ebook img

An Introduction to Abstract Mathematics PDF

345 Pages·2007·14.3 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview An Introduction to Abstract Mathematics

An Introducttoi on AbstraMcatt hematics An Introducnt tioo AbstraMcatt hematics J. RobertB ond BostoCno llege J. WilliamK eane BostoCno llege WAVElAND PRESS,I NC. Long GroveIl,lin ois Fori nformataiboonu tth ibso okc,o ntact: WavelanPdr esIsn,c . 4180I LR out8e3 ,Su it1e0 1 LongG roveI,L 60047-9580 (8476)3 4-0081 [email protected] www .waveland.com Copyrig©h 1t9 99b yR oberJtB. o nda ndW illiaJmK. e ane Reissu2e0d0 7b yW avelanPdr esIsn,c . lO-diIgSiBtN 1 -57766-539-2 13-diIgSiBtN 9 78-1-57766-539-7 Allr igrhetsse Nrvoep da.or ftt hbioso mka yb er eprodsutcoeirdnae,r d e trsyisetveaomlr, transmiinat nftyoe rmdo rby anmye ans withouitnw rpietfrriomnmtig hs pesui bolni sher. Printiendt heU niteSdt atoefsA merica 7 6 5 4 3 ToA nn andS arahf,o rt heilro vaen dc onstasnutp pofrotr whata tt imesse emeadn e ndlejsosu rney. To Liza ndM attf,o rt hefi rstti mea,n dt oF rancael,w ays. CONTENTS MathematiRceaals oning 1.1 Statement2s 1.2 CompoundS tatement1s6 1.3 Implicatio2n9s 1.4 ContraposiatnidvC eo nverse3 8 2 Sets 49 2.1 Setasn dS ubsets4 9 2.2 CombininSge ts 61 2.3 CollectioofSn est s 72 1 Functions 81 3.1 Definitiaonnd B asiPcr operti8e1s 3.2 SurjectainvdeI njectFiuvnec tion9s7 3.3 CompositiaonndI nvertiFbulnec tion1s1 0 4 BinarOyp eratioannsd R elations 123 4.1 BinarOyp eration1s2 3 4.2 EquivaleRneclea tion1s3 9 vii viii CONTENTS 5 The Integers 151 5.1 Axiomsa ndB asiPcr opertie1s5 1 5.2 Inductio1n5 9 53. TheD ivisiAolng oritahnmd G reateCsotm mon Divisor1s7 5 5.4 Primeasn dU niquFea ctorizat1i8o2n 5.5 Congruence1s8 9 5.6 Generalai Tzhienogr em 200 6 In fini teS ets 209 6.1 CountabSleet s 210 6.2 UncountabSleet sC,a ntorT'hse orema,n dt he Schroeder-BernTshteeoirne m 220 6.3 CollectioofSn est s 229 7 The Reala ndC omplex Numbers 235 7.1 Fields2 35 7.2 TheR ealN umbers 243 7.3 TheC omplex Numbers 251 8 Poylnomiasl 263 8.1 Polynomial2s6 3 8.2 UniquFea ctorizat2i7o3n 8.3 PolynomioavlesrC ,R ,a ndQ 285 Answerasn dH inttsoS elecEtxeedr cis2e9s5 Bibliograp31h7y Index3 19 PREFAFCOER THEI NSTRUCTOR Thibso oekv olfvreodam c ourtsheah ta bse etna ugahtBt o stCoonl lege fomra nyye airnsm andyi ffefroer.nmT tsh ec ourtsaek,pe rni mabryi ly sophommoarteh emmaatjiochrsas as,l wabyesei nn tentdope rde ptahroes e studefnottrhs "e a bstmraatchte maotfti hctesi "t floetr,h r ei gcoarr,e ful argumaenndlt o,g ipcraelc itshiaaotln,t homuegrheg llyi mpisnce adl culus, woulbdel inchopfai lnflus r tshteu.rMd oysstt udewnihtlaslv hea tdw oor thrseeem esotfce arlsc aunladus se mesotfle irn aelagre sbotr haat th ewyi ll havaet taianr eeda sondaebglroeef me a themastoipchails tbiecfaotrieo n startthibinosgo . k Ourc hoiocfte o piimsco st ivbaytt ehfdea tchtas tt udteanktiesn troduc­ torcyo urisnae bss tarlagcetab nrdra e aaln aliynst ihsej iurn ioorsr e nior yeaarssm athemamtaijco.Isr n so rdteorb ea blteoh andtlhee csoeu rses effecttihveneyel eytd,ok notwh reu loefls o gaincdt hreu dimoefns test theoarswy e lalss ombea spirco peorftf iuensc tbieotnwses eenti sn:j ective ansdu rjefcutnicvteii moangasen,id n veirmsaega en,id n verftuinbclt.ei ons Theb oodki vindaetsu rianlttlowy o( overlatpobp esi unrgpe,a) r. t s • Chapt1e-r5is n trotdhufecu en dameonfta ablsst rmaactth ematics. Logiscet,th eorreyl,a tfiuonncst,ai noodnp se,r atlieoatndoas c aresftuuld y ofo naex isoyms ttehmie,n tegTehrescs.he a ptfeorrtsmh ceo roeft hbeo ok. Wea lwacyosv tehrmi ast eriinoa ulcr o urasnewd,e u siett o i ntrooduurc e studetnott hsle a nguoafmg aet hemaatnidtc ops r eptahreefm o trh eir undergrcaadrueaietnmre as t hematics. • Chapt6e-r8as p ptlhyie d eaansdt echnioqftu heeesa rlmiaetre .r ial Thesceh aptfeotrrhs me o spta ratr ien depenadnedwn etc ,h oowshei ch onetsoc ovaesrt impee rmaintdis n terleesaTtdhs.e t opitchso,u agrhe, onetsh awtef eeolus rt udesnhtosuk lndo ww,i nlolfit n dc ompleatleileyn , ix

Description:
Bond and Keane explicate the elements of logical, mathematical argument to elucidate the meaning and importance of mathematical rigor. With definitions of concepts at their disposal, students learn the rules of logical inference, read and understand proofs of theorems, and write their own proofs--al
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.