ebook img

An interacting particle system with geometric jump rates near a partially reflecting boundary PDF

0.38 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview An interacting particle system with geometric jump rates near a partially reflecting boundary

An interacting particle system with geometric jump rates near a partially reflecting boundary Jeffrey Kuan January 21, 2016 6 1 0 Abstract 2 This paper constructs a new interacting particle system on N×Z with geometric jumps near the + n boundary{0}×Z+whichpartiallyreflectstheparticles. TheprojectiontoeachhorizontallevelisMarkov, a and on every level the dynamics match stochastic matrices constructed from pure alpha characters of J Sp(∞), while on every other level they match an interacting particle system from Pieri formulas for 0 Sp(2r). Using a previously discovered correlation kernel, asymptotics are shown to be the Discrete 2 Jacobi and Symmetric Pearcey processes. ] R 1 Introduction P . Tomotivatethispaper,firstreviewsomepreviousresults. In[8],theauthorsconstructacontinuous–time h interacting particle system on N×Z using the representation theory of symplectic Lie groups. One t + a distinguishing feature of these dynamics is a wall at {0}×Z which suppresses jumps of particles into + m the wall. In [4], the Pieri formulas from the representation theory of the symplectic Lie groups Sp(2r) [ are used to construct discrete–time dynamics with geometric jumps, and again jumps into the wall are suppressed. In [2], there is a construction of continuous–time dynamics using Plancherel characters of 1 the infinite–dimensional symplectic group Sp(∞), and again there is a suppressing wall. v Some previous work had been done with the orthogonal groups as well. In [1], Plancherel characters 8 of the infinite–dimensional orthogonal group O(∞) led to continuous–time dynamics with a reflecting 9 3 wall, and in [3], Pieri rules for the orthogonal groups O(2r),O(2r+1) led to interacting particles with 5 discrete–timegeometricjumps,againwithareflectingwall. In[5],itwasshownthatthedynamicsof[3] 0 oneachlevelN×{k}fitintothegeneralframeworkof[1]withpurealphacharactersofO(∞). Therefore, . itisreasonabletoexpectthatthedynamicsof[4]mightalsofitintotheframeworkof[2]withpurealpha 1 characters of Sp(∞). However, it turns out that the dynamics only match on the even levels N×{2r}. 0 6 In order to create a physically meaningful interacting particle system which matches that of [2] on 1 every level, we will slightly modify the Pieri formulas of [3],[4]. The result is a wall which is partially : reflecting. Mathematically,thismeansthatajumpto−xisreflectedtox−1,ratherthanbeingtotally v reflected to x or totally suppressed at 0. Observe that after the usual scaling limit of discrete–time i X geometric jumps to continuous–time jumps with exponential waiting times, the particles only jump one step, so the partially reflecting boundary becomes a suppressing boundary. r a Note that there may be an algebraic intuition for the discrepancy between the dynamics of [4] and [2]. The odd symplectic groups Sp(2r+1) of [7] are not simple, in contrast to Sp(2r),O(2r),O(2r+1). In a sense, the odd symplectic groups are less canonical, which may explain why the two dynamics only match at the levels corresponding to Sp(2r). The paper is outlined as follows. In section 2, the interacting particle system is defined. In section 3, new formulas for the stochastic matrices from [2] are written. In section 4, it is shown that the projectiontoeachhorizontallevelisstillMarkov,andtheresultingtransitionprobabilitiesareprecisely theonesfromsection3. Usingtheexplicitexpressionforthecorrelationkernelin[2],section5findsthe asymptotics for our particle system. Note that despite the algebraic motivation and background, the body of the paper is written with minimal reference to representation theory. Acknowledgments. Financial support was available through NSF grant DMS–1502665. 1 2 Interacting Particle System First define the state space for the interacting particles. For k≥1, define W ={(λ ≥...≥λ ):λ ∈N}, where r=(cid:98)k+1(cid:99) k 1 r i 2 If λ=(λ ≥...≥λ ) and µ=(µ ≥...≥µ ) or µ=(µ ≥...≥µ ), say that λ≺µ if µ ≤λ 1 r 1 r 1 r+1 i+1 i and λ ≤µ for all possible values of i. For k≤l let i i W :={(λ(k) ≺λ(k+1) ≺...≺λ(l)):λ(j) ∈W }. k,l j The state space for the interacting particles will be W ={(λ(1) ≺λ(2) ≺...):λ(j) ∈W for 1≤j <∞}. j If ξ and ξ are two independent geometric random variables with parameter q (i.e. P(ξ = x) = 1 2 i (1−q)qx for x≥0), then for any x,y≥0 ∞ (cid:88) P(x+ξ −ξ =y)= P(ξ =c)P(ξ =y−x+c) 1 2 2 1 c=0 ∞ =(1−q)2 (cid:88) qcqy−x+c c=min(x−y,0) 1−q = q|x−y| 1+q Let {x} denote the modified absolute value (cid:40) x,x≥0 {x}= −x−1,x<0 Thus 1−q P({x+ξ −ξ }=y)= (q|x−y|+qx+y+1) 1 2 1+q With this in mind, define 1−q R(x,y)= (q|x−y|+qx+y+1). 1+q Observe that if x≥y≥z≥0, then R(x,z)=qx−yR(y,z) (1) The particles live on the lattice N×Z where N denotes the non–negative integers and Z denotes + + the positive integers. The horizontal line N×{k} is often called the kth level. There are always (cid:98)k+1(cid:99) 2 particles on the kth level, whose positions at time n will be denoted Xk(n)≥Xk(n)≥Xk(n)≥...≥ 1 2 3 Xk (n)≥0. Thetimecantakeintegerorhalf–integervalues. Forconvenienceofnotation,Xk(n) (cid:98)(k+1)/2(cid:99) will denote the element (Xk(n),Xk(n),Xk(n),...,Xk (n)) ∈N(cid:98)(k+1)/2(cid:99). More than one particle 1 2 3 (cid:98)(k+1)/2(cid:99) may occupy a lattice point. The particles must satisfy the interlacing property Xk+1(n)≤Xk(n)≤Xk+1(n) i+1 i i forallmeaningfulvaluesofkandi. ThiswillbedenotedXk ≺Xk+1. Withthisnotation,thestatespace can be described as the set of all sequences (X1 ≺ X2 ≺ ...) where each Xk ∈ N(cid:98)(k+1)/2(cid:99). The initial condition is Xk(0)=0, called the densely packed initial conditions. Now let us describe the dynamics. i For n≥0,k≥1 and 1≤i≤(cid:98)k+1(cid:99), define random variables 2 ξk(n+1/2), ξk(n) i i which are independent identically distributed geometric random variables with parameter q. In other words, P(ξ1(1/2)=x)=qx(1−q) for x∈N. 1 2 Attimen,alltheparticlesexceptXk (n)trytojumptotheleftoneafteranotherinsuchaway (k+1)/2 that the interlacing property is preserved. The particles Xk (n) do not jump on their own. The (k+1)/2 precise definition is Xk (n+ 1) = min(Xk (n),Xk−1 (n+ 1)) k odd (k+1)/2 2 (k+1)/2 (k−1)/2 2 Xk(n+ 1) = max(Xk−1(n),min(Xk(n),Xk−1(n+ 1))−ξk(n+ 1)), i 2 i i i−1 2 i 2 where Xk−1(n+ 1) is formally set to +∞. 0 2 At time n+ 1, all the particles except Xk (n+ 1) try to jump to the right one after another in 2 (k+1)/2 2 such a way that the interlacing property is preserved. The particles Xk (n+ 1) jump according to (k+1)/2 2 the law R. The precise definition is Xk (n+1)=min({Xk (n)+ξk (n+1)−ξk (n+ 1)},Xk−1 (n)) (k+1)/2 (k+1)/2 (k+1)/2 (k+1)/2 2 (k−1)/2 when k is odd and Xk(n+1)=min(Xk−1(n+ 1),max(Xk(n+ 1),Xk−1(n+1))+ξk(n+1)), i i−1 2 i 2 i i where Xk−1(n+1) is formally set to +∞. 0 Let us explain the particle system. The particles preserve the interlacing property in two ways: by pushingparticlesaboveit,andbeingblockedbyparticlesbelowit. So,forexample,intheleftjumps,the expressionmin(Xk(n),Xk−1(n+1))representsthelocationoftheparticleafterithasbeenpushedbya i i−1 2 particlebelowandtotheright. Thentheparticleattemptstojumptotheleft,sothetermξk(n+1)is i 2 subtracted. However, the particle may be blocked a particle below and to the left, so we must take the maximum with Xk−1(n). i WhileXk(n)isnotsimple,applyingtheshiftX˜k(n)=Xk(n)+(cid:98)k+1(cid:99)−iyieldsasimpleprocess. In i i i 2 other words, X˜ can only have one particle at each location. Figure 1 shows an example of X˜. 3 Relation to pure alpha characters of Sp(∞) For k≥1, define r =(cid:98)k+1(cid:99) and λ˜ =λ +r −i and k 2 i i k (cid:40) −1/2, if k odd a := k 1/2, if k even Note that 2r +a −1/2=k. Set k k 2a+1/2 (cid:90) 1 (cid:104)f,g(cid:105) = f(x)g(x)(1−x)a(1+x)1/2dx a π −1 There are explicit functions s : for k=2r or k=2r+1, k s (λ)= (cid:89) li2−lj2 · (cid:89) li , s (λ)= (cid:89) li(cid:48)2−lj(cid:48)2 2r m2−m2 m 2r−1 m(cid:48)2−m(cid:48)2 1≤i<j≤r i j 1≤i≤r i 1≤i<j≤r i j where l = λ +(r −i)+1,m = (r −i)+1, and l(cid:48) = l −1/2,m(cid:48) = m −1/2 for 1 ≤ i ≤ r. These i i k i k i i i i satisfy (cid:88) s (λ)=s (µ). (2) k−1 k λ∈Wk−1 λ≺µ Note that s (λ)=1 for all λ and s (λ)=λ +1. 1 2 1 The following transition probabilities on W are from section 5.1 of [2] are n Tφ(λ,µ):=det(cid:104)(cid:68)J ,J φ(cid:69)(cid:105)rk sk(µ). k λ˜i,ak µ˜j,ak i,j=1 sk(λ) 3 where J are the Jacobi polynomials satisfying (cid:18)z+z−1(cid:19) zk+1−z−(k+1) (cid:18)z+z−1(cid:19) zk+1/2+z−(k+1/2) J = , J = . k,1/2 2 z−z−1 k,−1/2 2 z1/2+z−1/2 Whenφ(x)=et(x−1),thesearethetransitionprobabilitiesarisingfromPlancherelcharactersofSp(∞). In this paper a different φ(x) depending on a parameter α≥0 will be considered. Note that for general φ(x), a priori there is not an obvious physical description of the dynamics. Thefollowingformulaisstandard(forexample,seeLemma3.3from[5]). Letc=(c ≥c ≥...≥c ) 1 2 r and λ=(λ ≥λ ≥...≥λ ). Set 1 2 r (cid:40) 1, if l≥s ψ(s,l)= 0, if l<s. Then (cid:40) 1, if c≺λ, det[ψ(c −i+r,λ −j+r)]r = (3) i j 1 0, if c(cid:54)≺λ. Set P2r+1(λ,β)= (cid:88) (1−q)2rss2r+1((βλ))q(cid:80)ri=1λi+βi−2ciR(λr+1,βr+1) c∈Nr,c≺λ,β 2r+1 P2r(λ,β)= (cid:88) (1−q)2rss2r((βλ))q(cid:80)ri=1λi+βi−2ci c∈Nr,c≺λ,β 2r Note that the formula for P is essentially identical to (2) from [4], and the formula for P is also 2r 2r+1 similar to a related formula from [3] with a different definition of R (see Proposition 5.2 and Theorem 7.1). The discussions in [3],[4] describe how to obtain these formulas from Pieri’s rule. This next proposition shows that P and T are the same. The proof is similar to the Proposition 3.1 from [5]. The only difference is that R(·,·) has a different definition here, but it turns out that the only relevant information about R for the proof is that (1) is true. The full proof is still included here for completeness, because much of the notation is different. Proposition 3.1. Let 1 2q φ(x)= , α= . 1+α(1−x)+ α2(1−x) 1−q 2 Then P =Tφ , P =Tφ 2r+1 2r+1 2r 2r Proof. We first prove this for r=1. Substituting x=(z+z−1)/2 (1−q)2 (cid:40)(z1/2+z−1/2)2, a=−1/2 φ(x)= , (1−x)a(1+x)1/2dx(cid:55)→ 4iz (z−q)(1−qz) −(z−z−1)2, a=1/2 8iz andtheintegralover[−1,1]becomesanintegralovertheunitcircle,withanextrafactorof1/2occurring becausethemapz(cid:55)→xistwo–to–one. Thus,theterminsidethe1×1determinantinTφcanbecalculated n from the identities 1 (cid:73) (1−q)2dz 1−q (zk+1/2+z−(k+1/2))(zl+1/2+z−(l+1/2)) = (qk+l+1+q|k−l|) 4πi (z−q)(1−qz) 1+q 1 (cid:73) (1−q)2dz 1−q − (zk+1−z−k−1)(zl+1−z−l−1) = (q|k−l|−qk+l+2) 4πi (z−q)(1−qz) 1+q for n=1,2 respectively. The first line is R(k,l)=P (k,l). For the second line, note that 1 (1−q)2mi(cid:88)n(λ,β)qλ+β−2c =(1−q)2qλ+β−q|λ−β|−2 = 1−q(q|λ−β|−qλ+β+2) (4) 1−q−2 1+q c=0 which shows that P =Tφ. 2 2 4 Now proceed to higher values of r. By (3), P (λ,β)=(1−q)2rs2r(β) (cid:88) det[f (λ −j+r)]det[f (β −j+r)] 2r s (λ) si j si j 2r s1>...>sr≥0 where f (l)=ql−sψ(s,l). s By Lemma 2.1 of [1], this equals (1−q)2rs2r(β)det(cid:34)(cid:88)∞ f (λ −i+r)f (β −j+r)(cid:35). s (λ) s i s j 2r s=0 By identity (4), P =Tφ. 2r 2r For P , start with the following claim: if max(λ ,β ) > min(λ ,β ) then P (λ,β) = 2r+1 r+1 r+1 r r 2r+1 Tψ (λ,β)=0. To see this claim, first notice that P =0 follows immediately from the description 2r+1 2r+1 of the interacting particle system, or from the fact that {c ∈ Nr : c ≺ λ,β} is empty. By (1), in the matrix of T the rth column is a multiple of the (r+1)th column, so that T =0. 2r+1 2r+1 Because of this claim, assume that max(λ ,β )≤min(λ ,β ). r r r−1 r−1 Lemma2.1from[1]isnotimmediatelyapplicable,becausewearesummingoverelementsofNr while the determinants are of size r+1. Notice, however, that c ≺ λ,β if and only if c ≺ λ ,β (where red red λ ,β denote (λ ,...,λ ),(β ,...,β )) and c ≥max(λ ,β ). Thus red red 1 r 1 r r r+1 r+1 P2r+1(λ,β)= (cid:88) (1−q)2rss2r((βλ))q(cid:80)ri=1λi+βi−2ciR(λr+1,βr+1) c∈Nr,c≺λ,β 2r s (β) =(1−q)2r 2r R(λ ,β ) s (λ) r+1 r+1 2r × (cid:88) det[f (λ −j+r)]rdet[f (β −j+r)]r si,1 j 1 si,1 j 1 s1>s2>...>sr≥max(λr+1,βr+1)  r =(1−q)2rR(λr+1,βr+1)ss2r((βλ))det (cid:88)∞ fs,1(λi−i+r)fs,1(βj−j+r) . 2r s=max(λr+1,βr+1) 1 A straightforward calculation shows that if max(λ ,β )≤min(x,y), then r+1 r+1 (cid:88)∞ qx+y−2max(λr+1,βr+1)+2−q|x−y| f (x)f (y)= . k,1 k,1 q2−1 s=max(λr+1,βr+1) Thus it remains to show that det[R(λ −i+r+1,β −j+r+1)]r+1 i j i,j=1 (cid:20)qxi+yj−2max(λr+1,βr+1)+2−q|xi−yj|(cid:21)r =(1−q)2rR(λ ,β )det r+1 r+1 q2−1 1 where x =λ −i+r and y =β −j+r. Recall that i i j j 1−q R(x,y)= (q|x−y|+qx+y+1). 1+q To show that this is true, perform a sequence of operations to the smaller matrix. These operations are slightly different for λ >β and λ ≤β . Consider λ >β for now. r+1 r+1 r+1 r+1 r r First,addarowandacolumntothematrixofsizer. The(r+1)thcolumnis[0,0,0,...,0,R(λ ,β )] r+1 r+1 and the (r+1)th row is [R(λ ,β +r),R(λ ,β −1+r),...,R(λ ,β +1),R(λ ,β )]. This r+1 1 r+1 2 r+1 r r+1 r+1 multiplies the determinant by R(λ ,β ). r+1 r+1 Second, for 1≤i≤r, perform row operations by replacing the ith row with 1 R(λ −i+r+1,β ) ith row+ i r+1 ((r+1)th row). (q−1)2 R(λ ,β ) r+1 r+1 5 For 1≤j ≤r and letting (x,y)=(λ −i+r+1,β −j+r+1), the (i,j) entry is (recall (1)) i j qx+y−2max(λr+1,βr+1)−q|x−y| + 1 R(x,βr+1) R(λ ,y) q2−1 (q−1)2R(λ ,β ) r+1 r+1 r+1 qx+y−2max(λr+1,βr+1)−q|x−y| qx−λr+1 = − (qλr+1+y+1+q|λr+1−y|) q2−1 q2−1 −qx+y+1−q|x−y| = =(1−q)−2R(x,y). q2−1 Here, we used the fact that y ≥ β ≥ min(λ ,β ) ≥ λ and y ≥ λ > β ≥ 0. For j = r+1, r r r r+1 r+1 r+1 λ >y=β , so the (i,j) entry is r+1 r+1 1 R(λ −i+r+1,β ) 0+ i r+1 R(λ ,y)=(1−q)−2R(x,y). (q−1)2 R(λ ,β ) r+1 r+1 r+1 Thus, the larger determinant is (1−q)2rR(λ ,β ) times the larger determinant. r r Nowconsiderλ ≤β . First,addthe(r+1)throw,whichisequalto[0,0,...,0,R(λ ,β )], r+1 r+1 r+1 r+1 andaddthe(r+1)thcolumnwhichis[R(λ −1+r,β ),R(λ −2+r,β ),...,R(λ ,β )]. This 1 r+1 2 r+1 r+1 r+1 multiplies the determinant by R(λ ,β ). r+1 r+1 Second, for 1≤j ≤r, perform column operations by replacing the jth column with 1 R(λ ,β −j+r+1) jth column+ r+1 j ((r+1)th column). (q−1)2 R(λ ,β ) r+1 r+1 Once again, this yields a matrix whose entries are (1−q)−2R(λ −i+r+1,β −j+r+1), except for i j the last column, which is R(λ −i+r+1,β ). i r+1 Notethatwhiletheprojectionstoeachlevelarethesame,themulti–leveldynamicsaredifferent. For thedynamicsinthispaper,thereiszeroprobabilityofajumpfrom(0)≺(1)≺(1,0)to(0)≺(0)≺(0,0) on the bottom three levels, because X2 prevents X3 from jumping to 0. However, in the dynamics of 1 1 [2], this probability is nonzero because all of the terms in (60) are nonzero. 4 Projections to levels This section will provide a proof that the projection to each level is Markov with an explicit expression fortheMarkovoperator. Notethatthemethodoftheproofisverysimilartothatof[3,4]. Theprimary differenceisthatduetothedifferentexpressionforRandforthebranchingrule,theidentities(11)and (14) are changed. We consider the subset W(2) of W ×W defined by k k k W(2) ={(z,y):z≺y}⊆W ×W , k k k and define a Markov kernel S on W(2) by k k Sk((z,y),(z(cid:48),y(cid:48)))=(1−q)kssk((yy(cid:48)))q(cid:80)ri=1(yi+yi(cid:48)−2zi(cid:48))1z(cid:48)≺y,y(cid:48) (5) k when k=2r, and Sk((z,y),(z(cid:48),y(cid:48)))=(1−q)k−1sskk((yy(cid:48)))R(yr,yr(cid:48))q(cid:80)ri=−11(yi+yi(cid:48)−2zi(cid:48))1zr(cid:48)=yr1z(cid:48)≺y,y(cid:48) (6) when k=2r−1. Since the expression for S does not depend on z, also write it as S (y,(z(cid:48),y(cid:48))). Note k k that (cid:88) S ((z,y),(z(cid:48),y(cid:48)))=P (y,y(cid:48)) (7) k k z(cid:48)∈W(2) k Thus Proposition 3.1 implies that S is a Markov operator. k 6 Theorem 4.1. For each k ≥ 1, the random process (Xk(n− 12),Xk(n))n∈N is a Markov process with transition kernel given by Sk. Furthermore, (Xk(n))n∈N is a Markov process with transition kernel given by P . k Proof. It suffices to prove the first statement, because by (7) the second follows from the first. The proof will follow from induction on k. For k = 1, Theorem 4.1 is clearly true. If the random process (Xk−1(n− 21),Xk−1(n))n∈N is Markov with transition kernel Sk−1, then the random process (Xk−1(n),Xk(n− 12),Xk(n))n∈N is also Markov with some transition kernel Qk, since the evolution of the kth level only depends on the evolution of the (k−1)th level. Let L be a Markov projection from k the (k−1)th and kth level onto just the kth level. If we show that L Q =S L (8) k k k k thentheintertwiningpropertyof[6],Theorem2,willimplythattheprojectiontothekthlevelisMarkov with kernel S . k The explicit expression for L is not hard to write. Define L from W(2) to W ×W(2) by k k k k−1 k s (x) L ((z ,y ),(x,y,z))=1 k−1 1 k 0 0 (z0,y0)=(z,y) s (y) x≺y k By (2), the L are Markov. k Inordertoprove(8),therealsoneedtobeexplicitformulasforQ . Inordertowritetheseformulas, k first introduce some notation. Let ξ and ξ be two independent geometric random variables with 1 2 a← parameter q. For x≥a≥0, let P (x,.) denote the law of the random variable max(a,x−ξ ). 1 →b →b For b≥x≥0, let P(x,.) and R(x,.) respectively denote the laws of the random variables min(b,x+ξ ) and min(b,|x+ξ −ξ |), 1 1 2 For x,y∈R2 such that x≤y we let P(x,y)=(1−q)qy−x. Withthisnotationinplace,thedescriptionofthemodelimpliesthefollowingexplicitexpressionfor Q . For (u,z,y),(x,z(cid:48),y(cid:48))∈W ×W(2) such that u≺y and x≺y(cid:48) k k−1 k Q ((u,z,y),(x,z(cid:48),y(cid:48)))= (cid:88) S (u,(v,x))→vRr−1(y ∧v ,y(cid:48)) k k−1 r r−1 r v∈Nr−1 ×r(cid:89)−1uPi←(y ∧v ,z(cid:48))r(cid:89)−1→vPi−1(z(cid:48)∨x ,y(cid:48)), (9) i i−1 i i i i i=1 i=1 when k=2r−1 and Q ((u,z,y),(x,z(cid:48),y(cid:48)))= (cid:88) S (u,(v,x)) k k−1 v∈Nr ×(cid:89)r uPi←(y ∧v ,z(cid:48))(cid:89)r →vPi−1(z(cid:48)∨x ,y(cid:48)), (10) i i−1 i i i i i=1 i=1 when k=2r. In both cases v =∞ and the sum runs over v =(v ,...,v )∈Nr−1 (or Nr) such that 0 1 r−1 v ∈{y(cid:48) ,...,x ∧z(cid:48)}, for all i. The notation can be depicted visually as i i+1 i i time n time n+1/2 time n+1 level k y z(cid:48) y(cid:48) level k−1 u v x 7 Here is a description in words. For both k = 2r and k = 2r−1, the kth level has r particles, so after the (k−1)th level evolves as S (without dependence on what happens on the kth level), there is a k−1 (r−1)–fold double product corresponding to the left and right jumps of the r−1 particles away from thewall. Fortheparticleclosesttothewall,theevolutionisasRwhenk isodd,andwhenk iseventhe evolution fits into the previous (r−1)–fold double product. In order to show (8), there need to be explicit expressions and identities for these laws. The next lemma provides this. Lemma 4.2. For (x,y,z)∈N3 such that 0<z≤y z (cid:88)R(u,x)uP←(y,z)=(1−q)qx∨z+y−2z. (11) u=0 For (x,y,a)∈N3 such that a≤y and y≤x y (cid:88)quuP←(x,y)=qx−yqa. (12) u=a For (x,y,a)∈N3 such that y≤a and x≤y a (cid:88)q−v→Pv(x,y)=qy−xq−a. (13) v=y For y∈N,y(cid:48) ∈N∗ such that y(cid:48) ≤a a (cid:88)qv∨y−2v→Rv(y∧v,y(cid:48))= 1 q−aR(y,y(cid:48)). (14) 1−q v=y(cid:48) Proof. Note that (12) and (13) are precisely statements from Lemma 8.3 of [4]. Before showing the remainingidentitiesaretrue,itisnecessarytohaveformulasfortheselaws. Thefollowingtwostatements are from Lemma 8.2 of [3]: For a,x,y∈N such that a≤y≤x a← (cid:26) (1−q)qx−y if a+1≤y P (x,y)= qx−a if y=a. For b,x,y∈N such that b≥y≥x →b (cid:26) (1−q)qy−x if y≤b−1 P(x,y)= qb−x if y=b. This next formula follows from direct computation. For b,x,y∈N such that b≥y,x  1−q(q|y−x|+qx+y+1) if y≤b−1, →b  1+q R(x,y)= 1 qb(q−x+qx+1) if y=b,  1+q So that z (cid:88) u← R(u,x) P (y,z) u=0 (cid:32)z−1 (cid:33) = 1−qqy−z (cid:88)(qu+x+1+q|u−x|)(1−q)+(qz+x+1+q|z−x|) 1+q u=0 (cid:40) 1−qqy−z(qx+1(1−qz)+qx−z+1−qx+1+qz+x+1+qx−z),x≥z = 1+q 1−qqy−z(qx+1(1−qz)−qx−1+q+1−qz−x+qz+x+1+qz−x),x<z 1+q 8 which simplifies to (1−q)qx∨z+y−2z. Furthermore, (cid:88)a qv∨y−2v→Rv(y∧v,y(cid:48))=qy(cid:48)∨y−2y(cid:48) →Ry(cid:48)(y∧y(cid:48),y(cid:48))+ (cid:88)a qv∨y−2v→Rv(y∧v,y(cid:48)) v=y(cid:48) v=y(cid:48)+1 =qy(cid:48)∨y−2y(cid:48) 1 qy(cid:48)(q−y∧y(cid:48) +qy∧y(cid:48)+1)+ (cid:88)a qv∨y−2v1−q (cid:16)q|y(cid:48)−y∧v|+qy∧v+y(cid:48)+1(cid:17) 1+q 1+q v=y(cid:48)+1 q1y+1−q2(yq(cid:48)−1y+1q+(1qy++1q)2y+(cid:48)+v1=(cid:88))ya+(cid:48)+1q(cid:88)−av11q+−y−qq2(cid:16)vq11y+−(cid:48)−qqy+(cid:16)qqvy−+yy(cid:48)(cid:48)++1q(cid:17)v+,yy(cid:48)≤+1y(cid:17)(cid:48),≤y(cid:48)a≤a≤y = v=y(cid:48)+1 qy−2y+(cid:48)1+1(cid:88)qa(1+q−qv211y(cid:48)+−+1qq)+(cid:16)qvy=−(cid:88)yyy(cid:48)(cid:48)++1qqyy−+2yv(cid:48)+111+−(cid:17)qq,y(cid:16)(cid:48)q≤v−yy(cid:48)≤+aqv+y(cid:48)+1(cid:17) v=y+1 Note that in each case, the summation over v is of the form (cid:80) q−v, and in all cases simplifies to v 1 q−aR(y,y(cid:48)). 1−q Now show that (8) is true. For (z,y)∈W(2), (x,z(cid:48),y(cid:48))∈W ×W(2) such that x≺y(cid:48), k k−1 k L Q ((z,y),(x,z(cid:48),y(cid:48)))= (cid:88) L ((z,y),(u,z,y))Q ((u,z,y),(x,z(cid:48),y(cid:48))). k k k k u∈Wk−1 Assume for now that k=2r. Then L Q is equal to k k (cid:88) sks−(1y(x))(1−q)2r−2R(ur,xr)q(cid:80)ri=−11(xi+ui−2vi) k (u,v)∈Nr×Nr−1 ×P(z(cid:48) ∨x ,y(cid:48))(cid:89)r uPi←(y ∧v ,z(cid:48))(cid:89)r →vPi−1(z(cid:48)∨x ,y(cid:48)). 1 1 1 i i−1 i i i i i=1 i=2 where the sum runs over (u,v) ∈ Nr ×Nr−1 such that u ∈ {0,...,z(cid:48)}, v ∈ {y(cid:48) ,...,x ∧z(cid:48)}, u ∈ r r i i+1 i i i {v ∨y ,...,z(cid:48)}, for i∈{1,...,r−1}. Thus L Q equals i i+1 i k k (cid:88) sks−(1y(x))(1−q)2r−2q(cid:80)ri=−11xiP(z1(cid:48) ∨x1,y1(cid:48))(cid:89)r q−2vi−1→vPi−1(zi(cid:48)∨xi,yi(cid:48)) k v∈Nr−1 i=2 × (cid:88)((1−q)2r−2R(u ,x )(cid:89)r quiuPi←(y ∧v ,z(cid:48)). r r i i−1 i u∈Nr i=1 Now evaluate the sum over u and v. For each fixed v the sum over u is equal to (cid:88)zr(cid:48) R(u ,x )uPr←(y ∧v ,z(cid:48))r(cid:89)−1 (cid:88)zi(cid:48) quiuPi←(y ∧v ,z(cid:48)). r r r r−1 r i i−1 i ur=0 i=1ui=vi∨yi+1 Now, identities (11) and (12) of Lemma 4.2 imply that the sum over u equals r−1 qxr∨zr(cid:48)+yr∧vr−1−2zr(cid:48)(1−q)(cid:89)qyi∧vi−1−zi(cid:48)+vi∨yi+1, i=1 i.e. qxr∨zr(cid:48)+yr−2zr(cid:48)+(cid:80)ri=−11yi+vi−zi(cid:48)(1−q). 9 Thus L2rQ2r((z,y),(x,z(cid:48),y(cid:48)))=sks−(1y(x))(1−q)2r−1qxr∨zr(cid:48)+yr−2zr(cid:48)+(cid:80)ri=−11yi−zi(cid:48)q(cid:80)ri=−11xi k ×P(z(cid:48) ∨x ,y(cid:48))(cid:89)r xi−(cid:88)1∨zi(cid:48)−1q−vi−1→vPi−1(z(cid:48)∨x ,y(cid:48)). 1 1 1 i i i i=2 vi−1=yi Identity (13) of Lemma 4.2 gives that (cid:89)r xi−(cid:88)1∨zi(cid:48)−1q−vi−1→vPi−1(zi(cid:48)∨xi,yi(cid:48))=(cid:89)r qyi(cid:48)−zi(cid:48)∨xi−xi−1∧zi(cid:48)−1 i=2 vi−1=yi i=2 =qyr(cid:48)−zr(cid:48)∨xr−x1∧z1(cid:48)q(cid:80)ri=−21yi(cid:48)−xi−zi(cid:48), which implies L2rQ2r((z,y),(x,z(cid:48),y(cid:48)))= sks−(1y(x))(1−q)2rq(cid:80)ri=1yi+yi(cid:48)−2zi(cid:48), k which is quickly seen to be equal to S L . This finishes the proof when k=2r. 2r 2r Similarly when k=2r−1, L2rQ2r((z,y),(x,z(cid:48),y(cid:48)))= (cid:88) sks−(1y(x))q(cid:80)ri=−11xi−2vi→vRr−1(yr∧vr−1,yr(cid:48)) k u,v∈Nr−1 ×r(cid:89)−1quiuPi←(y ∧v ,z(cid:48))r(cid:89)−1→vPi−1(z(cid:48)∨x ,y(cid:48)), i i−1 i i i i i=1 i=1 wherethesumrunsover(u,v)∈Nr−1×Nr−1 suchthatv ∈{y(cid:48) ,...,x ∧z(cid:48)},u ∈{v ∨y ,...,z(cid:48)}, i i+1 i i i i i+1 i for i ∈ {1,...,r−1}. The rest of the calculations are similar, using identities (12), (13) and (14) of Lemma 4.2. Therefore (8) is true and the proof of Theorem 4.1 is done. 5 Asymptotics The interacting particle system from [2] is a determinantal point process. In general, a determinantal point processes on a discrete space S is uniquely characterized by an object called a correlation kernel, which is a function on S×S. In [2], the asymptotics were calculated for Plancherel representations of Sp(∞). Here, we find the asymptotics for the pure alpha representations. By Theorem 1.2 of [2], the correlation kernel at integer times T is given by 2ak+1/2 1 (cid:90) 1 (cid:73) φ(x)T (1−x)rk (1−x)ak(1+x)1/2 K ((s,k),(t,m))= J (x)J (u) dudx T π 2πi −1 φ(u)T s,ak t,am (1−u)rm (x−u) 2ak+1/2 (cid:90) 1 +1 J (x)J (x)(1−x)rk−rm+ak(1+x)1/2dx k≥m π s,ak t,am −1 where(s,k),(t,m)∈N×Z andrecallthatφ(x)isthefunctionfromProposition3.1. Ifφ(x)isreplaced + with e(x−1) and T is allowed to take any nonnegative value, then K becomes the correlation kernel corresponding to the Plancherel characters. 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.