D.(0,σ2) t Gaussian(weak=strong) ǫ ∼N.I.D.(0,σ2) t FulvioCorsi IntroductiontoARM(A)andGARCHprocesses SNSPisa3March2010 3/24 Lag operator theLagoperatorisdefinedas: LXt≡Xt−1 isalinearoperator: L(βXt) = β·LXt=βXt−1 L(Xt+Yt) = LXt+LYt=Xt−1+Yt−1 andadmitspowerexponent,forinstance: L2Xt = L(LXt)=LXt−1=Xt−2 LkXt = Xt−k L−1Xt = Xt+1 Someexamples: ∆Xt = Xt−Xt−1=Xt−LXt=(1−L)Xt yt = (θ1+θ2L)LXt=(θ1L+θ2L2)Xt=θ1Xt−1+θ2Xt−2 Expressionlike (θ0+θ1L+θ2L2+...+θnLn) withpossiblyn= ,arecalledlagpolynomialandareindicatedasθ(L) ∞ FulvioCorsi IntroductiontoARM(A)andGARCHprocesses SNSPisa3March2010 4/24 Lag operator theLagoperatorisdefinedas: LXt≡Xt−1 isalinearoperator: L(βXt) = β·LXt=βXt−1 L(Xt+Yt) = LXt+LYt=Xt−1+Yt−1 andadmitspowerexponent,forinstance: L2Xt = L(LXt)=LXt−1=Xt−2 LkXt = Xt−k L−1Xt = Xt+1 Someexamples: ∆Xt = Xt−Xt−1=Xt−LXt=(1−L)Xt yt = (θ1+θ2L)LXt=(θ1L+θ2L2)Xt=θ1Xt−1+θ2Xt−2 Expressionlike (θ0+θ1L+θ2L2+...+θnLn) withpossiblyn= ,arecalledlagpolynomialandareindicatedasθ(L) ∞ FulvioCorsi IntroductiontoARM(A)andGARCHprocesses SNSPisa3March2010 4/24 Lag operator theLagoperatorisdefinedas: LXt≡Xt−1 isalinearoperator: L(βXt) = β·LXt=βXt−1 L(Xt+Yt) = LXt+LYt=Xt−1+Yt−1 andadmitspowerexponent,forinstance: L2Xt = L(LXt)=LXt−1=Xt−2 LkXt = Xt−k L−1Xt = Xt+1 Someexamples: ∆Xt = Xt−Xt−1=Xt−LXt=(1−L)Xt yt = (θ1+θ2L)LXt=(θ1L+θ2L2)Xt=θ1Xt−1+θ2Xt−2 Expressionlike (θ0+θ1L+θ2L2+...+θnLn) withpossiblyn= ,arecalledlagpolynomialandareindicatedasθ(L) ∞ FulvioCorsi IntroductiontoARM(A)andGARCHprocesses SNSPisa3March2010 4/24 Lag operator theLagoperatorisdefinedas: LXt≡Xt−1 isalinearoperator: L(βXt) = β·LXt=βXt−1 L(Xt+Yt) = LXt+LYt=Xt−1+Yt−1 andadmitspowerexponent,forinstance: L2Xt = L(LXt)=LXt−1=Xt−2 LkXt = Xt−k L−1Xt = Xt+1 Someexamples: ∆Xt = Xt−Xt−1=Xt−LXt=(1−L)Xt yt = (θ1+θ2L)LXt=(θ1L+θ2L2)Xt=θ1Xt−1+θ2Xt−2 Expressionlike (θ0+θ1L+θ2L2+...+θnLn) withpossiblyn= ,arecalledlagpolynomialandareindicatedasθ(L) ∞ FulvioCorsi IntroductiontoARM(A)andGARCHprocesses SNSPisa3March2010 4/24 Moving Average (MA) process Thesimplestwaytoconstructastationaryprocessistousealagpolynomialθ(L)with ∞j=0θj2<∞toconstructasortof“weightedmovingaverage”ofwithenoisesǫt,i.e. P MA(q) Yt=θ(L)ǫt=ǫt+θ1ǫt−1+θ2ǫt−2+...++θqǫt−q Example,MA(1) Yt=ǫt+θǫt−1=(1+θL)ǫt beingE[Yt]=0 γ(0) = E[YtYt]=E[(ǫt+θǫt−1)(ǫt+θǫt−1)]=σ2(1+θ2); γ(1) = E[YtYt−1]=E[(ǫt+θǫt−1)(ǫt−1+θǫt−2)]=σ2θ; γ(k) = E[YtYt−k]=E[(ǫt+θǫt−1)(ǫt−k+θǫt−k−1)]=0 ∀k>1 and, γ(1) θ ρ(1) = = γ(0) 1+θ2 γ(k) ρ(k) = =0 k>1 γ(0) ∀ hence,whileawithenoiseis“0-correlated”,MA(1)is1-correlated (i.e.ithasonlythefirstcorrelationρ(1)differentfromzero) FulvioCorsi IntroductiontoARM(A)andGARCHprocesses SNSPisa3March2010 5/24
Description: