ebook img

An Introduction to Applied Geostatistics PDF

587 Pages·1989·28.12 MB·English
by  Isaaks
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview An Introduction to Applied Geostatistics

An Introduction to Applied Geostatistics EDWARD H. ISAAKS Department of Applied Earth Sciences, Stanford University R. MOHAN SRIVASTAVA FSS International, Vancouver, British Columbia New York Oxford OXFORD UNIVERSITY PRESS 1989 Oxford New York Toronto Delhi Bombay Calcutta Madras Karachi PetalingJaya Singapore HongKong Tokyo Nairobi DaresSalaam CapeTown Melbourne Auckland and associated companies in Berlin Ibadan Copyright Eg 1989 by Oxford University hess, Inc. Published by Oxford University Press, Inc., 198 Madison Avenue, New York. New York 10016-4314 Oxford is a registered trademark of Oxford University Press All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of Oxford University Press. Iibrary of Congress Cataloging-in-PublicationD ata Isaaks, Edward H. Applied geostatistics / Edward H. lsaaks and R. Mohan Srivastava. p. cm. Bibliography: p. Includes index. ISBN 978-0-1 9-605013-4 1. Geology-Statistical methods. 1. Srivastava, R. Mohan. 11. ntle. QE33.2.M3183 1989 551’.72-d~20 89-34891 CIP 29 28 21 26 25 24 23 22 Printed in the United States of America on acid-free paper FOREWORD This is a book that few would have dared to write, a book that presents the fundamentals of an applied discipline without resorting to abstract concepts. There is a traditional approach to the definition of prob- ability and random variables-one that dwells on the clean ergodic properties of Gaussian, isofactorial, and factorable random processes. Had the authors wanted simply to add to their list of publications, they could have followed this safe and well-worn path, and produced yet one more book on random fields, novel for its terminology, traditional and unassailable, but not really useful. Instead, by questioning supposedly unquestionable dogma and by placing practicality above mathematical elegance, they have chosen a more difficult path-one that risks the scorn of the self-ordained Keepers of the Tablets. Geostatistics owes much to practice. It has evolved through what appeared initially as inconsistent applications or ad hoc adaptations of well-established models. As these adaptations established their practi- cal utility through several successful applications, theoreticians belat- edly granted them respectiblity and established their theoretical pedi- gree. Despite having sprung from practice that was once dismissed as theoretically inconsistent, many of these ideas are now presented as clean and logical derivations from the basic principles of random function theory. Two most enlightening examples are: The practice introduced by Michel David of the general rela- 0 tive variogram (Chapter 7 of this book) whereby the traditional experimental variogram Y(h) is divided by the squared mean [m(h)I2 of the data used for each lag h. Though inconsistent with the stationarity hypothesis, this practice proved very suc- cessful in cleaning up experimental variograms and in revealing X A n Introduction to Applied Geosta t ist ics features of spatial continuity that were later confirmed by addi- tional data. It was much later understood that the theoretical objections to David’s proposal do not hold since all variogram estimators are conditional to the available data locations and are therefore nonstationary. Moreover, his general relative variogram can be shown theoretically to filter biases due to preferential data clusters, a feature commonly encountered in earth science data. The practice of using a moving data neighborhood for ordinary 0 kriging (OK), with a rescaling of the kriging variance by some function of the local mean data value. Though strictly inconsis- tent with the stationarity hypothesis underlying OK, this prac- tice is the single most important reason for the practical success of the OK algorithm that drives geostatistics as a whole. It was later understood that OK with moving data neighborhoods is in fact a nonstationary estimation algorithm that allows for local fluctuations of the mean while assuming a stationary variogram. Rather than being motivated by theoretical considerations of ro- bustness, the now common practice of OK with moving data neighborhoods was motivated in the 1960s by trite considera- tions of computer memory and CPU time. Geostatistics with Mo and Ed, as this book is known at Stanford, is remarkable in the statistical literature and unique in geostatistics in that concepts and models are introduced from the needs of data anal- ysis rather than from axioms or through formal derivations. This pre- sentation of geostatistics is centered around the analysis of a real data set with “distressing” complexity. The availability of both sparse sam- pling and the exhaustive reference allows assumptions and their con- sequences to be checked through actual hindsight comparisons rather than through checking some theoretical property of the elusive random function generator. One may argue that the results presented could be too specific to the particular data set used. My immediate answer would be that a real data set with true complexity represents as much generality as a simplistic random function model, most often neatly stationary and Gaussian-related, on which supposedly general results can be established. Applied geostatistics, or for that matter any applied statistics, is an art in the best sense of the term and, as such, is neither completely automatable nor purely objective. In a recent experiment conducted Foreword xi by the U.S. Environmental Protection Agency, 12 independent rep- utable geostatisticians were given the same sample data set and asked to perform the same straightforward block estimation. The 12 results were widely different due to widely different data analysis conclusions, variogram models, choices of kriging type, and search strategy. In the face of such an experiment, the illusion of objectivity can be main- tained only by imposing one's decisions upon others by what I liken to scientific bullying in which laymen are dismissed as incapable of un- derstanding the theory and are therefore disqualified from questioning the universal expertise written into some cryptic software package that delivers the correct and objective answer. It bears repeating that there is no accepted universal algorithm for determining a variogram/covariance model, whether generalized or not, that cross-validation is no guarantee that an estimation procedure will actually produce good estimates of unsampled values, that kriging need not be the most appropriate estimation method, and that the most consequential decisions of any geostatistical study are taken early in the exploratory data analysis phase. An Introduction to Applied Geostatistics delivers such messages in plain terms yet with a rigor that would please both practitioners and mature theoreticians (i.e., from well-interpreted observations and comparative studies rather than from theoretical concepts whose practical relevance is obscure). This book is sown with eye-opening remarks leading to the most recent developments in geostatistical methodology. Though academics will be rewarded with multiple challenges and seed ideas for new re- search work, the main public for this book will be undergraduates and practitioners who want to add geostatistics to their own toolbox. This book demonstrates that geostatistics can be learned and used properly without graduate-level courses in stochastic processes. Mo and Ed came to geostatistics not directly from academia but from the harsh reality of the practice of resource estimation within producing compa- nies. They returned to university to better understand the tools that they found useful and are now back solving problems, sometimes us- ing geostatistics. Their book puts geostatistics back where it belongs, in the hands of practitioners mastering both the tools and the mate- rial. Listen to their unassuming experience and remember: you are in command! May, 1989 Andre' G. Journel CONTENTS 1 Introduction 3 . . . . . . . . . . . . . . . . . The Walker Lake Data Set 4 . . . . . . . . . . . . . . . . . Goals of the Case Studies 6 2 Univariate Description 10 . . . . . . . . . . . . . Frequency Tables and Histograms 10 . . . . . . Cumulative Frequency Tables and Histograms 12 . . . . . . . . . Normal and lognormal Probability Plots 13 . . . . . . . . . . . . . . . . . . . . . Summary Statistics 16 . . . . . . . . . . . . . . . . . . . . . Measures of Spread 20 . . . . . . . . . . . . . . . . . . . . . Measures of Shape 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Notes 21 . . . . . . . . . . . . . . . . . . . . . . Further Reading 23 3 Bivariate Description 24 . . . . . . . . . . . . . . . Comparing Two Distributions 24 . . . . . . . . . . . . . . . . . . . . . . . . . Scatterplots 28 . . . . . . . . . . . . . . . . . . . . . . . . . Correlation 30 . . . . . . . . . . . . . . . . . . . . . . Linear Regression 33 . . . . . . . . . . . . . . . . . . Conditional Expectation 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Notes 38 . . . . . . . . . . . . . . . . . . . . . . Further Reading 39 4 Spatial Description 40 . . . . . . . . . . . . . . . . . . . . . . . . Data Postings 40 . . . . . . . . . . . . . . . . . . . . . . . . Contour Maps 41 . . . . . . . . . . . . . . . . . . . . . . . . Symbol Maps 43 . . . . . . . . . . . . . . . . . . . . . . . Indicator Maps 44 . . . . . . . . . . . . . . . . . Moving Window Statistics 46 xiv CONTENTS Proportional Effect . . . . . . . . . . . . . . . . . . . . . 49 Spatial Continuity . . . . . . . . . . . . . . . . . . . . . 50 . . . . . . . . . . . . . . . . . . . . . . . . h-Scatterplots 52 Correlation Functions. Covariance Functions. and Vari- . . . . . . . . . . . . . . . . . . . . . . . . . . . ograms 55 Cross h-Scatterplots . . . . . . . . . . . . . . . . . . . . 60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Notes 64 Further Reading . . . . . . . . . . . . . . . . . . . . . . 65 5 The Exhaustive Data Set 67 The Distribution of V . . . . . . . . . . . . . . . . . . . 67 The Distribution of U . . . . . . . . . . . . . . . . . . . 70 The Distribution of T . . . . . . . . . . . . . . . . . . . 73 Recognition of Two Populations . . . . . . . . . . . . . . 75 The V-U Relationship . . . . . . . . . . . . . . . . . . . 76 Spatial Description of V . . . . . . . . . . . . . . . . . . 78 Spatial Description of U . . . . . . . . . . . . . . . . . . 80 Moving Window Statistics . . . . . . . . . . . . . . . . . 90 Spatial Continuity . . . . . . . . . . . . . . . . . . . . . 93 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 6 The Sample Data Set 107 Data Errors . . . . . . . . . . . . . . . . . . . . . . . . . 109 The Sampling History . . . . . . . . . . . . . . . . . . .1 10 Univariate Description of V . . . . . . . . . . . . . . . . 1 20 Univariate Description of U . . . . . . . . . . . . . . . . 1 23 The Effect of the TType . . . . . . . . . . . . . . . . .1 27 The V-U Relationship . . . . . . . . . . . . . . . . . . .1 27 . . . . . . . . . . . . . . . . . . . . . Spati a1 D esc rip t i on 129 Propo r t ional Effect . . . . . . . . . . . . . . . . . . . . . 136 Further Reading . . . . . . . . . . . . . . . . . . . . . . 138 7 The Sample Data Set: Spatial Continuity 140 Sample h-Scatterplots and Their Summaries . . . . . . . 141 . . . . . . . . An Outline of Spatial Continuity Analysis 143 Choosing the Distance Parameters . . . . . . . . . . . . 146 Finding the Anisotropy Axes . . . . . . . . . . . . . . .1 49 Choosing the Directional Tolerance . . . . . . . . . . . . 154 . . . . . . . . . . . . . . . . . Sample Variograms for U 154 Relative Variograms . . . . . . . . . . . . . . . . . . . . . 163 CONTENTS xv . . . . . . . . . . . . Comparison of Relative Variograms 166 . . . . . The Covariance Function and the Correlogram 170 . . . . . . . . . Directional Covariance Functions for U 173 . . . . . . . . . . . . . . . . . . . . . . Cross-Variograms 175 . . . . . . . . . . . . . . Summary of Spatial Continuity 177 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Notes 181 . . . . . . . . . . . . . . . . . . . . . . Further Reading 182 8 Estimation 184 . . . . . . . . . . . . . . Weighted Linear Combinations 185 . . . . . . . . . . . . . . . Global and Local Estimation 187 . . . . . . . . . . . . Means and Complete Distributions 188 . . . . . . . . . . . . . . . . . Point and Block Estimates 190 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Notes 194 . . . . . . . . . . . . . . . . . . . . . . Further Reading 194 9 Random Function Models 196 . . . . . . . . . . . . . . . . . The Necessity of Modeling 196 . . . . . . . . . . . . . . . . . . . . Deterministic Models 198 . . . . . . . . . . . . . . . . . . . . Probabalistic Models 200 . . . . . . . . . . . . . . . . . . . . . Random Variables 202 Functions of Random Variables . . . . . . . . . . . . . .2 04 . . . . . . . . . . . . Parameters of a Random Variable 206 . . . . . . . . . . . . . . . . . . Joint Random Variables 210 . . . . . . . . . . . . . . . . . . . Marginal Distributions 211 . . . . . . . . . . . . . . . . . Conditional Distributions 212 . . . . . . . . . . Parameters of Joint Random Variables 213 . Weighted Linear Combinations of Random Variables . 215 . . . . . . . . . . . . . . . . . . . . . Random Functions 218 . . . . . . . . . . . . Parameters of a Random Function 221 . . . . The Use of Random Function Models in Practice 226 . . . . An Example of the Use of a Probabalistic Model 231 . . . . . . . . . . . . . . . . . . . . . . Further Reading 236 10 Global Estimation 237 . . . . . . . . . . . . . . . . . . . Polygonal Declustering 238 . . . . . . . . . . . . . . . . . . . . . . Cell Declustering 241 . . . . . . . . . . . Comparison of Declustering Methods 243 . . . . . . . . . . Declustering Three Dimensional Data 247 . . . . . . . . . . . . . . . . . . . . . . Further Reading 248 xvi CONTENTS 11 Point Estimation 249 Polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 Triangulation . . . . . . . . . . . . . . . . . . . . . . . . 251 Local Sample Mean . . . . . . . . . . . . . . . . . . . . . 256 . . . . . . . . . . . . . . . . . Inverse Distance Methods 257 Search Neighborhoods . . . . . . . . . . . . . . . . . . . 2 59 Estimation Criteria . . . . . . . . . . . . . . . . . . . . . 260 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . 266 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 Further Reading . . . . . . . . . . . . . . . . . . . . . . 277 12 Ordinary Kriging 278 The Random Function Model and Unbiasedness . . . . . 2 79 The Random Function Model and Error Variance . . . . 2 81 The Lagrange Parameter . . . . . . . . . . . . . . . . . .2 84 Minimization of the Error Variance . . . . . . . . . . . .2 86 Ordinary Kriging Using y or p . . . . . . . . . . . . . .2 89 An Example of Ordinary Kriging . . . . . . . . . . . . .2 90 Ordinary Kriging and the Model of Spatial Continuity . 296 An Intuitive Look at Ordinary Kriging . . . . . . . . . .2 99 Variogram Model Parameters . . . . . . . . . . . . . . .3 01 Comparison of Ordinary Kriging to Other Estimation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Notes 321 Further Reading . . . . . . . . . . . . . . . . . . . . . . 322 13 Block Kriging 323 The Block Kriging System . . . . . . . . . . . . . . . . .3 24 Block Estimates Versus the Averaging of Point Estimates327 Varying the Grid of Point Locations Within a Block . . 327 A Case Study . . . . . . . . . . . . . . . . . . . . . . . . 330 14 Search Strategy 338 Search Neighborhoods . . . . . . . . . . . . . . . . . . .3 39 Quadrant Search . . . . . . . . . . . . . . . . . . . . . . 344 . . . . . . . . . . . . Are the Nearby Samples Relevant? 347 Relevance of Nearby Samples and Stationary Models . . 349 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 CONTENTS xvii 15 Cross Validation 351 Cross Validation . . . . . . . . . . . . . . . . . . . . . . 352 . . . . . . . . . Cross Validation as a Quantitative Tool 352 . . . . . . . . . . Cross Validation as a Qualitative Tool 359 . . . . . . . . Cross Validation as a Goal-Oriented Tool 364 16 Modeling the Sample Variogram 369 . . . . . . . . . . . Restrictions on the Variogram Model 370 . . . . . . . . . . . . Positive Definite Variogram Models 372 Models in One Direction . . . . . . . . . . . . . . . . . .3 75 . . . . . . . . . . . . . . . . . . . . Models of Anisotropy 377 . . . . . . . . . . . . . . . . . . . . . . Matrix Notation 386 Coordinate Transformation by Rotation . . . . . . . . . 3 88 . . . . . . . . . . The Linear Model of Coregionalization 390 . . Models For the The Walker Lake Sample Variograms 391 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397 . . . . . . . . . . . . . . . . . . . . . . Further Reading 398 17 Cokriging 400 The Cokriging System . . . . . . . . . . . . . . . . . . . 4 01 . . . . . . . . . . . . . . . . . . . A Cokriging Example 405 . . . . . . . . . . . . . . . . . . . . . . . . A Case Study 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Notes 416 Further Reading . . . . . . . . . . . . . . . . . . . . . . 416 18 Estimating a Distribution 41 7 . . . . . . . . . . . . . . . . . Cumulative Distributions 418 . . . . . . . . . The Inadequacy of a Naive Distribution 419 . . . . . . . . . . . . The Inadequacy of Point Estimates 420 Cumulative Distributions. Counting and Indicators . . . 4 21 . . . . . . Estimating a Global Cumulative Distribution 424 Estimating Other Parameters of the Global Distribution 428 . . . . . . . . . . . . . . Estimating Local Distributions 433 . . . . . . . . . . . . . . Choosing Indicator Thresholds 435 . . . . . . . . . . . . . . . . . . . . . . . . Case Studies 438 . . . . . . . . . . . . . . . . . . . . Indicator Variograms 442 . . . . . . . . . . . . . . . . Order Relation Corrections 447 . . . . . . . . . . . . . . . . . . . . . Case Study Results 448 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Notes 456 . . . . . . . . . . . . . . . . . . . . . . Further Reading 457

Description:
In this book, the authors demonstrate how simple statistical methods can be used to analyze Earth science data. In clear language, they explain how various forms of the estimation method called 'kriging' can be employed for specific problems. A case study of a simulated deposit is the focus for the
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.