ebook img

An Insight into Geometric Modelling and Curves and Surfaces PDF

325 Pages·41.997 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview An Insight into Geometric Modelling and Curves and Surfaces

An insight into geometric modelling and Curves and Surfaces By Arne Laksa˚ ii iii iv Preface Geometry – from Ancient Greek, earth measurement – has been an important ingredient ofthedevelopmentofscienceandlateralsoindustry,designandproduction. In modern time, the Geometric modeling community is established, and has now a 50- year-old history. The first pioneers were motivated by the introduction of computers in design, construction and manufacturing. The goal was basically to provide methods and algorithmsforcurveandsurfacerepresentationsandcalculationsonthese,andtocombine curve and surface methods in computer graphics and simulations. By doing this, they started the develop of a new discipline called geometric modeling, including computer aidedgeometricdesign,solidmodeling,algebraicgeometry,andcomputationalgeometry. Computer aided geometric design (CAGD) is the central part of the field. It started with the development of methods and algorithms for CAD/CAM. Today, however, is support for virtual reality/design and computer games, simulators and animations in movies and TVproductionsasimportantareas. Curvesandsurfacesforcomputeraidedgeometricdesignstartedwithclassicalgeometric objects as line, arc, plane, sphere, cylinder etc. The next step in the development of free- formgeometrywasBezier,Hermite,B-splineandrationalvariantsasrationalBezierand NURBS and subdivision surfaces. The development began in earnest in the 1960s and wentwithfullforceuntil1990. Itis,however,stillanongoingdevelopmentthatincludes T-splines and other improvement as Multivariate splines. New results also includes the introduction of generalized B-splines and thus it is still a long way to go. This way of constructing curves and surface is the most important today and will probably be it as far as we can see. It is the defacto industrial standard. What we can call a 2nd generation curve and surface construction started around year 2000, and it is just in its initial phase. Itincludesdifferenttypesofcurvesandsurfacesconstructedbyblendingtechnics. For me the work with blending technics accelerated one day the summer of 2003. I went to my college Børre Bang at his office, to discuss improvements of GM lib , a C++ open source programming library for geometric modeling (see [88]). Lubomir Dechevsky was already there. He asked if we could look at a function he believed could be the limit of a polynomial B-spline when the degree (and, thus number of knots) tends to infinite (describedin[44]). Sincewethenwereworkingwiththegraphicalpartofaprogramming library GM lib , we implemented this new basis function and tried it for curves in R3. The result was a piecewise linear curve just like 1st degree B-spline curves, but there was, however, a big difference; this new curve was C∞-smooth but obviously only G0, v vi i.e. piecewise linear. After a short discussion we replaced the coefficients of the curve with something we called “local curves”, and Expo-Rational B-spline (ERBS) curves were born. Later this has been expanded to a more general concept we call Generalized Expo-RationalB-spline. This book was first planned to be about blending technics. However, because of input frombothstudents,thismanuscriptisalsoinfluencedbythefactthatpartsofithavebeen used as compendiums in courses in a master program in Computer Science at Narvik University College (NUC), and industrial cooperation partners I decided to expand the book to include free-form geometry in general. Free-form geometry has attracted my attention for the more than 20 years both as a scientist, teacher and also for industrial implementations([89],[60]). Acknowledgements FirstIwillexpressmygratitudetomycolleaguesLubomirT.DechevskyandBørreBang foraveryfruitfulcooperation. NextIamespeciallygratefultoTomLyche,KnutMørken forveryvaluablediscussionsandusefuladvice. I am also grateful to Tor Dokken, Bernt Bremdal, Joakim Gundersen, Arnt Kristoffersen, JosteinBratlieandRuneDalmofordiscussions,helpingwithGM lib,documentationand otherpracticalissues,andtoSusanJaneBerntsenforlanguageconsultations. Finally,IwouldliketogivebigthankstomywifeMarit,forbearingwithmethroughthis work. December2012 ArneLaksa˚ Contents Preface v 1 Introduction 1 1.1 Historicalnotesaboutgeometry . . . . . . . . . . . . . . . . . . . . . . 2 1.1.1 Moderngeometry . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.2 Elementarygeometry . . . . . . . . . . . . . . . . . . . . . . . . 9 1.1.3 Non-Euclideangeometry . . . . . . . . . . . . . . . . . . . . . . 10 1.1.4 Introductionofmathematicalrigor . . . . . . . . . . . . . . . . . 11 1.1.5 Algebraicgeometry . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.1.6 newnotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.2 Geometricmodeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.3 GM lib,anOpenSourceprogramminglibrary . . . . . . . . . . . . . . . 18 1.3.1 BLAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.4 Algorithmiclanguage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.5 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.6 Overviewofthisbook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 MathematicalspacesusefulinCAGD 29 2.1 Euclideanspaces,cartesiancoordinatesandvectorspaces . . . . . . . . . 30 2.2 Homeomorphism,diffeomorphismandmanifolds . . . . . . . . . . . . . 31 2.2.1 Local/globalparametrization,chartsandatlas . . . . . . . . . . . 31 2.3 Compactspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.4 Affinespace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.5 ProjectivespaceandGrassmannien . . . . . . . . . . . . . . . . . . . . 36 2.6 Homogenouscoordinates . . . . . . . . . . . . . . . . . . . . . . . . . . 38 I Curves 39 3 ParametricCurves 41 3.1 Differentiations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.1.1 Regularcurves-arclengthparameterization . . . . . . . . . . . 45 3.1.2 Reparameterization . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.1.3 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.2 Basisfunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 vii viii CONTENTS 3.3 HermiteCurves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.4 Be´zierCurves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.4.1 Bernsteinpolynomial . . . . . . . . . . . . . . . . . . . . . . . 57 4 SplineCurves 63 4.1 Historyofinterpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.1.1 DivideddifferencesandNewtonpolynomial . . . . . . . . . . . 69 4.1.2 Lagrangepolynomial . . . . . . . . . . . . . . . . . . . . . . . 70 4.1.3 Hermiteinterpolation . . . . . . . . . . . . . . . . . . . . . . . 72 4.2 Hermitespline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.3 Cubicsplineinterpolation . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.4 HistoryofB-Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.5 ModernB-splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.5.1 Be´ziercurvesanddeCasteljaualgorithm . . . . . . . . . . . . . 85 4.5.2 TheB-splinefactormatrixT(t) . . . . . . . . . . . . . . . . . . 87 4.5.3 CommutativityrelationsbetweenT(t)matricesandtheirderivatives 90 4.5.4 B-splinesonMatrixnotations . . . . . . . . . . . . . . . . . . . 91 4.5.5 Examples of B-splines, matrix notation, de Casteliau’s algorithm andderivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.5.6 HermitesplineinterpolationonB-splineform . . . . . . . . . . . 96 4.5.7 CubicsplineinterpolationonB-splineform . . . . . . . . . . . . 97 4.5.8 B-splinesandknotinsertion . . . . . . . . . . . . . . . . . . . . 99 4.5.9 NURBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.5.10 ImportantpropertiesofsplinefunctionsonB-splineform . . . . . 103 4.6 Blossoming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4.7 Useofblendinginconstructionofgeometry . . . . . . . . . . . . . . . . 104 5 Blendingfunctions−definitionsandbasicproperties 107 5.1 Fourexamplesofdifferentblendingfunction . . . . . . . . . . . . . . . 107 6 “ERBS”−definitionsandbasicproperties 115 6.1 Asimpleversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6.2 Generalizeddefinition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 6.3 Basicproperties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 6.4 TheScalablesubset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 6.5 Thedefaultsetofintrinsicparameters . . . . . . . . . . . . . . . . . . . 134 6.6 Expo-RationalB-splinefunctions . . . . . . . . . . . . . . . . . . . . . . 139 6.7 Knotvectorsandcontinuity . . . . . . . . . . . . . . . . . . . . . . . . 142 6.8 HermiteInterpolationproperties . . . . . . . . . . . . . . . . . . . . . . 143 6.9 Influenceoftheintrinsicparameters . . . . . . . . . . . . . . . . . . . . 145 7 GERBS–Curves 151 7.1 Definition/implementationof“open/closed”curves . . . . . . . . . . . . 153 7.2 Evaluation,valueandderivatives . . . . . . . . . . . . . . . . . . . . . . 155 7.3 Be´ziercurvesaslocalcurves . . . . . . . . . . . . . . . . . . . . . . . . 158 7.3.1 LocalBe´ziercurvesandHermiteinterpolation . . . . . . . . . . 161 CONTENTS ix 7.3.2 Samplingandpreevaluation . . . . . . . . . . . . . . . . . . . . 162 7.3.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 7.4 Circulararcsaslocalcurves . . . . . . . . . . . . . . . . . . . . . . . . 171 7.4.1 LocalArccurvesandmodifiedHermiteinterpolation . . . . . . 171 7.4.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 7.4.3 Reparametrizationandusinganapproximativecurvelengthparametriza- tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 7.5 Affinetransformationonlocalcurves . . . . . . . . . . . . . . . . . . . 182 II Surfaces 187 8 ParametricSurfaces 189 8.1 Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 8.1.1 ThedifferentialdS . . . . . . . . . . . . . . . . . . . . . . . . . 192 p 8.1.2 Curvesonsurfaces . . . . . . . . . . . . . . . . . . . . . . . . . 192 8.1.3 ThetangentplaneT (S) . . . . . . . . . . . . . . . . . . . . . . 194 q 8.1.4 Firstfundamentalform . . . . . . . . . . . . . . . . . . . . . . . 195 8.1.5 Secondfundamentalform . . . . . . . . . . . . . . . . . . . . . 197 8.2 Surfaceofrevolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 8.3 Surfacebysweeping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 8.4 SurfacesbasedonCurveconstructions . . . . . . . . . . . . . . . . . . 203 8.5 Booleansumsurface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 8.5.1 CoonsPatch,bilinearblending . . . . . . . . . . . . . . . . . . 205 8.5.2 CoonsPatch,bicubicallyblending . . . . . . . . . . . . . . . . . 206 8.5.3 Hermiteblendingsurface . . . . . . . . . . . . . . . . . . . . . . 209 8.5.4 Curvesontriangularsurfaces . . . . . . . . . . . . . . . . . . . . 220 9 TensorProductSurfaces 225 9.1 Definition/implementationof“open/closed”Surfaces . . . . . . . . . . . 227 9.2 Evaluation,valueandderivatives . . . . . . . . . . . . . . . . . . . . . . 229 9.3 Be´zierpatchesaslocalpatches . . . . . . . . . . . . . . . . . . . . . . . 235 9.3.1 LocalBe´zierpatchesandHermiteinterpolation . . . . . . . . . . 236 9.3.2 ExamplesofHermiteinterpolations . . . . . . . . . . . . . . . . 238 9.4 FreeformsculpturingusingtensorproductERBSsurfaces . . . . . . . . 245 9.5 Computational and implementational aspects for tensor product ERBS surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 10 TriangularbasedSurfaces 259 10.1 Homogenousbarycentriccoordinatesforsimplices . . . . . . . . . . . . 261 10.2 Be´ziertriangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 10.3 ThegeneralsetofExpo-RationalB-splinebasis-functioninhomogeneous barycentriccoordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 10.4 ERBStriangles,definitionandevaluators . . . . . . . . . . . . . . . . . 269 10.5 LocalBe´ziertrianglesandHermiteinterpolation . . . . . . . . . . . . . 273 10.6 Sub-trianglesfromgeneralparametrizedsurfacesaslocaltriangles . . . . 284 x CONTENTS 10.7 Surfaceapproximationbytriangulations. . . . . . . . . . . . . . . . . . . 286 10.8 Epilogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 Bibliography 299 ListofAcronyms 309 Index 311

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.