Raykov/IntroductiontoAppliedMultivariateAnalysis RT20712_C000 FinalProof page i 2.2.2008 2:54pm CompositorName:BMani An Introduction to Applied Multivariate Analysis Tenko Raykov George A. Marcoulides New York London Raykov/IntroductiontoAppliedMultivariateAnalysis RT20712_C000 FinalProof page ii 2.2.2008 2:54pm CompositorName:BMani Routledge Routledge Taylor & Francis Group Taylor & Francis Group 270 Madison Avenue 2 Park Square New York, NY 10016 Milton Park, Abingdon Oxon OX14 4RN © 2008 by Taylor & Francis Group, LLC Routledge is an imprint of Taylor & Francis Group, an Informa business Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number-13: 978-0-8058-6375-8 (Hardcover) Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, trans- mitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging-in-Publication Data Introduction to applied multivariate analysis / by Tenko Raykov & George A. Marcoulides. p. cm. Includes bibliographical references and index. ISBN-13: 978-0-8058-6375-8 (hardcover) ISBN-10: 0-8058-6375-3 (hardcover) 1. Multivariate analysis. I. Raykov, Tenko. II. Marcoulides, George A. QA278.I597 2008 519.5’35--dc22 2007039834 Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the Psychology Press Web site at http://www.psypress.com Raykov/IntroductiontoAppliedMultivariateAnalysis RT20712_C000 FinalProof page iii 2.2.2008 2:54pm CompositorName:BMani Contents Preface...............................................................................................................ix Chapter 1 Introduction to Multivariate Statistics 1.1 Definition of Multivariate Statistics .............................................1 1.2 Relationship of Multivariate Statistics to Univariate Statistics..................................................................5 1.3 Choice of Variables and Multivariate Method, and the Concept of Optimal Linear Combination.......................7 1.4 Data for Multivariate Analyses ....................................................8 1.5 Three Fundamental Matrices in Multivariate Statistics............11 1.5.1 Covariance Matrix......................................................................12 1.5.2 Correlation Matrix......................................................................13 1.5.3 Sums-of-Squares and Cross-Products Matrix........................15 1.6 Illustration Using Statistical Software........................................17 Chapter 2 Elements of Matrix Theory 2.1 Matrix Definition.........................................................................31 2.2 Matrix Operations, Determinant, and Trace..............................33 2.3 Using SPSS and SAS for Matrix Operations..............................46 2.4 General Form of Matrix Multiplications With Vector, and Representation of the Covariance, Correlation, and Sum-of-Squares and Cross-Product Matrices.....................50 2.4.1 Linear Modeling and MatrixMultiplication..........................50 2.4.2 ThreeFundamental Matricesof Multivariate Statistics in Compact Form.......................................................................51 2.5 Raw Data Points in Higher Dimensions, and Distance Between Them..............................................................................54 Chapter 3 Data Screening and Preliminary Analyses 3.1 Initial Data Exploration...............................................................61 3.2 Outliers and the Search for Them...............................................69 3.2.1 Univariate Outliers.....................................................................69 3.2.2 Multivariate Outliers.................................................................71 3.2.3 Handling Outliers: ARevisit....................................................78 3.3 Checking of Variable Distribution Assumptions.......................80 3.4 Variable Transformations............................................................83 iii Raykov/IntroductiontoAppliedMultivariateAnalysis RT20712_C000 FinalProof page iv 2.2.2008 2:54pm CompositorName:BMani iv Chapter 4 Multivariate Analysis of Group Differences 4.1 A Start-Up Example ....................................................................99 4.2 A Definition of the Multivariate Normal Distribution............101 4.3 Testing Hypotheses About a Multivariate Mean.....................102 4.3.1 The Case of Known CovarianceMatrix................................103 4.3.2 The Case of Unknown CovarianceMatrix...........................107 4.4 Testing Hypotheses About Multivariate Means of Two Groups...............................................................................110 4.4.1 Two Relatedor MatchedSamples (Change OverTime)................................................................110 4.4.2 Two Unrelated(Independent) Samples................................113 4.5 Testing Hypotheses About Multivariate Means in One-Way and Higher Order Designs (Multivariate Analysis of Variance, MANOVA).............................................116 4.5.1 Statistical Significance VersusPracticalImportance...........129 4.5.2 Higher OrderMANOVA Designs.........................................130 4.5.3 Other Test Criteria...................................................................132 4.6 MANOVA Follow-Up Analyses...............................................143 4.7 Limitations and Assumptions of MANOVA............................145 Chapter 5 Repeated Measure Analysis of Variance 5.1 Between-Subject and Within-Subject Factors and Designs................................................................................148 5.2 Univariate Approach to Repeated Measure Analysis.............150 5.3 Multivariate Approach to Repeated Measure Analysis..........168 5.4 Comparison of Univariate and Multivariate Approaches to Repeated Measure Analysis..................................................179 Chapter 6 Analysis of Covariance 6.1 Logic of Analysis of Covariance...............................................182 6.2 Multivariate Analysis of Covariance........................................192 6.3 Step-Down Analysis (Roy–Bargmann Analysis).....................198 6.4 Assumptions of Analysis of Covariance..................................203 Chapter 7 Principal Component Analysis 7.1 Introduction...............................................................................211 7.2 Beginnings of Principal Component Analysis.........................213 7.3 How Does Principal Component Analysis Proceed?...............220 7.4 Illustrations of Principal Component Analysis .......................224 7.4.1 Analysis of the Covariance Matrix S (S)of the Original Variables....................................................................224 7.4.2 Analysis of the Correlation Matrix P(R) of the Original Variables....................................................................224 7.5 UsingPrincipalComponentAnalysisinEmpiricalResearch.........234 Raykov/IntroductiontoAppliedMultivariateAnalysis RT20712_C000 FinalProof page v 2.2.2008 2:54pm CompositorName:BMani v 7.5.1 Multicollinearity Detection.....................................................234 7.5.2 PCA With Nearly UncorrelatedVariablesIs Meaningless...............................................................................235 7.5.3 Can PCABe Used asaMethod for Observed Variable Elimination?..............................................................................236 7.5.4 WhichMatrixShouldBe Analyzed?.....................................236 7.5.5 PCA as a HelpfulAid in Assessing Multinormality..........237 7.5.6 PCA as‘‘Orthogonal’’ Regression.........................................237 7.5.7 PCA Is Conductedvia FactorAnalysis Routinesin Some Software..........................................................................237 7.5.8 PCA as a Rotation of Original Coordinate Axes.................238 7.5.9 PCA as a Data Exploratory Technique.................................238 Chapter 8 Exploratory Factor Analysis 8.1 Introduction...............................................................................241 8.2 Model of Factor Analysis..........................................................242 8.3 How Does Factor Analysis Proceed?........................................248 8.3.1 FactorExtraction......................................................................248 8.3.1.1 Principal Component Method.................................248 8.3.1.2 MaximumLikelihood Factor Analysis...................256 8.3.2 FactorRotation.........................................................................262 8.3.2.1 Orthogonal Rotation.................................................266 8.3.2.2 Oblique Rotation.......................................................267 8.4 Heywood Cases.........................................................................273 8.5 Factor Score Estimation.............................................................273 8.5.1 Weighted Least SquaresMethod (Generalized LeastSquares Method)....................................274 8.5.2 Regression Method..................................................................274 8.6 Comparison of Factor Analysis and Principal Component Analysis.................................................................276 Chapter 9 Confirmatory Factor Analysis 9.1 Introduction...............................................................................279 9.2 A Start-Up Example ..................................................................279 9.3 Confirmatory Factor Analysis Model.......................................281 9.4 Fitting Confirmatory Factor Analysis Models.........................284 9.5 ABriefIntroductiontoMplus,andFittingthe ExampleModel.........................................................................................287 9.6 Testing Parameter Restrictions in Confirmatory Factor Analysis Models........................................................................298 9.7 Specification Search and Model Fit Improvement...................300 9.8 Fitting Confirmatory Factor Analysis Models to the Mean and Covariance Structure...............................................307 9.9 Examining Group Differences on Latent Variables.................314 Raykov/IntroductiontoAppliedMultivariateAnalysis RT20712_C000 FinalProof page vi 2.2.2008 2:54pm CompositorName:BMani vi Chapter 10 Discriminant Function Analysis 10.1 Introduction.............................................................................331 10.2 What Is Discriminant Function Analysis?..............................332 10.3 Relationship of Discriminant Function Analysis to Other Multivariate Statistical Methods.............................................334 10.4 Discriminant Function Analysis With Two Groups..............336 10.5 Relationship Between Discriminant Function and Regression Analysis With Two Groups.................................351 10.6 Discriminant Function Analysis With More Than Two Groups.............................................................................353 10.7 Tests in Discriminant Function Analysis ...............................355 10.8 Limitations of Discriminant Function Analysis.....................364 Chapter 11 Canonical Correlation Analysis 11.1 Introduction.............................................................................367 11.2 How Does Canonical Correlation Analysis Proceed? ...........370 11.3 Tests and Interpretation of Canonical Variates.....................372 11.4 Canonical Correlation Approach to Discriminant Analysis....................................................................................384 11.5 Generality of Canonical Correlation Analysis.......................389 Chapter 12 An Introduction to the Analysis of Missing Data 12.1 Goals of Missing Data Analysis..............................................391 12.2 Patterns of Missing Data.........................................................392 12.3 Mechanisms of Missing Data..................................................394 12.3.1 Missing Completely atRandom........................................396 12.3.2 Missing at Random..............................................................398 12.3.3 Ignorable Missingness and Nonignorable Missingness Mechanisms....................................................400 12.4 Traditional Ways of Dealing With Missing Data ...................401 12.4.1 Listwise Deletion..................................................................402 12.4.2 Pairwise Deletion.................................................................402 12.4.3 Dummy VariableAdjustment............................................403 12.4.4 Simple Imputation Methods...............................................403 12.4.5 Weighting Methods.............................................................405 12.5 Full Information Maximum Likelihood and Multiple Imputation.........................................................406 12.6 Examining Group Differences and Similarities in the Presence of Missing Data...............................................407 12.6.1 Examining Group Mean Differences With IncompleteData...................................................................410 12.6.2 Testing for GroupDifferences in the Covariance and Correlation MatricesWith Missing Data..................427 Raykov/IntroductiontoAppliedMultivariateAnalysis RT20712_C000 FinalProof page vii 2.2.2008 2:54pm CompositorName:BMani vii Chapter 13 Multivariate Analysis of Change Processes 13.1 Introduction.............................................................................433 13.2 Modeling Change Over Time With Time-Invariant and Time-Varying Covariates.................................................434 13.2.1 Intercept-and-Slope Model.................................................435 13.2.2 Inclusion of Time-Varying and Time-Invariant Covariates..............................................................................436 13.2.3 An Example Application.....................................................437 13.2.4 Testing Parameter Restrictions...........................................442 13.3 Modeling General Forms of Change Over Time.....................448 13.3.1 Level-and-Shape Model.......................................................448 13.3.2 Empirical Illustration...........................................................450 13.3.3 Testing Special Patterns of Growthor Decline................455 13.3.4 Possible Causes of Inadmissible Solutions.......................459 13.4 Modeling Change Over Time With Incomplete Data............461 Appendix: Variable Naming and Order for Data Files............467 References..........................................................................................469 Author Index.....................................................................................473 Subject Index.....................................................................................477 Raykov/IntroductiontoAppliedMultivariateAnalysis RT20712_C000 FinalProof page viii 2.2.2008 2:54pm CompositorName:BMani Raykov/IntroductiontoAppliedMultivariateAnalysis RT20712_C000 FinalProof page ix 2.2.2008 2:54pm CompositorName:BMani Preface Having taught applied multivariate statistics for a number of years, we have been impressed by the broad spectrum of topics that one may be expectedtotypicallycoverinagraduatecourseforstudentsfromdepart- ments outside of mathematics and statistics. Multivariate statistics has developed over the past few decades into a very extensive field that is hard to master in a single course, even for students aiming at methodo- logical specialization in commonly considered applied fields, such as those within the behavioral, social, and educational disciplines. To meet this challenge, we tried to identify a core set of topics in multivariate statistics, which would be both of fundamental relevance for its under- standing and at the same time would allow the student to move on to more advanced pursuits. This book is a result of this effort. Our goal is to provide a coherent introduction to applied multivariate analysis, which would lay down the basics of the subject that we consider of particular importance in many empirical settings in the social and behavioral sciences. Our approach is based in part on emphasizing, where appropriate, analogies between univariate statistics and multivariate statistics. Although aiming, in prin- ciple,atarelativelynontechnical introductiontothesubject,wewerenot able to avoid the use of mathematical formulas, but we employ these primarily in their definitional meaning rather than as elements of proofs orrelatedderivations.Thetargetedaudiencewhowillfindthisbookmost beneficialconsists primarilyofgraduatestudents,advancedundergradu- ate students, and researchers in the behavioral, social, as well as educa- tional disciplines, who have limited or no familiarity with multivariate statistics. As prerequisites for this book, an introductory statistics course with exposure to regression analysis is recommended, as is some famil- iarity with twoofthemostwidelycirculated statistical analysissoftware: SPSS and SAS. Without the use of computers, we find that an introduction to applied multivariate statistics is not possible in our technological era, and so we employ extensively these popular packages, SPSS and SAS. In addition, forthepurposesofsomechapters,weutilizethelatentvariablemodeling program Mplus, which is increasingly used across the social and behav- ioralsciences.Onthebookspecificwebsite,www.psypress.com=applied- multivariate-analysis, we supply essentially all data usedin the text. (See Appendixfornameofdatafileandofitsvariables,aswellastheirorderas ix
Description: