AN INEQUALITY IN NONCOMMUTATIVE L -SPACES p E´RICRICARD Abstract. Weprovethatforany(trace-preserving)conditionalexpectationE onanoncommu- tativeLp withp>2,Id−E isacontractiononthepositiveconeL+p. 6 1 0 1. Introduction 2 It is plain that for positive real numbers a,b>0 and p>2, one has n a (a−b)(ap−1−bp−1)>|a−b|p. J 7 Integrating the above inequality on some measure space (Ω,µ) implies that for f,g ∈Lp(Ω,µ)+, 2 f(x)−g(x) fp−1(x)−gp−1(x) dµ(x)> f −g p. Z p Ω(cid:0) (cid:1)(cid:0) (cid:1) (cid:13) (cid:13) ] (cid:13) (cid:13) A In [3], Mustapha Mokhtar-Kharroubinotices that this inequality may be used to get contractivity O results on the positive cone of Lp(Ω,µ). This note originates from the question whether its non- commutative analogue remains true. We provide a proof in the next section. We hope that the . h techniques involved there may be useful for further studies. We end up by making explicit some t a results from [3] for noncommutative Lp-spaces. m We refer the reader to [4] for the definitions of L -spaces associatedto semifinite vonNeumann p [ algebras or more general ones. We also freely use basic results from [1]. 1 2. Results v 6 Let(M,τ)be asemifinite vonNeumannalgebra. We denotebyf :M+ →M+,thepth-power p 5 map and by M++ the set of positive invertible elements. We will often refer to positivity of the 4 trace for the fact that if a,b∈M+∩L (M), then τ(ab)>0. 7 1 0 Theorem 2.1. Let p>2 and a, b∈Lp(M)+, then 1. τ |a−b|p 6τ (a−b)(ap−1−bp−1) . 0 (cid:0) (cid:1) (cid:0) (cid:1) Proof. First, as for any sequence of (finite) projections p going to 1 strongly in M and any 6 i 1 x∈Lq(M) (16q <∞) kpixpi−xkq →0, we may assume that M is finite. Next by replacing a : and b by a+ε1 and a+ε1 for some ε > 0, we may also assume that [a,b] ⊂ M++ to avoid any v unnecessary technical complication. i X We write a=b+δ. To prove the result, we distinguish according to the values of p. r a Case 1: p∈[2,3] Case 1.a: a>b, i.e. δ >0. As p−1=1+θ with θ ∈[0,1], we use the well known integral formula tθs2 dt s2 t2 (1) s1+θ =c , =s−t+ . θZR s+t t s+t s+t + Hence dt τ δ(a1+θ−b1+θ) =c tθτ δ δ+t2(b+δ+t)−1−t2(b+t)−1 . (cid:0) (cid:1) θZR+ (cid:16) (cid:0) (cid:1)(cid:17) t Recall the identity (b+δ+t)−1 −(b+t)−1 = −(b+δ+t)−1δ(b+t)−1. Using positivity of the trace with δ(b+δ+t)−1δ 6δ(δ+t)−1δ and (b+t)−1 6t−1: τ δ δ+t2(b+δ+t)−1−t2(b+t)−1 >τ δ2−tδ(δ+t)−1δ =τ δ3(δ+t)−1 . (cid:16) (cid:0) (cid:1)(cid:17) (cid:0) (cid:1) (cid:0) (cid:1) 2010 Mathematics Subject Classification: 46L51;47A30. Key words: Noncommutative Lp-spaces. 1 2 E´.RICARD Integrating, we get the desired inequality τ δ(a1+θ −b1+θ) >τ δ2+θ . Case 1.b: δ arbitrary with decomposition(cid:0) δ+−δ− into p(cid:1)ositiv(cid:0)e and(cid:1)negative parts. We reduce it to the previous case by introducing α=a+δ− =b+δ+, so that α>a,b. We have τ (a−b)(ap−1−bp−1) = τ (a−α)(ap−1−αp−1) +τ (a−α)(αp−1−bp−1) (cid:0) (cid:1) (cid:0)+τ (α−b)(αp−1−bp−(cid:1)1) +(cid:0)τ (α−b)(ap−1−αp−(cid:1)1) . The first and the third terms are bigge(cid:0)r than τ δp and τ δ(cid:1)p b(cid:0)y Case 1.a. Hence it(cid:1)suffices − + to check that the two remaining terms are posit(cid:0)ive.(cid:1)We use(cid:0)ag(cid:1)ain the integral formula (1) and δ+δ− =0 and positivity of the trace dt τ(cid:0)−δ−(αp−1−bp−1)(cid:1) = −cθZR+tθτ(cid:16)δ−(cid:0)δ++t2(b+δ++t)−1−t2(b+t)−1(cid:1)(cid:17) t dt = cθZR+tθt2τ(cid:16)δ−(cid:0)(b+t)−1−(b+δ++t)−1(cid:1)(cid:17) t >0. The last term is handled similarly. Case 2: p > 3. First, for any n ∈ N, n > 1, one easily checks by induction that we have the following identity n τ (a−b)(ap−1−bp−1) =τ δ (b+δ)p−1−n−bp−1−n bn + τ δ(b+δ)p−1−kδbk−1 . (cid:0) (cid:1) (cid:0) (cid:0) (cid:1) (cid:1) Xk=1 (cid:0) (cid:1) Let n>1 be so that p−1−n=1+θ with θ ∈[0,1[. By positivity of the trace, we get τ (a−b)(ap−1−bp−1) >τ δ (b+δ)1+θ −b1+θ bn +τ δ2(b+δ)p−2). (cid:0) (cid:1) (cid:0) (cid:0) (cid:1) (cid:1) (cid:0) By the same computations as above thanks to (1) dt τ δ (b+δ)1+θ −b1+θ bn = c tθτ δ δ+t2(b+δ+t)−1−t2(b+t)−1 bn (cid:0) (cid:0) (cid:1) (cid:1) θZR+ (cid:16) (cid:0) (cid:1) (cid:17) t dt = c tθτ δ δ−t2(b+δ+t)−1δ(b+t)−1 bn θZR+ (cid:16) (cid:0) (cid:1) (cid:17) t dt > c tθτ δ δ−tδ(b+t)−1 bn θZR+ (cid:16) (cid:0) (cid:1) (cid:17) t dt = c tθτ δ2b(b+t)−1bn θZR (cid:16) (cid:17) t + = τ δ2bn+θ =τ δ2bp−2 , where we used again positivity of the tra(cid:0)ce with(cid:1)(b+(cid:0)δ+t)−1(cid:1)6t−1 and 06(b+t)−1bn. To conclude let E to be the conditional expectation onto the subalgebra N = {δ}′′. As N is commutative, the Jensen inequality is valid; for any α > 1 and x ∈ M+: E(xα) > (Ex)α. With α=p−2>1, τ δ2bp−2 =τ δ2E(bp−2) >τ δ2(Eb)p−2 , τ δ2(b+δ)p−2 >τ δ2(E(b+δ))p−2 . (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) But with the usual decomposition δ = δ+ −δ−, as a, b > 0, Eb > δ− and E(b+δ) > δ+. By commutativity of N, we can conclude τ (a−b)(ap−1−bp−1) >τ δ2(δp−2+δp−2) =τ |δ|p . − + (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) (cid:3) We provide an alternative proof when p∈[3,4]. DenotebyR andL therightandleftmultiplicationoperatorsbyx∈MdefinedonallL (M) x x p (1 6 p 6 ∞). When p = 2, for any x ∈ Msa, the C∗-algebra generated in B(L (M)) by L and 2 x R is commutative and isomorphic to C(σ(x)×σ(x)) where σ(x) is the spectrum of x. x Lemma2.2. Forp>1,themapf isFr´echetdifferentiableonM++. ForMfinite,thederivative p is given by the formula in L (M): 2 1 p−1 ∀x∈M++,∀h∈Msa, D f (h)=p tL +(1−t)R (h)dt. x p Z0 (cid:16) x x(cid:17) AN INEQUALITY IN NONCOMMUTATIVE Lp-SPACES 3 Proof. Assume x>3δ for some δ >0. Taking h∈Msa with khk<δ, we may compute f (x+h) p using the holomorphic functional calculus by choosing a curve γ with index 1 surrounding the spectrum of x with γ ⊂{z |Rez >0} and dist(γ,σ(x))>2δ: 1 zp (x+h)p = dz 2iπ Z z−(x+h) γ Hence (x+h)p−xp = 1 zp z−(x+h) −1h z−x −1dz 2iπ Z γ (cid:0) (cid:1) (cid:0) (cid:1) It follows directly that f is Fr´echet differentiable with derivative p Dxfp(h)= 21iπ Z zp z−x −1h z−x −1dz = 21iπ Z zpL(z−x)−1R(z−x)−1(h)dz. γ (cid:0) (cid:1) (cid:0) (cid:1) γ It then suffices to check that the two formulas coincide when M is finite; as M ⊂ L (M), we do 2 it for h ∈L (M). But in B(L (M)), this boils down to an equality in C(σ(x)×σ(x)) so that we 2 2 need only to justify that ∀a,b∈R+∗, 1 zp dz =p 1 ta+(1−t)b p−1 dt. 2iπ Z (z−a)(z−b) Z γ 0 (cid:0) (cid:1) The above computations yield that the left-hand side is ap−bp if a 6= b and pap−1 if a = b which a−b clearly coincide with the right-hand side. (cid:3) Assuming M finite anda=b+δ,b∈M++ asabove,the alternativeproofwhenp∈[3,4]relies on Lemma 2.2: 1 1 p−2 τ (a−b)(ap−1−bp−1) = p τ δ tL +(1−t)R (δ) dtdu (cid:0) (cid:1) Z0 Z0 (cid:16) (cid:16) b+uδ b+uδ(cid:17) (cid:17) 1 1 p−2 = pZ0 Z0 hδ,(cid:16)tLb+uδ+(1−t)Rb+uδ(cid:17) (δ)iL2(M) dtdu As p−2 ∈ [1,2], fp−2 is operator convex, so that for any m ∈ B(L2(M))+ and any projection E ∈B(L (M)), we have Emp−2E > EmE)p−2. We choose E to be the L -conditional expectation 2 2 onto the subalgebra generated by δ.(cid:0) p−2 p−2 hδ,(cid:16)tLb+uδ+(1−t)Rb+uδ(cid:17) (δ)iL2(M) = hδ,E(cid:16)tLb+uδ+(1−t)Rb+uδ(cid:17) E(δ)iL2(M) p−2 > hδ,(cid:16)tELb+uδE +(1−t)ERb+uδE(cid:17) (δ)iL2(M) p−2 = hδ,(cid:16)tLE(b)+uδE +(1−t)RE(b)+uδE(cid:17) (δ)iL2(M) p−2 = hδ,(cid:16)tLE(b)+uδ+(1−t)RE(b)+uδ(cid:17) (δ)iL2(M), where in the last equality we have used that R and E commute if x ∈ δ′′. Tracking back the x equalities, we obtain τ δ((b+δ)p−1−bp−1) >τ δ((E(b)+δ)p−1−E(b)p−1) >τ |δ|p , (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) where the last inequality comes from the result in the commutative case. Remark 2.3. We point out that, for p ∈]2,3[, the result cannot be reduced to the commutative case as in the alternative proof. Indeed, t7→tp−2 is operatorconcaveandthe first inequality right above reverses. Remark 2.4. Letϕ:Lp(M)→Lp′(M)bethedualitymapsothathx,ϕ(x)iLp(M),Lp′(M) =kxkpp and kϕ(x)kp′ = kxkpp−1. When restricted to Lp(M)+, it is exactly fp−1, so the result can be written as: for a, b∈L (M)+ p ha−b,ϕ(a)−ϕ(b)iLp(M),Lp′(M) > a−b pp. (cid:13) (cid:13) In this form, the inequality extends to general L -spaces in t(cid:13)he sen(cid:13)se of Haagerup, see [5, 2] for p the arguments. 4 E´.RICARD Corollary2.5. Let(M,τ)beasemifinitevonNeumannalgebraandE :M→Mbeaτ-preserving conditional expectation, then for all p>2 and x∈L (M)+, p (2) x−Ex 6 x . p p (cid:13) (cid:13) (cid:13) (cid:13) Proof. Apply the above theorem with a(cid:13)= x an(cid:13)d b =(cid:13)E(cid:13)x, as τ (x−Ex)(Ex)p−1 = 0, the Ho¨lder inequality gives: (cid:0) (cid:1) x−Ex p 6τ (x−Ex)xp−1 6 x−Ex x p−1. p p p (cid:13) (cid:13) (cid:0) (cid:1) (cid:13) (cid:13) (cid:13) (cid:13) (cid:3) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) Remark 2.6. The inequality (2) does not hold for p<2; a counterexample with M=ℓ2 can be ∞ foundin[3]. There,aslightextensionof (2)is given;onecanreplaceE byanypositivecontractive projection C on L (M). p As explained in [3], the main inequality applies more generally to semigroups. Corollary 2.7. Let (M,τ) be a semifinite von Neumann algebra and (T ) be a trace preserving t t>0 unital positive strongly continuous semigroup on M. For λ > 0, let R = ∞e−λtT dt be its λ 0 t resolvent. Then for all p>2, λ>0 and x∈L (M)+, R p x−λR x 6 x . λ p p (cid:13) (cid:13) (cid:13) (cid:13) Proof. We proceed as in Corollary 2.5(cid:13). We apply(cid:13)Theo(cid:13)re(cid:13)m 2.1 with a=x and b=λR x to get λ x−λR x p 6 τ (x−λR x)xp−1 −τ (x−λR x)(λR x)p−1 λ p λ λ λ (cid:13) (cid:13) (cid:0) (cid:1) (cid:0) (cid:1) (cid:13) (cid:13) 6 x−λR x x p−1−τ (x−λR x)(λR x)p−1 . λ p p λ λ (cid:13) (cid:13) (cid:13) (cid:13) (cid:0) (cid:1) To conclude, it suffices to note tha(cid:13)t τ (x−λ(cid:13)R(cid:13)x)(cid:13)(R x)p−1 >0. λ λ Itcanbe checkedbyapproximation(cid:0)sthanks tothe resolve(cid:1)ntformula: x−λRλx=limt→∞t(1− tR )R x. Indeed, recall that tR is positive unital and trace preserving and hence a contraction t λ t on L so that p τ tR (R x).(R x)p−1 6 R x p and τ t(1−tR )R x (R x)p−1 >0. t λ λ λ p t λ λ (cid:0) (cid:1) (cid:13) (cid:13) (cid:0)(cid:0) (cid:1) (cid:1) (cid:13) (cid:13) (cid:3) References [1] Rajendra Bhatia. Matrix analysis, volume 169 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1997. [2] UffeHaagerup,MariusJunge,andQuanhuaXu.AreductionmethodfornoncommutativeLp-spacesandappli- cations.Trans. Amer. Math. Soc.,362(4):2125–2165, 2010. [3] MustaphaMokhtar-Kharroubi.ContractivitytheoremsinrealorderedBanachspaceswithapplicationstorelative operatorbounds,ergodicprojectionsandconditionalexpectations.Preprint,https://hal.archives-ouvertes.fr/hal- 01148968. [4] Gilles Pisier and Quanhua Xu. Non-commutative Lp-spaces. In Handbook of the Geometry of Banach Spaces, Vol. 2,pages1459–1517. North-Holland,Amsterdam,2003. [5] E´ric Ricard. H¨older estimates for the noncommutative Mazur maps. Arch. Math. (Basel) 104 (2015), no. 1, 37–45. Laboratoire de Math´ematiques Nicolas Oresme, Universit´e de Caen Normandie, 14032 Caen Cedex, France E-mail address: [email protected]