ebook img

An Interacti e An Interactive Introduction to R for Actuaries PDF

60 Pages·2009·2.95 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview An Interacti e An Interactive Introduction to R for Actuaries

AAnn IInntteerraaccttiivee  Introduction to R  for Actuaries CAS Conference November 2009 Boston, Massachusetts Daniel Murphy FCAS, MAAA Michael E. Driscoll, Ph.D. [email protected] [email protected] JJaannuuaarryy 66, 22000099 RR iiss aa ttooooll ffoorr… Data Manipulation • connecting to ddata sources • slicing & dicing data Modeling & Computation • statistical modelingg • numerical simulation DDaattaa VViissuuaalliizzaattiioonn • visualizing fit of models •• ccoommppoossiinngg ssttaattiissttiiccaall ggrraapphhiiccss RR iiss aann eennvviirroonnmmeenntt IIttss iinntteerrffaaccee iiss ppllaaiinn Let’s take a  tour of some  ccllaaiimm ddaattaa in R Let’s take a  ## load in some Insurance Claim data library(MASS) data(Insurance) IInnssuurraannccee <<- eeddiitt((IInnssuurraannccee)) tour of some  head(Insurance) dim(Insurance) ## plot it nicely using the ggplot2 package ccllaaiimm ddaattaa library(ggplot2) qplot(Group, Claims/Holders, ddaattaa==IInnssuurraannccee, geom="bar", in R stat='identity', position="dodge", facets=District ~ ., fill=Age, ylab="Claim Propensity", xxllaabb="CCaarr GGrroouupp")) ## hypothesize a relationship between Age ~ Claim Propensity ## visualize this hypothesis with a boxplot x11() library(ggplot2) qplot(Age, Claims/Holders, data=Insurance,, geom="boxplot", fill=Age) ## quantify the hypothesis with linear model m <- lm(Claims/Holders ~ Age + 0, data=Insurance) summary(m) RR iiss “aann oovveerrggrroowwnn ccaallccuullaattoorr” sum(rgamma(rpois(1,lambda=2),shape=49,scale=.2))) RR iiss “aann oovveerrggrroowwnn ccaallccuullaattoorr” • simpple math > 2+2 4 • storing results in variables > x <- 2+2 ## ‘<-’ is R syntax for ‘=’ or assignment > x^2 1166 • vectorized math > weight <- c(110, 180, 240) ## three weights > height <- c(5.5, 6.1, 6.2) ## three heights > bmi <- (weight*4.88)/height^2 ## divides element-wise 17.7 23.6 30.4

Description:
plot it nicely using the ggplot2 package library(ggplot2) qplot(Group, Claims/ Holders, data= advanced statistics. > pbinom(40, 100, 0.5) ## P that a coin tossed
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.