ebook img

An Information Theoretic Approach to Econometrics Paperback PDF

260 Pages·2011·2.253 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview An Information Theoretic Approach to Econometrics Paperback

ANINFORMATIONTHEORETICAPPROACHTOECONOMETRICS Thisbookisintendedtoprovidethereaderwithafirmconceptualandempirical understandingofbasicinformationtheoreticeconometricmodelsandmeth- ods.Becausemostdataareobservational,practitionersworkwithindirectnoisy observationsandill-posedeconometricmodelsintheformofstochasticinverse problems. Consequently, traditional econometric methods in many cases are notapplicableforansweringmanyofthequantitativequestionsthatanalysts wish to ask. After initial chapters deal with parametric and semiparametric linear probability models, the focus turns to solving nonparametric stochas- tic inverse problems. In succeeding chapters, a family of power divergence measure–likelihoodfunctionsisintroducedforarangeoftraditionalandnon- traditional econometric-model problems. Finally, within either an empirical maximumlikelihoodorlosscontext,GeorgeG.JudgeandRonC.Mittelham- mersuggestabasisforchoosingamemberofthedivergencefamily. GeorgeG.JudgeisaProfessorattheUniversityofCalifornia,Berkeley.Professor JudgehasalsoservedonthefacultyoftheUniversityofIllinois,Universityof Connecticut,andOklahomaStateUniversityandhasbeenavisitingprofessorat severalU.S.andEuropeanuniversities.Heisthecoauthororeditorof15books in econometrics and related fields and author or coauthor of more than 150 articlesinrefereedjournals.Hisresearchexploresspecificationandevaluation ofstatisticaldecisionrules,improvedinferencemethods,andparametricand semiparametric estimation and information recovery in the case of ill-posed inverseproblemswithnoise.JudgeisaFellowoftheEconometricSociety,the JournalofEconometrics,andtheAmericanAgriculturalEconomicsAssociation. RonC.MittelhammerisRegentsProfessorofEconomicSciencesandStatistics at Washington State University. He is the author of Mathematical Statistics for Economics and Business (1996); lead coauthor with George G. Judge and Douglas J. Miller of Econometric Foundations (Cambridge University Press, 2000); and the author of numerous book chapters and articles in refereed economics, statistics, and econometrics journals. Professor Mittelhammer’s current research focuses on econometric theory for applications in a range of economics fields. With more than two decades of graduate-level teaching experience,hisskillasateacherofstatisticsandeconometricsisdocumented byteachingevaluationsandawards.HeservedaspresidentoftheAgricultural andAppliedEconomicsAssociationin2009–10. Downloaded from Cambridge Books Online by IP 14.139.43.12 on Tue Oct 09 05:47:46 BST 2012. http://ebooks.cambridge.org/ebook.jsf?bid=CBO9781139033848 Cambridge Books Online © Cambridge University Press, 2012 Downloaded from Cambridge Books Online by IP 14.139.43.12 on Tue Oct 09 05:47:46 BST 2012. http://ebooks.cambridge.org/ebook.jsf?bid=CBO9781139033848 Cambridge Books Online © Cambridge University Press, 2012 An Information Theoretic Approach to Econometrics GEORGE G. JUDGE UniversityofCalifornia,Berkeley RON C. MITTELHAMMER WashingtonStateUniversity Downloaded from Cambridge Books Online by IP 14.139.43.12 on Tue Oct 09 05:47:46 BST 2012. http://ebooks.cambridge.org/ebook.jsf?bid=CBO9781139033848 Cambridge Books Online © Cambridge University Press, 2012 cambridgeuniversitypress Cambridge,NewYork,Melbourne,Madrid,CapeTown, Singapore,Sa˜oPaulo,Delhi,Tokyo,MexicoCity CambridgeUniversityPress 32AvenueoftheAmericas,NewYork,NY10013-2473,USA www.cambridge.org Informationonthistitle:www.cambridge.org/9780521689731 (cid:2)c GeorgeG.JudgeandRonC.Mittelhammer2012 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2012 PrintedintheUnitedStatesofAmerica AcatalogrecordforthispublicationisavailablefromtheBritishLibrary. LibraryofCongressCataloginginPublicationData Judge,GeorgeG. Aninformationtheoreticapproachtoeconometrics/GeorgeG.Judge,RonC.Mittelhammer. p. cm. Includesbibliographicalreferencesandindex. ISBN978-0-521-86959-1(hardback)–ISBN978-0-521-68973-1(paperback) 1.Econometrics. I.Mittelhammer,Ron. II.Title. HB139.J795 2011 330.01′5195–dc23 2011018358 ISBN978-0-521-86959-1Hardback ISBN978-0-521-68973-1Paperback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyofURLsfor externalorthird-partyInternetWebsitesreferredtointhispublicationanddoesnotguarantee thatanycontentonsuchWebsitesis,orwillremain,accurateorappropriate. Downloaded from Cambridge Books Online by IP 14.139.43.12 on Tue Oct 09 05:47:46 BST 2012. http://ebooks.cambridge.org/ebook.jsf?bid=CBO9781139033848 Cambridge Books Online © Cambridge University Press, 2012 ToHeatherJudge-Price ToLinda,andtomygoodfriendsandcolleagues Downloaded from Cambridge Books Online by IP 14.139.43.12 on Tue Oct 09 05:47:46 BST 2012. http://ebooks.cambridge.org/ebook.jsf?bid=CBO9781139033848 Cambridge Books Online © Cambridge University Press, 2012 Contents Preface pagexv 1 EconometricInformationRecovery 1 1.1 BookObjectivesandProblemFormat 1 1.2 OrganizationoftheBook 3 1.3 SelectedReferences 4 PARTI TRADITIONALPARAMETRICANDSEMIPARAMETRICECONOMETRIC MODELS:ESTIMATIONANDINFERENCE 2 FormulationandAnalysisofParametricandSemiparametric LinearModels 7 2.1 DataSamplingProcesses(DSPs)andNotation 7 2.2 AParametricGeneralLinearModel 10 2.2.1 TheParametricModelandMaximumLikelihood (ML)Estimationofβandσ2 12 2.2.2 TheParametricModelandInference 15 2.3 ASemiparametricGeneralLinearModel 16 2.3.1 TheSquaredErrorMetricandtheLeastSquares (LS)Principle 17 2.3.2 TheLSEstimator 18 2.3.3 FiniteSampleStatisticalPropertiesoftheLS Estimator 19 2.3.4 ConsistencyandAsymptoticNormalityoftheLS Estimator 19 2.3.5 LinearSemiparametricModelInference 20 2.3.6 InferentialAsymptotics 21 2.3.7 HypothesisTesting:LinearEqualityRestrictions onβ 22 vii Downloaded from Cambridge Books Online by IP 14.139.43.12 on Tue Oct 09 05:47:50 BST 2012. http://ebooks.cambridge.org/ebook.jsf?bid=CBO9781139033848 Cambridge Books Online © Cambridge University Press, 2012 viii Contents 2.4 GeneralLinearModelwithStochasticX 24 2.4.1 LinearModelAssumptions 25 2.4.2 LSEstimatorProperties:FiniteSamples 26 2.4.3 LSEstimatorProperties:Asymptotics 26 2.4.4 MLEstimationofβandσ2underConditional Normality 27 2.4.5 HypothesisTestingandConfidenceRegion Estimation 28 2.4.5a SemiparametricCase 28 2.4.5b ParametricCase 28 2.4.6 Summary:StatisticalImplicationsof StochasticX 30 2.5 Extremum(E)EstimationandInference 30 2.5.1 MLandLSEstimatorsExpressedinEEstimator Form 31 2.5.2 AsymptoticPropertiesofEEstimators 32 2.5.3 InferenceBasedonEEstimation 33 2.5.4 SummaryandForward:EEstimators 34 2.6 SelectedReferences 35 3 MethodofMoments,GeneralizedMethodofMoments,and EstimatingEquations 36 3.1 Introduction 36 3.1.1 AJust-DeterminedMomentSystem withRandomSamplingofScalars 37 3.2 Just-DeterminedMomentSystems,RandomSampling, andMethodofMoments(MOM) 39 3.2.1 GeneralAsymptoticProperties 40 3.2.2 LinearModelSemiparametricEstimation throughMomentEquations 41 3.2.3 MOMConclusions 42 3.3 GeneralizedMethodofMoments(GMM) 43 3.3.1 GMMFramework 43 3.3.2 GMMLinearModelEstimation 44 3.3.2a OptimalGMMWeightMatrix 45 3.3.2b SamplingPropertiesofEstimatedOptimal GMM(EOGMM)Estimator 46 3.3.2c HypothesisTestingandConfidenceRegions 47 3.3.2d AdditionalPropertiesoftheGMM Approach 48 3.3.2e SummaryandForward:TheGMM Approach 49 Downloaded from Cambridge Books Online by IP 14.139.43.12 on Tue Oct 09 05:47:50 BST 2012. http://ebooks.cambridge.org/ebook.jsf?bid=CBO9781139033848 Cambridge Books Online © Cambridge University Press, 2012 Contents ix 3.4 EstimatingEquations 50 3.4.1 DualitybetweenEstimatingEquations(EEs)andE Estimators 51 3.4.2 LinearEstimatingFunctions(EFs) 52 3.4.3 OptimalUnbiasedEFs 54 3.4.3a Unbiasedness 54 3.4.3b OptimalEstimatingFunctions(OptEFs): TheScalarCase 56 3.4.3c OptEFs:TheMultivariateCase 57 3.4.4 InferenceintheContextofEEEstimation 59 3.4.4a Wald(W)andZTestsandConfidence Regions 59 3.4.4b GeneralizedScore(Lagrange Multiplier-Type)TestsandConfidence Regions 60 3.4.4.c Pseudo-LikelihoodRatioTestsand ConfidenceRegions 61 3.5 EEstimationwithInstrumentalVariables 62 3.6 SummaryandForward 63 3.7 SelectedReferences 64 PARTII FORMULATIONANDSOLUTIONOFSTOCHASTICINVERSEPROBLEMS 4 AStochastic-EmpiricalLikelihoodInverseProblem: FormulationandEstimation 69 4.1 Introduction 69 4.2 AStochasticLinearInverseProblem 71 4.2.1 AddressingtheIndeterminacyofUnknowns 73 4.3 NonparametricMLSolutionstoInverseProblems 74 4.3.1 NonparametricML 74 4.3.2 EmpiricalLikelihood(EL)Functionforθ 76 4.3.3 ComparingtheUseofEstimatingFunctions inEEandELContexts 78 4.3.4 TheFunctionalFormoftheELFunction 80 4.3.5 SummaryoftheELConcept 81 4.3.6 MaximumEmpiricalLikelihood(MEL)Estimation ofaPopulationMean 82 4.3.7 MELLinearModelEstimationforStochasticX 85 4.4 Epilogue 86 4.5 SelectedReferences 87 Appendix4. ANumericalExample:ComputingMEL Estimates 87 Downloaded from Cambridge Books Online by IP 14.139.43.12 on Tue Oct 09 05:47:50 BST 2012. http://ebooks.cambridge.org/ebook.jsf?bid=CBO9781139033848 Cambridge Books Online © Cambridge University Press, 2012 x Contents 5 AStochasticEmpiricalLikelihoodInverseProblem:Estimation andInference 90 5.1 Introduction 90 5.2 MELInference:iidCase 90 5.2.1 MELEfficiencyProperty 91 5.3 EmpiricalExampleofMELEstimationBasedonTwo Moments 94 5.4 HypothesisTestsandConfidenceRegions:iidCase 95 5.4.1 EmpiricalLikelihoodRatioTestsandConfidence Regionsforc(θ) 95 5.4.2 WaldTestsandConfidenceRegionsforc(θ) 96 5.4.3 LagrangeMultiplierTestsandConfidence Regionsforc(θ) 97 5.4.4 Z-TestofInequalityHypothesesfortheValueofc(θ) 97 5.4.5 TestingtheValidityofMomentEquations 98 5.4.6 MELTestingandConfidenceIntervalsfor PopulationMean 99 5.4.7 IllustrativeMELConfidenceIntervalExample 100 5.5 ConcludingComments 101 5.6 SelectedReferences 103 6 Kullback-LeiblerInformationandtheMaximumEmpirical ExponentialLikelihood 104 6.1 Introduction 104 6.1.1 SolutionstoSystemsofEstimatingEquationsand Kullback-LeiblerInformation 104 6.2 Kullback-LeiblerInformationCriterion(KLIC) 106 6.2.1 RelationshipbetweenMaximumEmpirical ExponentialLikelihood(MEEL)andKL Information 108 6.2.1a ObjectiveofMEEL 109 6.3 TheGeneralMEELAlternativeEmpirical LikelihoodFormulation 111 6.3.1 TheMEELEstimatorandAlternativeEmpirical Likelihood 111 6.3.2 MEELAsymptotics 112 6.3.3 MEELInference 114 6.3.3a TestingH :c(θ)=r 114 0 6.3.3b TestingH :c(θ)≤rorH :c(θ)≥r 115 0 0 6.3.3c TestingtheValidityofMomentEquations 115 6.3.3d ConfidenceRegions 116 Downloaded from Cambridge Books Online by IP 14.139.43.12 on Tue Oct 09 05:47:50 BST 2012. http://ebooks.cambridge.org/ebook.jsf?bid=CBO9781139033848 Cambridge Books Online © Cambridge University Press, 2012 Contents xi 6.3.4 ContrastingtheUseofEstimatingFunctions inEEandMEELContexts 116 6.4 CombiningEstimationEquations underKullback-LeiblerLoss 117 6.4.1 CombatingModelUncertainty:General CombiningFormulations 117 6.4.2 Example:ACombinedEstimator 119 6.4.2a FiniteSamplePerformance 120 6.4.2b Implications 121 6.5 AnInformativeReferenceDistribution 121 6.6 ConcludingRemarks 123 6.7 ReaderIdeaChecklist 124 6.8 SelectedReferences 125 Appendix6.A RelationshipbetweentheMaximumEmpirical Likelihood(MEL)ObjectiveandKLInformation 126 Appendix6.B NumericalIllustrationofMEELandMEL EstimationofaProbabilityDistribution 128 Appendix6.C Shannon’sEntropy–SomeHistoricalPerspective 130 PARTIII AFAMILYOFMINIMUMDISCREPANCYESTIMATORS 7 TheCressie-ReadFamilyofDivergenceMeasuresandEmpirical MaximumLikelihoodFunctions 135 7.1 Introduction 135 7.1.1 FamilyofLikelihoodFunctions 136 7.2 TheCressie-Read(CR)PowerDivergenceFamily 137 7.3 ThreeMainVariantsofI(p,q,γ) 139 7.4 MinimumPowerDivergenceandEmpiricalMaximum Likelihood(EML)Estimation 140 7.5 Inference 142 7.5.1 TestStatistics 142 7.5.1a MomentValidityTests 143 7.5.1b TestsofParameterRestrictions 144 7.6 ConcludingRemarks 145 7.7 SelectedReferences 146 Appendix7.A Propositions,Proofs,andDefinitions 148 Appendix7.B EntropyFamilies 152 8 Cressie-Read-MPD-TypeEstimatorsinPractice:MonteCarlo EvidenceofEstimationandInferenceSamplingPerformance 153 8.1 Introduction 153 8.2 DesignofSamplingExperiments 154 Downloaded from Cambridge Books Online by IP 14.139.43.12 on Tue Oct 09 05:47:50 BST 2012. http://ebooks.cambridge.org/ebook.jsf?bid=CBO9781139033848 Cambridge Books Online © Cambridge University Press, 2012

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.