ebook img

An Interactive Method for 0-1 Multiobjective Problems Using Simulated Annealing and Tabu Search PDF

19 Pages·2000·0.19 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview An Interactive Method for 0-1 Multiobjective Problems Using Simulated Annealing and Tabu Search

JournalofHeuristics,6:385–403(2000) (cid:176)c 2000KluwerAcademicPublishers An Interactive Method for 0-1 Multiobjective Problems Using Simulated Annealing and Tabu Search M.JOAQOALVESANDJOAQOCL´IMACO FaculdadedeEconomia,UniversidadedeCoimbra/INESC,Av.DiasdaSilva,165,3000Coimbra,Portugal e-mail:[email protected] Abstract Thispaperpresentsaninteractivemethodforsolvinggeneral0-1multiobjectivelinearprogramsusingSimulated AnnealingandTabuSearch. Theinteractiveprotocolwiththedecisionmakerisbasedonthespecificationof reservationlevelsfortheobjectivefunctionvalues. Thesereservationlevelsnarrowthescopeofthesearchin eachinteractioninordertoidentifyregionsofmajorinteresttothedecisionmaker.Metaheuristicapproachesare usedtogeneratepotentiallynondominatedsolutionsinthecomputationalphases.GenericversionsofSimulated AnnealingandTabuSearchfor0-1singleobjectivelinearproblemsweredevelopedwhichincludeageneralroutine forrepairingunfeasiblesolutions.Thisroutineimprovessignificantlytheresultsofsingleobjectiveproblemsand, consequently,thequalityofthepotentiallynondominatedsolutionsgeneratedforthemultiobjectiveproblems. Computationalresultsandexamplesarepresented. Key Words: interactive multiple objective programming, zero-one programming, metaheuristics, simulated annealing,tabusearch Thecomputationalcomplexityofsingleobjectivecombinatorialproblemshasprovideda basisforanincreasinginterestinthedevelopmentofheuristicapproachesaimedatdealing withthoseproblems. However,mostoftheseapproachesareproblem-specific. Therefore onethatappliestooneproblemusuallydoesnottoadifferentone. Overthelastdecade, severaltechniquesfarmoregenerallyapplicablehavebeendevelopedsuchasthefollowing metaheuristic ones: Simulated Annealing (Kirkpatrick, Gellat, and Vecchi, 1983), Tabu Search(Glover,1986), andGeneticAlgorithms(Goldberg,1989)amongothers. Inspite ofbeinggenericheuristicapproaches,inmostapplicationsreporteduntilnowtheirusehas been problem-specific and different implementations have been developed for each new combinatorialproblemtackled. Themaindifficultyofageneralpurposealgorithmliesin theincorporationofageneralmechanismintendedtorestoretheprimalfeasibilityofthe system. Infact,ithasbeenshownthattheideaofkeepingfeasibilityateverystageofthe searchismoreadvantageousthanrelaxingtheconstraintsandusingapenaltyfunctionin thecost(Abramson,Dang,andKrishnamoorthy,1996). We believe that problem-specific implementations of any metaheuristics should out- perform generic ones but, in our opinion, good general-purpose algorithms are be very useful when dealing with problems with no particular structure. This fact motivated our interest in metaheuristics and we started by developing Simulated Annealing and Tabu 386 ALVESANDCL´IMACO Searchversionsforgenericsingleobjective 0-1linearprograms. Untilnow, fewgeneric versionsofmetaheuristicmethodshavebeenreported. Examplesofsuchapproachesarethe developmentsofAboudiandJo¨rnsten(1994)andLokketangen,Jo¨rnsten,andStoroy(1994) for Tabu Search and the Simulated Annealing codes of Connolly (1992) and Abramson, Dang,andKrishnamoorthy(1996). It is now generally accepted that many real-world problems should consider multiple criteria. Besides,the0-1multiobjectiveproblemisastimulatingareaofresearchduetoits applications,namelyinareasconcerningcapitalbudgeting,projectselection,deliveryand routing,facilitylocationproblemsandsoon. Interactivemethodsallowthecontributionof thedecisionmaker(DM)duringthesolutionsearchprocessbyinputtinginformationthat mayleadtosolutionsmoreinconsonancewithhis/herpreferences. Metaheuristicscanplay animportantroleinprovidingeffectiveinteractiveprocessessincethecomputationaleffort inherentinexactmethodsmay,dependingonthecircumstances,jeopardizetheinteractive process. Theadaptationofmetaheuristicstomultiobjectiveproblems,evenforparticularinstances, has been little explored so far. However, we should mention the recent work of some researchersinthisarea: Serafini(1994), Fortemps, Teghem, andUlungu(1994), Ulungu (1993),CzyzakandJaszkiewicz(1996)andHansen(1997). Inthispaperweproposeaninteractivemethodtosolvemultiobjective0-1linearproblems whichisbasedontwometaheuristicapproaches: SimulatedAnnealingandTabuSearch. Thebasicideaunderlyingthemethodistheprogressivesearchofnondominatedor“good” approximations of nondominated (potentially nondominated) solutions that belong to re- gionsofinteresttotheDM.Inthefirstphaseofthedecisionprocess,theDMmayimpose bounds on the objective function values (reservation levels) that are used to narrow the scopeofthesearchineachinteraction. Thesearchofpotentiallynondominatedsolutions ismadeintheareaaroundthesolutionsthatoptimizeindividuallyeachobjectivefunction inthatrestrictedregion. Itprovidesanapproximationofthecorrespondingnondominated subset that tends to be closer to exact vectors in the extreme areas of the region (where the individual optima for that region lie) rather than in the middle of the region. If the DM wishes to know “better” approximations in the middle, he/she can then specify new reservationlevelsthatnarrowtheregiontobeexploredwithrespecttothepreviousone. Afteraglobalsearchfollowingmetaheuristicroutines,theDMmayuseexactmultiobjec- tivetechniquesthathelphim/hertocometoafinalcompromiseregardinganondominated solution. ThesetechniquesenabletheDMtoeithercheckifasolutiongivenbyametaheuris- ticsisreallyanondominatedsolutionortocomputethenondominatedsolution(s)closest toacriterionreferencepoint(whichrepresentsaspirationlevelsfortheobjectivefunctions) byoptimizinganachievementscalarizingfunction(inthesenseofWierzbicki(1980)). In ordertogiveabetterperceptionofthemaximaerrorsinvolvedinapproximationsandthus abetterevaluationofthequalityofthosesolutions,theDMisprovidedwithboundsgiven byspecificnondominatedsolutionsforthelinearrelaxationofthemultiobjectiveproblem. TheprotocolproposedhereintointeractwiththeDMisinaccordancewithLarichevand Nikiforov (1987) who concluded that, in general, good methods use information relative totheobjectivefunctionvaluesinthedialoguewiththeDMinordertocreateasystemof preferences. AccordingtoNakayama(1985)thismayleadtotwodifferentwaysofacting: fixingaspirationlevelsorreservationlevels. ANINTERACTIVEMETHODFOR0-1MULTIOBJECTIVEPROBLEMS 387 InSection1ofthispaperwepresentaversionofSimulatedAnnealingandanotherofTabu Searchforgeneric0-1linearprogramswithasingleobjective. InSection2theinteractive methodformultiobjectiveproblemsisdiscussedanddescribed. Computationalexamples arepresentedinSection3. ThepapercloseswithconcludingremarksinSection4. 1. Simulatedannealingandtabusearchforsingleobjective0-1linearprograms 1.1. Simulatedannealing ConsiderthegeneralschemeoftheSimulatedAnnealingalgorithm: LetSdenotethesolutionspace,ctheobjectivefunctiontobeminimized(cost)and N theneighbourhoodstructure. Selectaninitialsolutionxo 2 S;setT :DTo >0(initialtemperature) Repeat Repeat Randomlyselect y 2 N(xo);– :Dc(y)¡c(xo); if– <0thenxo :D y elsegeneraterandomd uniformlyintherange[0,1]; ifd <e¡–=T thenxo :D y; untiliteration countDNrep setT :Dfi.T/; untilstopping conditionDtrue; x istheapproximationtotheoptimalsolution. o T isthecontrolparameterwhichplaystheroleofthetemperatureinthephysicalsystem. Initially,withlargevaluesofT,largeincreasesincostwillbeaccepted;asT decreasesonly smallerincreaseswillbeacceptedandfinally,asthevalueofT approaches0,noincreases incostwillbeacceptedatall. Thewayandtherateatwhichthisparameterisreducedis usuallyreferredtoascoolingschedule. DetaileddescriptionsofSimulatedAnnealingcan befoundinKirkpatrick,Gellat,andVecchi(1983),AartsandKorst(1989)andDowsland (1993). The algorithm given above is a very general one and some decisions must be made in order to implement it: generic decisions¡TO, the stopping condition and the cooling schedule(Nrepandfi.T/);problemspecificdecisions¡S,cand N. TheSimulatedAnnealingversionweproposehereisdesignedfor0-1linearprograms andwillbedenotedby0-1SAinwhatfollows. Letusbeginbythespecificdecisionsfor 0-1SA. Aneighboursolutionfromthecurrentonecanbeobtainedbyamovewhichconsistsin changing the value of one variable x from 0 to 1 or from 1 to 0. However, the question i ofthebetterwaytodealwithconstraintsnaturallyarises. Concerningspecificproblems, someauthorshaveproposedrelaxingthefeasibilityconditionsincludingapenaltytermin thecostfunctiontodiscourageviolationsoftherelaxedconstraints. Weexperimentedthis approachinseveraltypesofproblemsandtheresultswerenotattractive. Difficultiesarose intheselectionofanadequatepenaltyterm. Besides,inhighlyconstrainedsolutionspaces, 388 ALVESANDCL´IMACO it is possible that during the whole process no feasible solution is found. The p-median location problem whose formulation is presented in the appendix (entitled P-MEDIAN) is such an example. Although a small problem, no solution was primal feasible during aSimulatedAnnealingrunof1800iterationsbyapplyingjustsimplemovesliketheone statedabove. Werecallthatweareinterestedinageneralalgorithmfor0-1linearprograms, sowecannotprofitfromanyspecialstructureoftheconstraints. Anotherpossibilityistotrytorestorethefeasibilityofeachnewneighboursolutioncom- puted. Inthiscase,thesolutionspaceisrestrictedtothefeasiblesolutionspace. Connolly (1992)developedaroutinetorestoresolutionfeasibilitycalledRESTOREwhichisusedin theprogramGPSIMAN(ageneralpurposeSimulatedAnnealing). Ourcomputationalex- perimentswiththisroutineledustorealizethatalargenumberofvariablesmustbeflipped whentheprimalfeasibilityishardlyachievedandthealgorithmoftenbacktracks(byundo- ingthelastmove),thusrequiringhighcomputationaleffort.Wedevelopedanewroutineto restoreprimalfeasibilitytryingtoovercomethesedrawbacks(AlvesandCl´ımaco,1996). Inouropinion,mostdifficultieswithConnolly’sroutineareduetothecomputingprocess ofthemosthelpfulvariabletobeflipped. Ahelp-scoredependsonthewayavariablehelps violatedconstraintswithoutregardtohowmuchitcan“destroy”satisfiedconstraints. In ourroutine,theselectionofthemosthelpfulvariableconsiderstwoaspects: howhelpful itisforanycurrently-unfeasibleconstraintandtowhatextentitdestroysthefeasibilityof anycurrentlysatisfiedconstraint. TheroutineweproposereliesonpartsofBalas’szero-oneadditivealgorithm(Balas,1965) andworksasfollows: † Initially,allvariablesare“free”excepttheone(randomlydetermined)whichwasfirst flippedtoobtaintheneighboursolution. Whilethesolutionisnotfeasibleandthefeasibilitycanberestored: † findthemosthelpfulfreevariablex (ifnoneexists,feasibilitycannotberestored) j † changex valuefrom0to1orthereverse;x becomesnotfree j j Themosthelpfulfreevariablex isdeterminedinthefollowingmanner: j Withoutlossofgeneralityweassumethatallconstraintsare“•” † Calculatetheslacks foreachconstraint(satisfiedornot): s DRHS ¡LHS i i i i † (constrainti isnotsatisfiedwhenevers <0) i † Create a subset P of free variables in which one variable is helpful for at least one violatedconstraint. Pisdefinedas PDfj free:.a <0andx D0/or.a >0andx D1/fori suchthats <0g ij j ij j i wherea isthecoefficientofvariablex intheconstrainti. ij j † Foreveryconstrainti suchthats <0,define y as i i X X y Ds C .¡a /C a i i ij ij fj2P:aij<0andxjD0g fj2P:aij>0andxjD1g ANINTERACTIVEMETHODFOR0-1MULTIOBJECTIVEPROBLEMS 389 † IfP D;orthereisanyy <0thenthefeasibilityofthesolutioncannotbeattained— i inthisparticularcase,0-1SAwillevaluateanunfeasiblesolutionpenalizingitinthe costfunctionwhichmeansthatthisprocessdoesnotbacktrack. Otherwise calculate the score (•0) of each variable in P. This score measures the weaknessofahelpfulvariable: 8 X >>< .si ¡aij/ if xj D0 SCORE D fi:siX¡aij<0g j >>: .si Caij/ if xj D1 fi:siCaij<0g † ThevariablewiththehighestSCOREisselectedtobeflipped. A zero-score means that the variable is helpful without weakness. Thus, changing the valueofthisvariableyieldsafeasiblesolution. This procedure has performed well in most of the problems tested. However, 0-1SA givesbetterresultsiftheselectionofthevariabletobeflippedisrandomwithprobabilities proportionaltothevariablescoresinsteadofselectingthevariablewiththehighestscore all the time. This change, which avoids the process to be biased, is only recommended inproblemswherethefeasibilityofthesolutionsiseasilyrestored. 0-1SAautomatically switchesfromthestochastictothedeterministicchoiceofthemosthelpfulvariablewhen thefirstiterationsshowthatthefeasibilityoftheproblemisnoteasilyrestored. Thisisthe caseoftheP-MEDIANproblem(inappendix). Genericdecisionsin0-1SA Theinitialsolution: theinitialsolutionisobtainedbyroundingtheoptimalsolutionforthe linearrelaxationoftheproblem. Ifthissolutionisunfeasible,theproceduredescribed aboveisusedtoattainthefeasibility. Thecoolingschedule: thetemperaturereductionrelation T :D fi:T hasbeenconsidered (usually,0:8•fi •0:99). T isthecontrolparameter(temperature)andisgivenbyK:t. TheinitialtemperatureisTo D K:to withto beingcloseto1andthefinaltemperature isK:tf withtf beingcloseto0. K isautomaticallydeterminedforeachproblem. After severalexperimentsusingdifferent K valuesindifferentproblemswehavedecidedto considerK D0:5c (wherec denotestheaverageabsolutecoefficientintheobjective avg avg function). Theparametersfi,to,tf andNreparespecifiedbytheuser. Computationalresultsof0-1SA We selected a set of 10 test problems which includes 8 multiple-constraint knapsack problems(MCKP),ap-medianproblem(inappendix)andasetcoveringproblem(SCP). TheMCKP(from28to105variables)andtheSCP(192variables,240constraints)were takenfromtheliteratureandareavailableintheOR-LibrarybyBeasley(1990).TheMCKP arethefollowing: PET5,PET6,PET7whichareoriginallyduetoPetersen(1967),SENTO1, SENTO2whichareduetoSenyuandToyoda(1967)andWEING6,WEING7,WEING8 which are due to Weingarter and Ness (1967). The SCP is called SCPCYC6 and is from GrossmanandWool(1997).Despitetheirsmallsize,theseMCKPwerechosenbecausethey 390 ALVESANDCL´IMACO havebeentestedbyothermetaheuristicapproaches,namelythosefromKhuri,Ba¨ch,and Heitko¨tter(1994),AboudiandJo¨rnsten(1994),Lokketangen,Jo¨rnsten,andStoroy(1994) andDrexl(1988). TheSCPwaschosenduetoitsdifficulty. Inordertoprovideabetter analysisofthequalityofthesolutionversustimetoeachproblem,wetookthecomputational timeoftheoptimalsolutiongivenbytheCPLEXcommercialsolverasthereferencetime to fix the 0-1SA parameters. We considered to D 0:98, tf D 0:01 (for SCPCYC6, tf D 0:001),fi D 0:95andNrepwasadjustedbetween1and20sothata0-1SArunwouldnot takelongerthan50%ofthecorrespondingCPLEXtime. Thisisoflittlesignificancefor theMCKPsincethemaximumCPLEXtimeis13secsforSENTO1. However,concerning the SCPCYC6, owing to the fact that the CPLEX could not find the optimal solution in 10hours—givinga“betterintegervalue”of64—weconsideredthen2mins40secsruns of 0-1SA that, in fact, provided better solutions. Both CPLEX and 0-1SA were run in a personalcomputerPentium166MHz. Table 1 shows a summary of the computational results produced by 20 runs of 0-1SA foreachproblem.Itincludesthegapbetweentheoptimumandthebestsolutiongivenby 0-1SA(100£joptimum-bestj/joptimumj). ConcerningthesolutionqualityfortheMCKP, somecomparisonswithotherprocedurescanbemade: (i) 0-1SAgaveabetteraveragesolutionthantheGENEsYsalgorithmfromKhuri,Ba¨ch andHeitko¨tter(1994)forallbutone(PET6)ofthetestproblems; (ii) the“bestsolution”givenby0-1SAisbetterthan(orequalto)the“bestsolution”provided byDrexl(1988)orAboudiandJo¨rnsten(1994)orLokketangen,Jo¨rnsten,andStoroy (1994), respectively, for all, for all but one (PET6) and for all but one (PET7) of the testproblems. Asstatedbefore,0-1SAtriestorestoretheprimalfeasibilityofeachneighboursolution producedbyafirstrandommove. Noteherethattherestoringroutinewascalledatevery iteration of the p-median problem (performing nearly 5 additional moves each time) and from10%(inWEING7)to70%(inSENTO1andWEING8)oftheiterationsoftheother problems. The number of additional moves for each solution varied from 1 to 3 within theseproblems. Table1. Computationalresultsof0-1SA. Problem: P-MEDIAN PET5 PET6 PET7 SENTO1 SENTO2 WEING6 WEING7 WEING8 SCPCYC6 n⁄m 20⁄9 28⁄10 39⁄5 50⁄5 60⁄30 60⁄30 28⁄2 105⁄2 105⁄2 192⁄240 Nrep 1 10 10 6 10 5 5 10 20 20 optimum 3,700 12,400 10,618 16,537 7,772 8,722 130,623 1,095,445 624,319 60 bestsol. 3,700 12,400 10,604 16,524 7,772 8,722 130,623 1,095,445 624,319 60 avgsol. 3,700 12,386 10,524.4 16,463.8 7,692.8 8,722 130,235 1,095,352 616,287 65.0 avgtime 0.10sec 0.44sec 0.39sec 0.33sec 3.5sec 1.27sec 0.11sec 0.39sec 1.9sec 160sec GAPopt-best 0% 0% 0.13% 0.08% 0% 0% 0% 0% 0% 0% ANINTERACTIVEMETHODFOR0-1MULTIOBJECTIVEPROBLEMS 391 1.2. TabuSearch TabuSearch, likeSimulatedAnnealing, isaneighbourhoodsearchheuristicsdesignedto avoidbeingtrappedinlocaloptima. However,incontrastwithSimulatedAnnealing,the randomizationisde-emphasizedinTabuSearchassumingthatintelligentsearchshouldbe basedonmoresystematicformsofguidance. Thesearchisconstrainedbyclassifyingcer- tainmovesasforbidden(i.e. tabu)inordertopreventthereversal,orsometimesrepetitions, ofthemoves. FormoredetailsseeGlover(1986,1989,1990a,1990b),GloverandLaguna (1993). Initssimplestform,TabuSearchmaybedescribedasfollows: LetSbethesolutionspaceandctheobjectivefunctiontobeminimized †Selectaninitialsolutionxo 2S;Letx⁄ :D xo Thetabulistisinitiallyempty: TL:D; Repeat †Createacandidatelistofnon-tabumoves—ifapplied,eachmovewould generateanewsolutionfromthecurrentone. So,letCandidate N.xo/bethe setofcandidateneighboursolutions. †Choose y 2Candidate N.xo)thatminimizesthefunctionevaluation.y/over thisset. Ifc.y/<c.x⁄/thenx⁄ :D y †xo :D y andupdateTL. untilaspecifiednumberofiterationshavepassedwithoutupdatingthebestsolution,x⁄. TheTabuSearchversionweproposehereinisdevotedto0-1linearprograms.O-1TS/. A move leading to a neighbour solution is defined by changing the value of one variable from0to1orfrom1to0. Theinitialsolutioniscomputedasin0-1SA. 0-1TSincludesthreephases: afirstphaseofsearchthatonlyusesalistoftabumoves, asecondonewhichisadiversificationphaseandfinally,anintensificationphase. Besides short-termtabumemory,whichisusedthroughouttheprocess,frequency-basedmemories are also included in the diversification and intensification phases. Short-term memory is implementedbyatabulist(last-in-last-out)whichrecordsthelast#TL(thelengthofthe tabulist)variableschangedfrom0to1orthereverse. Thesevariablescannotchangetheir values(preventingthereversalofcertainmoves)unlesstheaspirationcriterionisapplied. Theaspirationcriterionconsistsinoverridingthetabustatusofamovewhenityieldsthe bestsolutionobtaineduptothen. Thediversificationphasetriestogeneratesolutionsthatembodydifferentfeatures(vari- able values) from those previously found, driving the search into new regions. It uses a frequencymemorywhosedatahavebeencollectedfromthebeginningofthefirstphase. This memory vector records the number of times each variable took the value 1 in fea- sible solutions. At the diversification phase, a variable is allowed to change from 0 to 1 (1to0)ifthismoveisnon-tabuandthevariablefrequencyof1’sissmaller(larger)thana threshold—thethresholdisinitializedtobetheaveragefrequencyof1’sofallthevariables andisincreased(decreased)wheneverthereisnopossiblemove. 392 ALVESANDCL´IMACO Theintensificationphasetriestoreinforcesolutionfeatureshistoricallyfoundtobegood. Itusestwofrequencymemoryvectorswhosedataarebasedonsolutionqualityandhave beencollectedfromthebeginningofthesecondphase: letxbestIandxworstIbe,respectively, the best and the worst feasible solution produced until the end of the first (I) phase; the memoryvectorsrecord1s goodandrecord1s badregisterthenumberoftimeseachvariable tookvalue1,respectively,in“good”and“bad”feasiblesolutionsduringthesecondphase;a solutionhasbeenconsidered“good”ifc.x/<c.xbestI/C–or“bad”ifc.x/>c.xworstI/¡2– with– D 0:25[c.xworstI/¡c.xbestI/]. Attheintensificationphase,avariable x isallowed i to change from 0 to 1 (1 to 0) if this move is non-tabu and record1s good ‚ g1 and i record1s bad • b1 .record1s good • g0 and record1s bad ‚ b0). Initially, g1 D i i i g0 and b1 D b0 are given by the average value over record1s good and record1s bad, respectively. These thresholds are relaxed whenever there is no possible move. In the current implementation of 0-1TS the intensification phase is performed 3 times, starting withthethreebestsolutionsobtaineduntiltheendofthesecondphase. 0-1TSgoesfromonephasetothenextoneafterpassing1Niterations(anumberspecified bytheuser)withoutupdatingthebestsolution. Like in Simulated Annealing, our computational experience showed that repairing un- feasiblesolutionsimprovetheresultsremarkably. Therefore,movesthatrestorefeasibility have higher priority. However, we have adopted a different strategy from 0-1SA: only one move is performed at each iteration yielding a solution, possibly unfeasible, but that surelywillmovetowardsfeasibilityinthenextiteration. Takingintoaccountthetabulist, thefrequency-basedmemories, higherprioritymovesandtheaspirationcriterion, theset Candidate N.xo) is defined in different ways whether xo is feasible or not and depend- ingonthesearchphase. Ifthecurrentsolution xo isfeasible, thetabulist, theaspiration criterion and the frequency-based memories (in the last phases of the search) are used to identifytheelementsincludedinCandidate N.xo/. Theneighboursolutionyselectedwill be the one (not necessarily feasible) that minimizes the function evaluation.y/ over this set. Ifxo isnotfeasible,Candidate N.xo/onlyincludessolutionsobtainedbyanon-tabu move that reduces the unfeasibility of the solution. According to the restoring routine described above for 0-1SA, y will be the solution obtained by flipping the highest-score variable. Therefore,thefunctionevaluation.y/justevaluatescandidatesolutionsobtained by a move from one feasible solution (the former case). Since these candidate solutions maybeunfeasible,evaluation.y/mustincludenotonlythecostfunctionbutalsoapenalty termthatpenalizesviolatedconstraints. Afterexperimentingdifferentweightstopenalize eachviolatedconstraintwerealizedthatlowerweightsperformbetterinthefirstiterations (enabling an oscillation that diversify the search) and higher weights fit quite well in the last iterations (when an intensification is desired). Thus, evaluation.y/ D c.y/C W¢v wherev isthenumberofviolatedconstraintsandW istheweightthatvariesfromc to min c ,theminimumandmaximumnon-zeroabsolutecoefficientsintheobjectivefunction, max respectively. Computationalresultsof0-1TS 0-1TSwasappliedtothesetofproblemsusedfor0-1SA.Theparameter1Nwasspecified for each problem so that the computational times were similar to those spent by 0-1SA. Severallengthsofthetabulist,relatedtothesquarerootofthenumberofvariables,were ANINTERACTIVEMETHODFOR0-1MULTIOBJECTIVEPROBLEMS 393 Table2. Computationalresultsof0-1TS. Problem: P-MEDIAN PET5 PET6 PET7 SENTO1 SENTO2 WEING6 WEING7 WEING8 SCPCYC6 1N 20 70 30 20 50 10 25 20 100 500 #TL 2–6 2–6 2–6 3–7 3–7 3–7 2–6 7–11 7–11 7–13 bestsol. 3,700 12,400 10,618 16,499 7,772 8,722 130,623 1,095,445 615,110 62 avgsol. 3,700 12,388 10,588.4 16,499 7,772 8,722 130,389 1,095,409 610,170 62.43 #TL-best all 6 2;4 all all all 2;3 7;8;9 11 7–11 avgtime 0.06sec 0.44sec 0.38sec 0.22sec 1.37sec 0.22sec 0.15sec 0.5sec 2.0sec 158sec GAPopt-best 0% 0% 0% 0.23% 0% 0% 0% 0% 1.47% 3.33% experimented. A summary of the computational results is given in Table 2. This table includestherangeoftabulistlengths(#TL)usedforeachproblemandalsothebestand averagesolutionsamongtheresultsproducedforthedifferent#TL. Theresultsof0-1TSwithinoursetoftestproblemsshowedthatvariationsof#TLdonot cause large variations in the solution quality. There is a relative stability in the solutions thatusuallyaregoodapproximationsoftheoptimalsolution. Incontrast,severalrunsof 0-1SAmayproducesolutionsofverydifferentqualityduetorandomization. Therefore,the averagesolutionof0-1SAoverseveralrunsis,ingeneral,worsethantheaveragesolution of0-1TSfordifferenttabulistlengths. Eventhough,thebest0-1SAresultisoftenbetter thanorequaltothe0-1TSresult. Thus,wecannotconcludethatthereisametaheuristics bettersuitedforallthecasesthananotherone. 2. Aninteractivemethodformultiobjective0-1problems 2.1. Notationandbasicconcepts Let f .x/ be the objective function i to be maximized in the multiobjective 0-1 linear i programwithk objectivefunctions: max f .x/Dcix i D1;:::;k i s.t.x 2 S whereS DfxjAx Db;x 2f0;1gng Letzobetheimageofthefeasiblesolutionxo,sothatzo D.zo;:::;zo/D.f .xo/;:::; 1 k 1 f .xo//: k Thesolutionza dominateszb ifandonlyifza ‚ zb forallobjectivesi D 1;:::;k and i i za >zb foratleastoneobjectivei. i i Asolutionzissaidtobenondominatedifftheredoesnotexistanotheronethatdominates it. Let us call z a potentially nondominated solution (terminology used by Czyzak and Jaskiewicz, 1996) or an approximation of a nondominated solution iff the existence of 394 ALVESANDCL´IMACO anothersolutionthatdominatesitisstillunknown. Inwhatfollows,weusetheabbreviation p.n.dtodesignate“potentiallynondominated”. 2.1. Theinteractivemethodscheme The basic idea underlying the method we propose is the progressive and selective search of p.n.d solutions by focusing the search, in each interaction, on a subregion delimited by reservation levels specified by the DM for the objective function values. The use of reservationlevelsaimsatbringingthesearchprocessgraduallyclosertoregionsofgreater interesttotheDM.Eachcomputingphaseproducesasetofp.n.d. solutionsmoreconcen- tratedaroundtheindividualoptimafortheobjectivefunctionsintheregionbeingexplored. Subparts of a region will be explored deeper if the DM specifies new reservation levels further narrowing the previous region. This approach tries to avoid the main drawbacks ofgeneratingmethods,namelytheexcessiveamountofcomputationalresourcesrequired, bothintimeandstoragespace,andthelargeamountofinformationpresentedtotheDM ineachinteraction. Thus,themethoddoesnotintendtoprovideagoodapproximationfor thewholesetofnondominatedsolutions,butjustforthesubregionsofgreaterinterestto theDM. SimulatedAnnealingandTabuSearchworkastwoalternativeandcomplementarycom- putingprocedures.AcomputingphaseisperformedwhenevertheDMchoosesa(sub)region tobeexplored. Itconsistsinrunningametaheuristicroutine(SimulatedAnnealingorTabu Search)k times(k beingthenumberofobjectives). Thedistinctversionsofmetaheuristic approaches are adaptations of 0-1SA and 0-1TS (described in Section 1) for the multi- objectivecase.Theseproceduresaresimilartosingleobjectiveonesdifferingonlyinthe gatheringofp.n.d. solutions. Asetofp.n.d. solutions,Set pnd;iscreatedatthestartand updatedwheneverafeasibleneighboursolution(acceptedornot)isnotdominatedbyany solutionpreviouslyfound. TheneighboursolutionisaddedtotheSet pndremovingallthe solutionsdominatedbythisnewp.n.dsolution. Theithrun.i D1;:::;k/ofametaheuristicroutineprivilegestheobjectivefunctioniby usingstandardselectionandacceptancecriteria. Forinstance,theprobabilityofaccepting theneighbour y ofthecurrentsolution xo attheithrunofSimulatedAnnealingisgiven byminf1;e.fi.y/¡fi.xo//=Tg(recallthatobjectivefunction fi wasdefinedtobemaximized). Thisimpliesthat,ifydominatesxoor,yisnondominatedinrelationtoxoandhasabetter performancethanxo fortheobjectivei,then y isaccepted. Otherwiseithasaprobability of being accepted less than 1. This depends on the magnitude of the decrease in the ith objectivefunctionandthetemperatureT. However,inbothcasesthesetofp.n.d. solutions canbeupdatedwith y. The main reason for so doing—using a pre-defined objective function (i.e. that does notchangeduringthewholerun)ineachrunofSimulatedAnnealingorTabuSearch—is toavoiddamagingthe“convergence”characterofthesemetaheuristicroutinesthatcould bringoutareallygoodsolutiontoonespecificfunction. Anacceptancecriterionjustbased onadominance/nondominancerelationwouldleadtoamoredispersedsetofsolutionsbut couldrisktobefarfromallpartsofthe“true”nondominatedfrontier. Therefore,sincethe metaheuristicroutinerunsk timesforeachinteraction,privilegingeachobjectivefunction

Description:
This paper presents an interactive method for solving general 0-1 multiobjective linear programs using Simulated. Annealing and Tabu Search.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.