ebook img

An integral Riemann-Roch theorem for surface bundles PDF

0.25 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview An integral Riemann-Roch theorem for surface bundles

An integral Riemann-Ro h theorem for surfa e bundles Ib Madsen 9 January 27, 2009 0 0 2 n 1 Introdu tion a J This paper is a response to a onje ture by T. Akita about an integral Riemann-Ro h theorem for 7 surfa e bundles, [4℄, [5℄. π: E → B g 2 Let be an oriented surfa e bundle with losed (cid:28)bers of genus , and equipped with H(E) H1(E ;R) b ] ag (cid:28)berwise metri . Let be the asso iated Hodge bundle with (cid:28)bers . It be omes a T -dimensional omplexve torbBundleBwUit(hg)the omplexstru tureindu edfromtheHodgestaroperator, A so is lassi(cid:28)ed by a map from to . The element n!ch ∈H2n BU(g);Z . n h (cid:0) (cid:1) t a m de(cid:28)nes a hara teristi lass of the Hodge bundle and we set s (E):=n!ch H(E) ∈H2n(B;Z). [ n n (1.1) (cid:0) (cid:1) 1 n n They are torsion lasses for even by [12℄, but not for odd where we shall ompare them with the v standard Miller-Morita-Mumford lasses 0 4 κn(E):=π∗ c1(TπE)n+1 ∈H2n(B;Z). (1.2) 2 (cid:0) (cid:1) 4 TheGrothendie kRiemann-Ro htheorem,orthefamilyindextheoremofAtiyahandSinger,yields . 1 0 the relation s2n−1(E)=(−1)n−1(Bn/2n)κ2n−1(E) H∗(B;Q), in (1.3) 9 0 f. [28℄, [29℄. The Bernoulli numbers are de(cid:28)ned by the power series : ∞ v z z + =1+ (−1)n−1B /(2n)!z2n. Xi ez −1 2 nX=1 n r a Clearing denominators in (1.3), T. Akita made the following onje ture in [4℄: H∗(B;Z) Conje ture (Akita). In , Denom(B/2n)s (E)=(−1)n−1Num(B /2n)κ (E). 2n−1 n 2n−1 n The onje ture was veri(cid:28)ed in [5℄ for some spe ial values of , but it turns out to be in orre t in n = p general. A ounterexample is given in se t. 7 below (for , an odd prime), but there are many H∗(B;F ) p other ounterexamples and the onje ture is in orre t even in . κ (E) n Onthepositivesidehowever,one anrepla ethestandard lasses byanothersetofintegral κ¯ (E) κ (E) n n hara teristi lasses whi h I shall denote . In rational ohomology they di(cid:27)er from only by a sign: κ¯ (E)=(−1)nκ (E) H∗(B;Q) n n in , (1.4) κ κ¯ n n and moreover, Akita's onje ture be omes orre t when we substitute the lasses with . More pre isely we shall prove 1 H4n−2(B;Z) Theorem A. (i) In , 2Denom(B /2n)s (E)=2(−1)nNum(B /2n)κ¯ (E). n 2n−1 n 2n−1 p κ (E)−(−1)nκ¯ (E) n n (ii) In ohomology with -lo al oe(cid:30) ients, the di(cid:27)eren e is a torsion lass of p order . 2 Remark 1. The extra fa tor is unfortunate, and ould possibly be removed with a more detailed onsideration, f. [17℄. κ¯ (E) κ (E) n n The lasses are not as simple to de(cid:28)ne as the standard lasses . I owe the following des ription to Johannes Ebert, [14℄. Given an oriented surfa e bu∂¯ndle (with ompa t (cid:28)ber), and equipped with a (cid:28)berwise Riemannian metri , one has the (cid:28)berwise -operator ∂¯: C∞(E;C)→C∞(E;T0,1E). π The target onsists of se tions in the onjugate dual of the (cid:28)berwise tangent bundle, i.e. TπE0,1 =HomC TπE,C . (cid:0) (cid:1) ∂¯ C−H(E) ∂¯ The index bundle of is . More generally, one may twist with a omplex ve tor bundle W E on to get ∂¯ : C∞(E;W)→C∞(E;T0,1E⊗W). W π κ¯ (E) n The lasses are then given by κ¯ (E)=n!ch (index∂¯ ), n n W (1.5) W = TπE −C index(∂¯ ) B K(B) W where and is the (analyti ) index bundle over . (Its lass in is W W independent of hoi e oifnd oenx(n∂¯e t)ion on when is not holomorphi .) The index theorem gives a W di(cid:27)erent des ription of , better suited for our purpose. g BDiff(F )≃BΓ Γ g g g Surfa ebundleswith onne ted(cid:28)bersofgenus are lassi(cid:28)edby ,where isthe mapping lass group. The proof of Theorem A depends on the homologi al des ription of the stable Ω∞MT(2)= Ω∞CP∞ mapping lass group in terms of the obordism spa e −1 from [25℄. In parti ular the Madsen-Weiss theorem is needed for the ounterexample to Akita's onje ture. π: E →B An oriented surfa e bundle indu es a (cid:16) lassifying map(cid:17) α : B →Ω∞MT(2) E κ (E) κ¯ (E) s (E) κ κ¯ s n n n n n n andthe lasses , and arepull-ba ksofuniversal lasses , and intheintegral Ω∞MT(2) ohomologyof . Theanalysisoftherelationshipbetweentheseuniversal lassesusesin(cid:28)nite loop spa e theory and the theory of homology operations asso iated with this theory. The paper is divided up into the following se tions: 1. Introdu tion 2. Embedded surf¯a e bundles ∂ 3. The (cid:28)berwise -operator and its index 4. The main diagram 5. The key lemma 6. Proof of Theorem A 7. Dis ussion of Akita's onje ture p 8. Appendix on -power operations 2 2 Embedded surfa e bundles π: E →B By Whitneys's embedding theorem, a smooth manifold bundle with losed (cid:28)bers admits a (cid:28)berwise embedding i E B×RN π pr 1 B N N for some , and the embedding is unique up to (cid:28)berwise isotopy if is su(cid:30) iently large. Thereareobviousadvantagesof onsideringTeπmEbedded(cid:28)berbundles: pull-ba ksbe omefun tional, andthe(cid:28)berwise(orverti al)tangentbundle inheritsaninnerprodu tfromthestandardmetri π: E →B TonπEeu lidian spa e. Assuming further that J: TπEis→anToπrEiented surfa e bundle, in+thπe sense that is oriented, one gets a omplex stru ture by rotating ve tors by 2. The (cid:28)berwise normal bundle of the embedding, NπE ={(z,v)∈E×RN |v ⊥TπE }, z B×RN (z,v) i(z)+ π(z),v maps to by sending to (cid:0) (cid:1). By the tubular neiDgh(NboπrEho)od theorem, we may assume that this map restri ts to an embedding of the unit disk bundle , f. [17, Ÿ3.2℄. Given an oriented embedded surfa e bundle, one gets a diagram of ve tor bundles NπE tˆ U⊥ 2,N−2 p (2.1) t E G(2,N −2) , G(2,N −2) 2 RN where is the Grassmann manifold of oriented -planes in , U⊥ ={(V,v)|V ∈G(2,N −2), v ⊥V}, 2,N−2 t(z)=TE , π(z) tˆ(z,v)=(TE ,v). π(z) N =2n+2 n CPn G(2,2n) Taking , we have the embedding of omplex proje tive -spa e into by a (2n−1) - onne ted map, and a pull-ba k diagram of ve tor bundles L⊥ U⊥ n 2,2n CPn G(2,2n) . n t: E → G(2,2n) CPn For large enough, is homotopi to a map that fa tors over , and (2.1) an be repla ed by the diagram NπE tˆ L⊥ n p (2.2) E t CPn . NπE One onsequen e of (2.2) is that we may assumEe t⊂haBt ×Rn+is2a omplex ve torbundle. Alternatively a omplex struN tuπrEe an bTeπsEeen⊂aBs×foTlloRwns+:2if is a (cid:28)berwqi∗s(eNeπmEb⊗edRdCin)g with vqerti al normalbundle ,then has omplexnormalbundle ,where isthe 3 TπE E ⊂TπE ⊂B×TRn+2 TπE⊕(NπE)⊗RC bundleproje tionof , [7℄,[9℄,and hasnormalbundle ; this is a omplex ve tor bundle. π: E →B E ⊂FoBr×theRr2ens+t2ofthepaper,asurfa ebundle willmeananembeddedorientedsurfa ebundle NπE →B×R2nw+i2th ompa t (cid:28)ber and omplex verti al normal bundlDe,(sNu πhEt)hat the standanrd map reEstr⊂i tBs t×oRan2ne+m2bedding of the uniEt d⊂is Bb×unRd2lne+s4 . The integer is not part of the stru ture: is identi(cid:28)ed with . The di(cid:27)eomorphism lasses of su h surfa e bundles are in bije tive orresponden e with the set [B,BDiff(F)] F Diff(F) of homotopy lasses , where is the (cid:28)ber surfa e and denotes the topologi al group of orientation preserving di(cid:27)eomorphisms, f. Ÿ2.1 of [18℄. For su h a surfa e bundle, we an apply the Pontryagin-Thom onstru tion on the embedding D(NπE)֒→B×R2n+2, giving the map c : B ∧S2n+2 →Th(NπE):=D(NπE)/∂ . E + (2.3) π K ∗ There is an indu ed push-forward map in -theory de(cid:28)ned by the diagram K(E) Φ K Th(NπE) (cid:0) (cid:1) π∗ e (cE)∗ K(B) Φ K(B ∧S2n+2) ∼= + , Φ K e where denotes the -theory Thom isomorphism. It depends on the hoi e of Thom lass; we use the lascshfro:mK[(6B,)Ÿ2→.7℄H. 2n(B;Q) n n Let be the 'th omponent of the Chern hara ter,and s =n!ch : K(B)→H2n(B;Z) n n the a ompanying map into integral ohomology. The lasses that appear in Theorem A have the following alternative des ription s (E)=(−1)ns π (1) , n n ∗ κ¯ (E)=s π ([T(cid:0)πE]−(cid:1)1) , (2.4) n n ∗ (cid:0) (cid:1) TπE (TπE,J) HomC(TπE,C) where is onjugateto andisomorphi totheverti al omplex otangentbundle . The relationship between (2.4) and the des ription given in the introdu tion is the index theorem [9℄. This is dis ussed in the next se tion. ¯ ∂ 3 The (cid:28)berwise -operator and its index ∂¯ This short se tion explains the family index theorem for the (cid:28)berwise -operator. This is well-known for the experts, but I will in lude some details for the more inexperien ed reader. V J: V →V J2 =−id Let beave torspa ewithinnerprodu tandisometri omplexstru ture , . φ7→iφJ−1 HomC(V,C) ±1 The involution on de omposes into eigenspa es HomR(V,C)=HomC(V,C)⊕HomC(V,C) V =(V,J) V =(V,J−1) HomR(V,R) where on the right hand side and . The subspa e sits diagonally in the dire t sum, and the proje tions de(cid:28)ne isomorphisms HomR(V,R)∼=HomC(V,C), HomR(V,R)∼=HomC(V,C). (3.1) 4 φ 7→1/2(φ+iφJ−1) φ 7→1/2(φ−iφJ−1) The two isomorphisms are given by and , respe tively. The h, i V V HomR(V,R) inner produ t on identi(cid:28)es with and the ombined isomorphism V −−∼=→HomR(V,R)−−∼=→HomC(V,C), (3.2) w ∈V 1/2(φ −iφ J−1) φ (v)=hv,wi w w w whi h sends to with TπE , is a omplex isomorphism. Applied (cid:28)berwise to the verti al tangent bundle of an embedded surfa e bundle, de(cid:28)ne Tπ1,0E :=HomC(TπE,C), Tπ0,1E :=HomC(TπE,C) so that C∞(E,TπE)=C∞(E,T1,0E)⊕C∞(E,T0,1E). π π C∞(E,C) C∞(E,TπE) The (cid:28)berwise exterior di(cid:27)erential from into de omposes a ordingly. The se ond omponent is ∂¯: C∞(E,C)→C∞(E,T0,1E), π F π: E →B ∂¯φ= ∂φdz¯ whi h on a (cid:28)ber of is given lo ally by ∂z¯ with respe t to a omplex oordinate F J on ompatible with . W E More generally, if is a omplex ve tor bundle on then (possibly after hoi e of onne tion) one has the asso iated operator ∂¯ : C∞(E,W)→C∞(E,T0,1E⊗W). W π σ(∂¯ ) W The symbol is identi(cid:28)ed as σ(∂¯W)=Φ([W])=λTπE ·[W]∈K˜ Th(TπE) , (3.3) (cid:0) (cid:1) f. [8, Ÿ4℄. This lass is independent of hoi e of onne tion. The (virtual) index bundle is index(∂¯ )=ker(∂¯ )−cok(∂¯ ). W W W K(B) It de(cid:28)nes a lass in , and the index theorem of [9℄ asserts that [index(∂¯ )]=π σ(∂¯ ) ∈K(B). W ! W (3.4) (cid:0) (cid:1) π : K˜ Th(TπE) →K(B) π : K(E)→K(B) ! ∗ Thepush-forward of[9℄isrelatedtoour viatheformula (cid:0) (cid:1) π ([W])=π Φ([W]) . ∗ ! (3.5) (cid:0) (cid:1) Hen e (3.4) has the alternative formulation: [index∂¯ ]=π ([W]), W ∗ (3.6) and the lasses of (2.4) are given by s (π [W])=s (index∂¯ ), n ∗ n W (3.7) [W]=1 [W]=[TπE]−1 index(∂¯) for and ,respe tively. Wehavelefttoidentify intermsoftheHodge bundle. The result is: ker∂¯=B×C Lemma 3.8. (i) , cok∂¯=H(E) π (1)=1−[H(E)] ∗ (ii) , the Hodge bundle, and . 5 F π: E → B ∂¯ F C |F Proof. On a (cid:28)ber of , the kernel of onsists of the holomorphi maps from to F wh∂¯i h, sin e is a losed Riemannian surfa e, are the onstant maps. This proves (i). The okernel |F of is cok∂¯ =H1(F;O), |F O where is the sheaf of holomorphi maps, see e.g. [15, Thm. 15.14℄. On the other hand, by Serre duality H1(F;O)=HomC Ω(F),C (cid:0) (cid:1) Ω(F) 1 where is the ve tor spa e of holomorphi -forms, [15, Thm. 17.9℄. ∗ H1(F;R) 1 WeusedtheHodge -operatortogivethespa e ,ofharmoni -forms,a omplexstru ture, isometri w.r.t. the inner produ t given by Poin aré duality. The isomorphism H1(F;R)−−∼=→Ω(F), 1 φdx+ψdy (φ−iψ)dz givenlo allyby sendingthe harmoni -form to , is onjugate linear. Thisyields the omplex linear isomorphism H1(F;R),∗ ∼=HomC Ω(F),C . (cid:0) (cid:1) (cid:0) (cid:1) Sin e the Hodge bundle is Princ(E)× H1(F;R),∗ Diff(F) (cid:0) (cid:1) (cid:3) this proves(ii). 4 The main diagram E ⊂B×R2n+1 Let be an embedded, oriented surfa e bundle as in Ÿ1, lassi(cid:28)ed by NπE tˆ L⊥ n E t CPn , and indu ing the map tˆ: Th(NπE)→Th(L⊥). n Let ω: Th(L⊥)→Th(L ⊕L⊥)=CPn ∧S2n+2 n n n + (4.1) L π (1) π (TπE −1) K(B) n ∗ ∗ be the in lusion along the zero se tion of . The elements and of are expli itly given by the formulas π∗(1)=Φ−B1c∗Etˆ∗(λL⊥n), π∗(TπE−1)=Φ−B1c∗Etˆ∗ω∗ΦCPn(L¯n), (4.2) Φ : K(X) → K˜(X ∧ S2n+2) X X + wch:erBe ∧S2n+2 →Th(NπE) is the Thom isomorphism for the trivial bundle on , and E + is the ollapse map of (2.3). For the se ond formula in (4.2), note that ω∗(λL+L⊥)=(1−L)λ⊥L. λL⊥ ω∗ΦCPn(L¯n) Wenowdes ribethekeyrelationbetweentheelements nand whi heventuallyleads to the proof of Theorem A. 6 n W X Given an -dimensional omplex ve tor bundle on , ̺k(W)∈K(X)⊗Z[1] k K is the -theory hara teristi lass de(cid:28)ned by ψk(λ )=kn̺k(W)λ , W W ψk k where is the 'th Adams operation. Then ̺k(V ⊕W)=̺k(V)̺k(W), ̺k(L)= 1(1+L+···+Lk−1), L k a line bundle. rk De(cid:28)ne the operation by the diagram K(X) Φ K˜(X ∧S2) ∼= + rk ̺k (4.3) K(X)⊗Z[1] 1+Φ 1+K˜(X ∧S2)⊗Z[1] k ∼= + k . It is additive, rk(V ⊕W)=rk(V)+rk(W), L L¯ and for a line bundle it is given by the formula (with the onjugate line bundle) Lk−2+2Lk−3+···+(k−2)L+(k−1) rk(L¯)= . 1+L+···+Lk−1 (4.4) Φ λC = L1−1 K˜(S2) This follows easily upon using that in (4.2) is (exterior) multipli ation by in , together with the equation (L−1) Lk−2+2Lk−3+···+(k−1) =(1+L+···+Lk−1)−k, (cid:0) (cid:1) f. [23, Prop. 6.2℄. Sin e ω∗(λLn⊕L⊥n)=(1−Ln)λL⊥n, we get (k−nψk−id)(λL⊥n)=ω∗ rk(L¯n)λLn⊕L⊥n . (4.5) (cid:0) (cid:1) (Z×BU)[1] This relation an also be eKxp(rXes)s⊗edZa[s1t]he homotopy ommutative diagrambelow, where k is the lassifying spa e of k , i.e. K(X)⊗Z[1]= X,(Z×BU)[1] k k (cid:2) (cid:3) X for ompa t . The diagram is Th(L⊥) ω CPn ∧S2n+2 L¯n∧S2n+2 (Z×BU)∧S2n+2 n + λL⊥n rk∧S2n+2 (4.6) Z×BU k−nψk−id (Z×BU)[1] ε (Z×BU)[1]∧S2n+2 k k , ε: (Z×BU)∧S2n+2 →BU λCn+1 ∈K˜(S2n+2) with indu ed from multipli ation with . In order to make the above diagram independent of the embedding dimension, we pass to spe tra and their asso iated in(cid:28)nite loop spa es, f. [3℄, [2℄. 7 A={A ,ε } n n We remember that for a (pre) spe trum the asso iated in(cid:28)nite loop spa e is Ω∞A=colimΩnA n ΩnA → Ωn+1A ε′ : A → ΩA A Ω where the maps n n+1 omes from the adjoint n n n+1. If is an ( -) ε′ : A →ΩA Ω∞A ≃ A spe trum, i.e. if n n n+1 is a homotopy equivalen e, then 0. The spe tra relevant Σ∞Y KU MT(2) (2n+2) to us are , and . They have 'nd spa es: (Σ∞Y) =Y ∧S2n+2, 2n+2 KU =Z×BU, 2n+2 MT(2) =Th(L⊥). 2n+2 n Ω2n+2(−) n Applying to (4.6) and taking olimit over leads to the following homotopy ommutative Q(Y) = Ω∞Σ∞Y X = + diagram of in(cid:28)nite loop spa es, where we use the standard notations: and X⊔{+} , Ω∞MT(2) ω Q(CP∞) Q(L¯) Q(Z×BU) + λ−L Q(rk) (4.7) Z×BU kψk−id Z×BU[1] E Q (Z×BU)[1] k k . (cid:0) (cid:1) E: Q(Z×BU)→Z×BU k Themap Ω2n(Z×BU)≃Z×BU, andits lo alisedversionwΩith inverteAd,=is{aA o,nεse}quen eofBott n n periodi ity . More generally, for any -spe trum , the maps Ωn(A ∧Sn)→ΩnA ←−≃−A 0 n 0 E: Q(A )→A 0 0 determines a (weak) homotopy lass . The omposition tˆ◦c : B ∧S2n+2 →Th(NπE)→Th(L⊥) E + n (2n+2) of an embedded surfa e bundle is the 'nd omponent of a map of spe tra c : Σ∞(B )→MT(2). E + Its adjoint is α : B −i−B→Q(B )−−Ω−∞−c−E→Ω∞MT(2), E + (4.8) i B where is the in lusion. With these notations, the two elements of (4.2) are represented by the homotopy lasses B −α−E→Ω∞MT(2)−λ−−−L→Z×BU, B −α−E→Ω∞MT(2)−ω→Q(CP∞)−−Q−(L−¯→) Q(Z×BU)−−E→Z×BU. (4.9) + Theorem A is proved by evaluating (4.7) on ohomology, but to a omplish this one needs to examine the diagram Q(Z×BU) E Z×BU Q(rk) rk (4.10) Q (Z×BU)[1] E (Z×BU)[1] k k (cid:0) (cid:1) rk on the ohomologi allevel. Unfortunately, (4.10) is not a homotopy ommutative diagram: is only twi e deloopable but not an in(cid:28)nite loop map. BU ={0}×BU ⊂Z×BU We may restri t (4.10) to the zero omponent , and lo alise at a prime p (k,p)=1 with . 8 (k,p)=1 Key Lemma 4.11. For , the ohomologi al diagram PrimH∗ Q(BU );Z E∗ PrimH∗(BU ;Z) (p) (p) (cid:0) (cid:1) Q(rk)∗ (rk)∗ PrimH∗ Q(BU );Z E∗ PrimH∗(BU ;Z) (p) (p) (cid:0) (cid:1) is homotopy ommutative. Prim( ) Here denotes the primitive elements in the Hopf algebras, e.g. PrimH2n(BU ;Z)=Z hs i, s =n!ch , (p) (p) n n n Z ⊂ Q p (p) where are the fra tions with denominator prime to . The lemma is proved in the next se tion. 5 The key lemma This se tion deals with the non- ommutativity of diagramp (4.10). Our meth̺okd is torkuse t(hke,pA)r=tin1- Hasselogarithmof[33℄. Tothis endwesingleoutaprime andonly onsider and for . K (X)=K(X)⊗Z (p) (p) Let us write . We have the group homomorphism ̺k: K˜ (X)→1+K˜ (X) (p) (p) 1 where the group stru ture on tKh˜e(Xta)rgetBiUs⊕ten=so{r0}pr×odBuU t of virtual ve tor bundles of dimension . The represeKntingspa efor bu⊕is . Thisisthein1(cid:28)+niKt˜e(lXoo)p sBpaU e⊗a=sso{1 i}a×teBdUto the onne ted -theoryspe trum of[3℄. Therepresentingspa efor is . bu⊗ Thisisthe in(cid:28)nite loop spa eofaspe trum , onstru tedfrom theabstra ttheoryof in(cid:28)nite loop spa es [11℄, [26℄, [31℄. The map ̺k: BY⊕ →BU⊗ (p) (p) bu⊕ →bu⊗ is an in(cid:28)nite loop map by [24℄, i.e. it lifts to a map of spe tra (p) (p). The Artin-Hasse logarithm L : 1+K˜ (X)→K˜ (X) (p) (p) (p) X is for ompa t de(cid:28)ned by the formula ∞ 1 L (1−x)=− θpt(xn), (p) n (nX,p)=1 Xt=0 θpt: K˜ (X)→K˜ (X) (p) (p) where is the operation θpt(x)= 1 xpt −ψp(xpt−1) , t>0 pt (cid:0) (cid:1) θ1(x) = x K˜ (X) ψp ψp(x) ≡ xp (mod p) (p) and . It exists in be ause is multipli ative and , and it is K˜(BU) uniquely de(cid:28)ned sin e is torsion free. Note that rationally, ψp L (1−x)= −1 log(1−x)∈K˜(X)⊗Q. (p) (cid:18) p (cid:19) 9 L l (p) (p) It is the double loop of we are interested in, i.e. in the map de(cid:28)ned by the diagram 1+K˜ (X ∧S2) L(p) K˜ (X ∧S2) (p) (p) ∼= 1+Φ ∼= Φ K˜ (X) l(p) K˜ (X) (p) (p) . l (p) Lemma 5.1. The map is given by the formula l (x)=x+ψp(x). (p) K Proof. All produ ts vanish in redu ed -theory of a suspension, so ∞ −L(p)(1−xλC)= ψpt(xλC)=xλC+ p1ψp(xλC) Xt=0 =xλC+ψp(x)̺p(1)λC = x+ψp(x) λC (cid:0) (cid:1) K (X) (p) Stri tlXy s=peBakUing, this al ulation only makes sense when is torsion free. But this is the as(cid:3)e when . In general the formula follows by naturality from this ase. Based on the riteria from [24℄, tom Die k showed in [33℄ that L : BSU⊗ →BSU⊕ (p) (p) (p) L ◦̺k BSU⊕ isanin(cid:28)niteloopmap. The omposite (p) from (p) toitselfisthenalsoin(cid:28)nitelydeloopable. Taking double loops implies that BU⊕ −−rk→BU −−l(−p→) BU⊕ (p) (p) (p) is an in(cid:28)nite loop map, and the diagram Q(BU ) Q(rk) Q(BU ) Q(l(p)) Q(BU ) (p) (p) (p) E E (5.2) BU rk BU l(p) BU (p) (p) (p) l (p) is onsequentlyhomotopy ommutative. Lemma5.1showsthat indu esisomorphismonhomotopy groups, so is a homotopy equivalen e. l Q(l ) F (p) (p) p Lemma 5.3. The maps and indu e the identity on ohomology with oe(cid:30) ients. Proof. It su(cid:30) es to he k that l : H (BU ;F )→H (BU ;F ) (p)∗ ∗ (p) p ∗ (p) p H Q(X);F H (X,F ) ∗ p ∗ p is the identity, sin e (cid:0) ψp (cid:1) is a fun tor of pn .H2n(BU(p);Z) The Adams operation indu es multipli ation by on , so indu es the zero map H˜ (BU ;F ) l =id (cid:3) ∗ (p) p (p) on . By Lemma 5.1, . 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.