ebook img

An In-Silico Investigation of Antibacterial Phytochemicals PDF

113 Pages·2016·12.77 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview An In-Silico Investigation of Antibacterial Phytochemicals

antibiotics Article The Search for Herbal Antibiotics: An In-Silico Investigation of Antibacterial Phytochemicals MarySnowSetzer1,JavadSharifi-Rad2,3andWilliamN.Setzer1,* 1 DepartmentofChemistry,UniversityofAlabamainHuntsville,Huntsville,AL35899,USA; [email protected] 2 ZabolMedicinalPlantsResearchCenter,ZabolUniversityofMedicalSciences,Zabol61615-585,Iran; javad.sharifi[email protected] 3 DepartmentofPharmacognosy,ZabolUniversityofMedicalSciences,Zabol61615-585,Iran * Correspondence:[email protected];Tel.:+1-256-824-6519 AcademicEditor:WilliamR.Schwan Received:26May2016;Accepted:26August2016;Published:12September2016 Abstract: Recently,theemergenceandspreadofpathogenicbacterialresistancetomanyantibiotics (multidrug-resistant strains) have been increasing throughout the world. This phenomenon is of great concern and there is a need to find alternative chemotherapeutic agents to combat these antibiotic-resistant microorganisms. Higher plants may serve as a resource for new antimicrobials to replace or augment current therapeutic options. In this work, we have carried out a molecular docking study of a total of 561 antibacterial phytochemicals listed in the Dictionary of Natural Products, including 77 alkaloids (17 indole alkaloids, 27 isoquinoline alkaloids,4steroidalalkaloids,and28miscellaneousalkaloids),99terpenoids(5monoterpenoids, 31 sesquiterpenoids, 52 diterpenoids, and 11 triterpenoids), 309 polyphenolics (87 flavonoids, 25chalcones,41isoflavonoids,5neoflavonoids,12pterocarpans,10chromones,7condensedtannins, 11coumarins,30stilbenoids,2lignans,5phenylpropanoids,13xanthones,5hydrolyzabletannins, and56miscellaneousphenolics),30quinones,and46miscellaneousphytochemicals,withsixbacterial proteintargets(peptidedeformylase,DNAgyrase/topoisomeraseIV,UDP-galactosemutase,protein tyrosinephosphatase,cytochromeP450CYP121,andNAD+-dependentDNAligase). Inaddition, 35knowninhibitorsweredockedwiththeirrespectivetargetsforcomparisonpurposes. Prenylated polyphenolics showed the best docking profiles, while terpenoids had the poorest. The most susceptibleproteintargetswerepeptidedeformylasesandNAD+-dependentDNAligases. Keywords: antibiotic resistance; antibacterial phytochemicals; molecular docking; bacterial proteintargets 1. Introduction Recently,establishedantibioticshavebecomelesseffectiveagainstnumerousinfectiousorganisms, and the Centers for Disease Control and Prevention (CDC) has warned of a “post-antibiotic era”[1]. Thisconcernisheightenedbyourtenuousabilitytodetect,contain,andpreventemerging infectious diseases. The emergence of pathogenic microbes with increased resistance to existing antibioticsprovidesamajorincentiveforthediscoveryofnewantimicrobialagents. Theproblems of drug-resistant pathogens have been reviewed recently [2–5]; there is a pressing need for more effectiveantibacterialtherapy. Basedonseveralrecentreports,pathogensofimmediateconcernare methicillin-resistantStaphylococcusaureus(MRSA),acommoncauseofhospital-acquiredinfections, and which is evolving a resistance to vancomycin [6]; Pseudomonas aeruginosa in which multidrug resistancehasbecomeproblematic[7];Streptococcuspneumoniae,acommonrespiratorypathogenin whichmultidrugresistanceisspreading[8];multidrug-resistantstrainsofMycobacteriumtuberculosis[9], Antibiotics2016,5,30;doi:10.3390/antibiotics5030030 www.mdpi.com/journal/antibiotics Antibiotics2016,5,30 2of113 which are causing an alarming increase in the incidence of tuberculosis; and virulent strains of Escherichiacoli,whichcontinuetoemerge[10–12]. Virtual screening using cheminformatics, pharmacophore, or ligand- and structure-based target prediction methods [13] has emerged as an advantageous alternative to high-throughput screening for identification of potential lead structures or biological targets for anti-infective drug discovery. Forexample,BernalandCoy-Barrerahaveusedacombinationofmoleculardockingand multivariateanalysistoidentifyantifungalandantiviralxanthoneleadcompounds[14]. Rahimiand co-workershaveusedastructuralsimilaritysearchalongwithmoleculardockingtoidentifypotential ShigellaflexneriDNAgyraseinhibitors[15]. Moleculardockinghasbeenusedtoidentifybacterial peptidyl-tRNAhydrolaseasanadditionalalternativetargetforknownantibioticdrugs[16]. Untilthebeginningofthetwentiethcentury,virtuallyallmedicineswerederivedfromnatural sources,mostoftenfromplants,andplantscontinuetoserveassourcesofnewmedicinesandprovide leadcompoundsfordrugdevelopment. Theseantimicrobialagentsderivedfromhigherplantshave been reviewed recently [17,18]. In the discovery of new and complementary antibacterial agents, phytochemicalsthatshowantibacterialactivitycanbeexaminedforpotentialinhibitionofbacterial targetproteinssuchaspeptidedeformylase(PDF),topoisomeraseIV(TopoIV),DNAgyraseB(GyrB), proteintyrosinephosphatase(Ptp),UDP-galactopyranosemutase(UGM),cytochromeP450(CYP121), andNAD+-dependentDNAligase,aswellasphytochemicalinhibitorsofbacterialeffluxpumpsor quorumsensingproteins,oragentsthatenhancetheimmunesystem.Inthiswork,wehavecarriedout anin-silicoscreeningofphytochemicalsidentifiedintheDictionaryofNaturalProducts[19]asshowing antibacterialactivityagainstseveralpotentialbacterialproteintargets. 1.1. PeptideDeformylase TheprocessofbacterialproteinsynthesisisinitiatedwithN-formylmethionine(f-Met-tRNAi), whichisgeneratedthroughtheenzymatictransformylationofmethionyl-tRNA(Met-tRNAi)byformyl methionyltransferase(f-Mett). TheN-formylgroupofthepolypeptidethatemergesfromtheribosome aftercompletionoftheelongationprocessisremovedbythesequentialactionofpeptidedeformylase (PDF)[20,21].Methionineaminopeptidase(MAP)thenremovestheN-terminalmethioninedepending onthenatureofthesecondaminoacidinthepeptidechain[22]. Therefore,deformylationplaysa pivotalroleinbacterialproteinmaturation,growth,andsurvival;PDFisvitalinavarietyofpathogenic bacteriabutitisnotrequiredforcytoplasmicproteinsynthesisintheeukaryotes. Hence,PDFhas beenidentifiedasapotentialantibacterialdrugtarget[23]. BacterialPDFsaremetallohydrolasesthat use Fe2+ as the catalytic metal ion (which can be replaced with Ni2+ or Zn2+) that is tetrahedrally coordinatedtotwohistidineresidues,acysteineresidue,andawatermolecule[24]. 1.2. DNAGyrase/TopoisomeraseIV Topoisomerase enzymes control the topological state of DNA within cells and are important fortheessentialprocessofproteintranslationandcellreplication. Muchattentioninantibacterial drugdiscoveryhasbeenfocusedontheDNAgyrase(atypeIItopoisomerase)andtopoisomeraseIV. Thesetypesoftopoisomerasesarepresentinbacteriaandplants,butnotanimals. DNAgyraseand topoisomeraseIVsharehighstructuralandsequencesimilarity,yetplaydifferentnecessaryrolesin thereplicationofDNA.Becauseoftheirvitalnatureandmechanismsofaction,topoisomeraseshave becomekeydrugtargetsforantibacterialdrugdiscovery[25,26]. 1.3. UDP-GalactopyranoseMutase UDP-Galactopyranose mutase (UGM) is the only enzyme known to catalyze the isomerization of UDP-galactopyranose to UDP-galactofuranose. The enzyme has been identified in prokaryotes, including Gram-negative bacteria and mycobacteria, as well as eukaryotic parasites (Leishmania major, Trypanosoma cruzi), nematodes (Caenorhabditis elegans), and fungi (Aspergillusfumigatus,Cryptococcusneoformans),buthavenotbeenfoundinhighereukaryotes[27]. Antibiotics2016,5,30 3of113 Galactofuranoseresiduesareessentialcomponentsofmycobacterialcellwalls,andthus,UGMhas beenidentifiedasapotentialtargetforantimycobacterialchemotherapeutics. 1.4. ProteinTyrosinePhosphatase Proteintyrosinephosphatases(Ptps)havebeensuggestedtobemajorvirulencedeterminants. Theseenzymesreversetheeffectoftyrosinekinasesbydephosphorylatingthetyrosineresiduesof hostcellularsubstrateproteinsimportantinhostcellularsignaling,whichattenuateshostimmune defenses[28,29]. Ptpsareessentialcomponentsfortheinteractionofmycobacteriawithhostcells, making them attractive protein targets; structural differences between mycobacterial Ptps and eukaryoticPtpscouldallowforthediscoveryofselectivemycobacterialPtpinhibitors[28,29]. 1.5. CytochromeP450CYP121 Severalantifungalazoleandtriazoleagentshavebeenshowntoinhibitmycobacterialcytochrome P450CYP121[30]. CYP121isessentialforMycobacteriumtuberculosisandthereisacorrelationbetween antimycobacterial activity and MtCYP121 binding, suggesting that MtCYP121 is the major target inM.tuberculosis[31]. ThereislowsequencesimilaritybetweenMtCYP121andmammalianP450s, whichsuggeststhatMtCYP121isapromisingantimycobacterialdrugtarget[32]. 1.6. NAD+-DependentDNALigase DNAligasesareinvolvedinDNAreplication,recombination,andrepairpathwaysbyjoining adjacent3(cid:48)-hydroxyland5(cid:48)-phosphorylterminiinDNA[33]. BacterialDNAligasesuseNAD+asa cofactor,whichdifferentiatesthemfromeukaryoticDNAligases,whichuseATP[34]. Thedifferences betweenbacterialNAD+-dependentDNAligases(LigA)andmammalianATP-dependentDNAligases suggestthatbacterialLigAshouldbeexcellenttargetsforantibacterialdrugdiscovery[35]. 2. ComputationalMethods Protein-ligand docking studies were carried out based on the structures of verified bacterial proteindrugtargets. Bacterialpeptidedeformylase: Bacilluscereus(BcPDF,PDB2OKL[36]);Escherichiacoli(EcPDF, PDB 1G2A and 1G27 [37], PDB 1LRU [38], PDB 2AI8 [39], PDB 2KMN [40], and PDB 3K6L [41]); Mycobacteriumtuberculosis(MtPDF,PDB3E3U[42]);Pseudomonasaeruginosa(PaPDF,PDB1LRY[38], 1IX1 [43], and 1S17 [44]); and Staphylococcus aureus (SaPDF, PDB 1Q1Y [43], PDB 3U7K, 3U7M, and3U7N[45]). InordertotestfortheselectivitytowardbacterialPDFoverhumanPDF,molecular dockingofthephytochemicalligandswasalsocarriedoutonhumanPDF(HsPDF,PDB4JE7and 4JE8[46]). Bacterial DNA gyrase B/topoisomerase IV: E. coli (EcGyrB, PDB 1AJ6 [47], EcTopoIVB, PDB1S16[48]),andM.tuberculosis(MtGyrB,PDB3ZKBand3ZKD[49]). Bacterialproteintyrosinephosphatase: M.tuberculosis(MtPtpA,PDB1U2Q[28],andMtPtpB, PDB2OZ5[29]). InordertocompareMycobacteriumPtpdockingoverhumanPtp,moleculardocking ofthephytochemicalligandswasalsocarriedoutwithhumanPtpB(HsPtpB,PDB2I4Hand2I5X[50]). MycobacterialUDP-galactopyranosemutase: M.tuberculosis(MtUGM,PDB4RPG,4RPH,4RPJ, 4RPK,and4RPL[51]). MycobacterialcytochromeP450CYP121: M.tuberculosis(MtCYP121,PDB4IPS[52],4KTF[53], and5IBE[32]). Bacterial NAD+-Dependent DNA ligase: E. coli (EcLigA, PDB 2OWO [35] and 4GLX [54]), M. tuberculosis (MtLigA and PDB 1ZAU [55]), S. aureus (SaLigA, PDB 4CC5 and 4CC6 [56]), andS.pneumoniae(SpLigAandPDB4GLW[54]). Priortodocking,allsolventmoleculesandtheco-crystallizedligandswereremovedfromthe structures.Ifco-factorswerepresent,theywereretainedineachproteinmodel(e.g.,divalentmetalions inpeptidedeformylases,flavinadeninedinucleotide(FAD)inM.tuberculosisUDP-galactopyranose Antibiotics 2016, 5, x   4 of 99  Antibiotics2016,5,30 4of113 Prior to docking, all solvent molecules and the co‐crystallized ligands were removed from the  musttarsuec,tuarneds. hIfe cmoe‐fainctoMrst CwYerPe1 p2r1e)s.eMnto, tlheceuy lwarerdeo rcektainingedca ilnc uelaacthio pnrsotfeoirn amllocdoeml (pe.ogu., nddivsawleintth meeatcahl of theiopnrso teiinn s wpeeprteiduen ddeerftoarkmenylausseisn, g Mflaovlieng roadVeinritnuea l Ddioncukcelero(tvideer sio(FnA6D.0),  Mino leMgr.o  AtupbeSr,cuAloasrihs us, UDP‐galactopyranose mutase, and heme in MtCYP121). Molecular docking calculations for all  Denmark)[57],withasphere(15Åradius)largeenoughtoaccommodatethecavitycenteredonthe compounds with each of the proteins were undertaken using Molegro Virtual Docker (version 6.0,  binding sites of each protein structure in order to allow each ligand to search. If a co-crystallized Molegro ApS, Aarhus, Denmark) [57], with a sphere (15 Å radius) large enough to accommodate the  inhibitor or substrate was present in the structure, then that site was chosen as the binding site. cavity centered on the binding sites of each protein structure in order to allow each ligand to search.  Ifnoco-crystallizedligandwaspresent,thensuitablysized(>50Å3)cavitieswereusedaspotential If a co‐crystallized inhibitor or substrate was present in the structure, then that site was chosen as the  binding sites. Standard protonation states of the proteins based on neutral pH were used in the binding site. If no co‐crystallized ligand was present, then suitably sized (>50 Å3) cavities were used  dockingstudies. Eachproteinwasusedasarigidmodelstructure;norelaxationoftheproteinwas as potential binding sites. Standard protonation states of the proteins based on neutral pH were used  performed.Assignmentsofthechargesoneachproteinwerebasedonstandardtemplatesaspartofthe in the docking studies. Each protein was used as a rigid model structure; no relaxation of the protein  MolegroVirtualDockerprogram;nootherchargeswerenecessarytobeset. Overall,561antibacterial was performed. Assignments of the charges on each protein were based on standard templates as  phyptaorct hoef mthiec aMlsohleagvroe bVeiretnuadl oDcokcekde.r Tphroisgrmamol;e ncou loethseert wchaasrgceosm wperries endecoefss7a7rya ltkoa bloe isdest., O99veterarpll,e 5n6o1i ds, 190aflntaivbaocntoeriidasl ,p1h1y9topcohleympihcaelnso hlaicvec obmeepno duoncdkesd,.3 T0hqisu minoolneecus,lea snedt w46asm coismceplrliasnedeo ouf s77p halyktaolcohidesm, 9ic9a ls. Eactherlpigeannodidsst, ru1c9t0u rfelawvoansobiudsil,t u11s9in gpoSlpyaprhtaenn‘o1l4icf ocromWpinoduonwdss, (v30e rsqiuoinn1o.n1e.0s,, Wanadv ef4u6n cmtiioscnelIlnacn.e,oIruvsi ne, CAp,hUyStoAch).eFmoircaelsa.c hEalcigha lnigda,nad csotnrufocrtumrea tiwoansa lbsueialtr cuhsianngd Sgpeaortmane‘t1r4y foopr tWimiinzdaotiwosn (wvearssicoanr r1ie.1d.0,o ut usinWgavtheefuMncMtioFnF Ifnocr.c, eIrfiveilnde,[ 5C8A]., FUleSxAib).l eFloigr aenadchm loigdaenlds,w ae rceonufsoerdmiantiothneald soecakricnhg aanndd gseuobmseeqtruye nt optoimptiizmaitzioatniosnc hweams ec.aVrraireida boluet oursieinngt atthioe nMsMofFeFa fcohrcoef ftiheeldl i[g5a8n].d Fslewxeibrlee sleigaarcnhde mdoadnedlsr awnekreed ubseadse idn on thetihrer ed-oracknikngsc aonrde. sFuobrseeqaucehndt oocpktiimngizsaitmioun lsacthioenmteh. eVmaraiaxbilme uormienntuamtiobnesr ooff eiatechra otifo tnhse floigratnhdesd woecrkei ng searched and ranked based on their re‐rank score. For each docking simulation the maximum  algorithmwassetto1500,withamaximumpopulationsizeof50,and100runsperligand. TheRMSD number of iterations for the docking algorithm was set to 1500, with a maximum population size of  thresholdformultipleposeswassetto1.00Å.Thegeneratedposesfromeachligandweresortedby 50, and 100 runs per ligand. The RMSD threshold for multiple poses was set to 1.00 Å. The generated  thecalculatedre-rankscore. poses from each ligand were sorted by the calculated re‐rank score.  3. ResultsandDiscussion 3. Results and Discussion  The Molegro Virtual Docking program [57,59] was used to carry out in-silico protein-ligand The Molegro Virtual Docking program [59,57] was used to carry out in‐silico protein‐ligand  dockingstudiesusingknownantibacterialphytochemicalswiththestructuresofverifiedbacterial docking studies using known antibacterial phytochemicals with the structures of verified bacterial  protein drug targets. A total of 561 antibacterial phytochemicals listed in the Dictionary of protein drug targets. A total of 561 antibacterial phytochemicals listed in the Dictionary of Natural  Natural Products [19] were studied, including 77 alkaloids (17 indole alkaloids, 27 isoquinoline Products [19] were studied, including 77 alkaloids (17 indole alkaloids, 27 isoquinoline alkaloids, 4  alkaloids,4steroidalalkaloids,and28miscellaneousalkaloids),99terpenoids(5monoterpenoids, steroidal  alkaloids,  and  28  miscellaneous  alkaloids),  99  terpenoids  (5  monoterpenoids,  31  31 sesquiterpenoids, 52 diterpenoids, and 11 triterpenoids), 309 polyphenolics (87 flavonoids, sesquiterpenoids, 52 diterpenoids, and 11 triterpenoids), 309 polyphenolics (87 flavonoids, 25  25cchhaallccoonneess,, 4411 iissooffllaavvoonnooididss, ,55 nneeooflflaavvoonnoiodisd,s 1,21 2ptpetreorcoacraprapnasn, s1,01 c0hcrhomroomnoesn,e 7s ,c7oncodnendseends etadntnainnns,i ns, 11c1o1u cmouamrianrsi,n3s,0 3s0t isltbilebneoniodisd,s2, 2l ilgignnaannss,,5 5 pphheennyyllpprrooppaannooiiddss, ,1133 xxaannththonoense, s5, 5hyhdyrdorlyozlyabzlaeb tlaentnainnns,i ns, andan5d6 m56i smceisllcaenlleaonuesoupsh penhoenlioclsi)c,s3),0 3q0u qinuoinnoense,sa,n adnd4 646m misicseclelallnaenoeuoussp phhyytotocchheemmicicaalsls( (sseeee FFiigguurreess 11––23), wit2h3s),i xwbaitcht ersiiaxl pbraoctteeirniatla rpgreottsei(np eptatridgeetsd e(fpoermptyidlaes ed,eDfoNrmAyglaysrea,s eD/NtoApo igsyormaseer/atsoepoIVis,oUmDePra-sgea laIVct,o se muUtaDseP,‐gparolatcetionsety romsiunteaspeh, ospprhoatetains e,tcyyrtooscihnreo mpehPo4sp50haCtaYsPe,1 21c,yatoncdhNroAmDe +-dPe4p50e ndCeYnPt1D2N1,A  laingdas e). AsNaAteDst+‐fdoerpdeoncdkeinntg DaNccAu rlaigcays,et)h. eAcso a-c treysst tfaolrl idzeodckliingga nadccsufrraocmy, ethaec hcop‐crorytestinallsitzreudc tluigraenwdse rfreorme- deaocchk ed intoprtohteeipnr ostteruincstu.rTeh wederoec krein‐dgoecnkeerdg iienstoa nthder poorot-tmeinesa.n Tshqeu adroecdkidnegv eianteiorgnises( RaMndS Dro)oatr‐meseuamn msqaurairzeedd in deviations (RMSD) are summarized in Table 1. In order to correct for the known biasing of docking  Table1. Inordertocorrectfortheknownbiasingofdockingenergies(E )withincreasingmolecular dock weiegnhetrg(iMesW  (E)d[o6c0k)– 6w5i]t,hw  ienchraevaesinagls omdoelteecrumlairn ewdeiaghnto r(mMaWli)z e[d60d–o65c]k, inwges choarvee (DalSso  de)tebramseindedo nat he norm monleocrumlaarlizweedi gdhotc:kDinSg score= (7D.2Sn×ormE) base/dM onW t1h/e3. molecular weight: DSnorm = 7.2 × Edock/MW⅓.  norm dock COMe HO 2 N Me MeO N MeO N OH MeO N CO2Me N H H H MeO Me 1 2 3 1-Hydroxy-6,7-dimethoxy- 11-Methoxytubotaiwine 12-Methoxy-4-methylvoachalotine 3-methylcarbazole   Figure1.Cont. Antibiotics2016,5,30 5of113 AAnnttiibbiioottiiccss  22001166,,  55,,  xx     55  ooff  9999   OO OOHH NN OO NN HH OO NN HH NN NN HH NN HH MMee HH OOMMee 44 55 66 77 33--PPrreennyylliinnddoollee AAffffiissiinnee ((SS))--AAppppaarriicciinnee AArriissttoollaaccttaamm II    OO OOHH HH MMee NN NN NN NN HH OOHH HHOO OO NN HH NNMMee HH MMeeOO22HHCC HH OOHH 88 99 1100 CCllaauusseennaawwaalllliinnee AA CCrryyppttoohheeppttiinnee DDiipplloocceelliinnee    NN HH OOMMee OO OO OO NN HH OO NN HH HH OO OO HH NN HH NN HH 1122 NNHH OO IIbbooggaammiinnee NN HHNN HHOO OO NN NNMMee22 NN MMeeOO HH NNMMee22 1111 HH NN HH NN 1155 DDiissccaarriinnee BB HH HH RRuuggoossaanniinnee BB 1133 IIbbooxxyyggaaiinnee    HHOO22CC OOHH NN OO HH HHOO NN HH MMeeOO NN NN OO HHCCOO22MMee HH 1144 1166 1177 IIssoovvooaaccaannggiinnee SSuuaavveeoolliinnddoollee TToouussssaaiinnttiinnee BB    FiFFgiiugguurerree1  11...I  nIInndddooollleee  aaalllkkkaaallloooiiidddsss  eeexxxaaammmiiinnneeeddd  iinnin  tthhthiissi  swwwooorrkkr..k  . OO OO OOMMee MMeeOO OO OO MMeeOO OO HH OO NN MMeeOO NN NN OO OO MMeeOO 1188 1199 2200 88--AAcceettoonnyyllddiihhyyddrrooaavviicciinnee 88--AAcceettoonnyyllddiihhyyddrroonniittiiddiinnee AAnnttooffiinnee    Figure2.Cont. Antibiotics2016,5,30 6of113 Antibiotics 2016, 5, x   6 of 99  MeO OMe O MeO N O H H N H O OMe N O OMe O MeO 21 22 23 Berberine Bisnorthalphenine Cryptopleurine   OMe MeO OMe MeO N N N N Me OMe H Me Me H O H H O H O O OMe OMe 24 25 Berbamine Cepharanthine   MeO N MeO H O HO N O H H N H H MeO H OMe O OMe N OMe OMe O OMe OMe 26 27 28 Emetine Hydrastine Jatrorrhizine   OMe OMe MeO OMe O O Me N N Me N OMe O N H H H H O O O OMe OMe 29 30 Isotrilobine Methothalistyline   MeO MeO MeO N N N MeO Me O Me O H H H MeO O O OH O O 31 32 33 Lauroscholzine N-Demethylthalphenine Thalphenine   OMe MeO OMe MeO N N N N Me OH Me Me MeO Me H O H H O H O O OH OH 34 35 Obamegine Oxyacanthine   Figure2.Cont. Antibiotics2016,5,30 7of113 AAnnttiibbiioottiiccss  22001166,,  55,,  xx     77  ooff  9999   OOMMee MMeeOO OOMMee MMeeOO MMee NNHH OOOOMHMHee MMeeOO NHNHMMee MMee NNHH OOOOMMMMeeee MMeeOO NHNHMMee OOMMee MMeeOO OOMMee MMeeOO OO 3366 OO 3377 PPeennnnssyyllvvaanniinnee TThhaalliiccaarrppiinnee    OOMMee OOMMee MMeeOO MMee NNHH OOOOOOMHMMHMeeee MMMMeeeeOOOO NHNHMMee MMee NNHH OOOOMMMMeeee MMMMeeeeOOOO OO NHNHMMee OO OO OOMMee 3388 3399 TThhaalliiaaddaanniinnee TThhaalliiddaassiinnee    OOMMee MMeeOO OOMMee OOMMee NNHH OOOOMMMMeeee OOOO NHNHMMee MMee NNHH OOOOOOMHMMHMeeee MMMMeeeeOOOO NHNHMMee OO OOMMee OO 4400 4411 TThhaalliissttyylliinnee TThhaallmmeellaattiinnee    OOHH OO OOMMee MMeeOO OOMMee MMeeOO MMee NNHH OOMMee MMeeOOOO HNHNMMee MMee NNHH OOHH MMeeOO NHNHMMee OO OO OOMMee OOMMee 4422 4433 TThhaallmmiirraabbiinnee TThhaallrruuggoossiiddiinnee OOMMee MMeeOO MMee NNHH OOHH OO NHNHMMee OO OOMMee 4444 TThhaallrruuggoossiinnee    FiFFgiiuggruuerree2  .22.I.  sIIsosooqqquuuiniinnooollliiinnneee  aaalllkkkaaallloooiiidddsss  eeexxxaaammmiiinnneeeddd  iinnin  tthhthiissi  swwwoorrokkr..k  . OOOO OO NN HHOO OO NHNH NN CCHHOO OOOO HH OOHHOOOO OOMMOOeeHH HH NN 4455 4466 4477 PPiippeerriinnee AAccoonniiccaarraammiiddee LLaassiiooccaarrppiinnee    Figure3.Cont. Antibiotics2016,5,30 8of113 AAnnttiibbiioottiiccss  22001166,,  55,,  xx     88  ooff  9999   OO HHOO OOHH OOMMee OO NN OO HH OO OOMMee NN OO NN NN NN NN MMee MMee MMee OO 4488 4499 5500 5511 44--MMeetthhooxxyy--11--mmeetthhyyll-- LLaassiiooccaarrppiinnee NN--ooxxiiddee CCrryyppttoolleeppiinnee NNeeooccrryyppttoolleeppiinnee 22((11HH))--qquuiinnoolliinnoonnee    MMee NN OOMMee HH OOMMee HH MMeeOO OOHH MMeeOO NN OO HH HH NN OO OOMMeeMMee MMee22NN 5522 5533 5544 PPtteelleeiinnee VVeepprriissiinniiuumm CCoonneessssiinnee    HH NN HH NN NNHH22 HH HH HH HH OO OOMMee HH OO OOHH HH HH HH HH HH HH HH HH HH HH22NN HH22NN HH HH22NN HH 5555 5566 5577 IIrreehhddiiaammiinnee AA SSoollaaccaassssiinnee SSoollaannooccaappssiinnee    HH NN HH HH OO HH HH HH HHNN 22 HH 5588 TToommaattiiddiinnee    FigFuFiirggeuu3rre.e  P33i.. p PPeiiprpieedrriiinddeiinn,eep,, y ppryyrrorrrlooel,leep,,  yppryyrrrorroloilzliizizdiiddiniinneee,,,q  qquuuiininnooollliiinnneee,,,  aaannnddd  sssttteeerrroooiiidddaaalll  aaallklkkaaallooloiiddidss s eexexaxamammiinnieendde  diinni  ntthhtiishs  iwwsoowrrkok.r.  k. MMeeOO OOMMee MMeeOO HH22NN OO OOHH OOHH OO OO HHOO OOHH OO OO NNHH NNHH NN HHNN NNHH NN OOMMee HHNN OO MMee HHOO OO NN OO HHOO 5599 HH NNHH OO 22--((MMeetthhooxxyyaammiinnoo))--44HH--11-- OO 6622 bbeennzzooppyyrraann--33,,44,,55,,77--tteettrrooll 6600 6611 CCeepphhaarraattiinnee AA AAbbeesssseenniinnee BB MMee22NN AAmmpphhiibbiinnee HH    Figure4.Cont. AntAibniottibiciost2ic0s1 260,156,, 350, x   9 o9f 9o9f 113 Antibiotics 2016, 5, x   9 of 99  Antibiotics 201O6, 5, x   O H MeO 9 of 99  O O H MeO MeO N O N N MeO N N O N N MeO N Me CCuruc6raHc63OmaH3midNHiedeH HHNH O HMHOHeOOO HHOHOHOO NHOOOOO OOMMeeMMMeeeOOO EEscshcshcs6hcN65ohl5otMzMltiezdeiidniene OOOO Curc6a3mHiHdHeNHN OO HHHOOHHOOO 6644OOHOH OMOOMeOeOOMe Eschsc6h5oltzidine OO OO HOON ONNHH DDrordord6er4neinnOinHHH2N2NMeO NNO HHOO HHO6H6H6H6HHHH O HH6HHN67HNHNN7HHHH DrodreninOOOH2HNHHNNNOOO NNNHHH ONNONHHHMMMeeOOeO OOMMe6OeNHOH9MOHMeMee HO JeJrevrivnie6ne6 MMatarit6nri7ene O N-BOenMze6oy9lmescaline Jervine Matrine 6688 N-Benzo6y9lmescaline MMucurcor6no8innien eH H N-Benzoylmescaline    OMe OMe Mucronine H N   OMe OMe N O OMe O OMe NO O O O O O O O O O O O NN NHOOHOONNHONO ONNHHNH NNNOHOHONOHNNOOONNHNHH HHHNNN HOHHONNON O NNNHHH MMMeeOOeO SShShaa7hh7Oha3id73ihNdi3inidneiene O O O N OMOMeNeONMNNHHeNNHNuNmuHmNmum7um7l0uaml0rai7unril0ena reBin Be B NNuNmNuNHmumNH2mmH72um27l1ua7ul1rail1narirenin eSe S S SNSScNNMcucMutMuei7tate2ie7ian72a22n2in2niniene eD D D N,N'N''-THNrHNiis7HNN7o575pHNe5HNnHNtylguanidine H N,N'N''-Triisopentylguanidine H N,N'N''-Triisopentylguanidine MeO MeO MeO H OOO NNMNMeM2ee22 HNHNN O O O O O O OO O AAcAOccOO OO OH OO O O O OOHH 76 ThOal7igO74lu47c4inone TTuTu7bu7beb6er6eirnrinienee   ThaTlihgalulicgilnuocinneone    FFiFiggiFuugiurrgeeru e4r4 e.4.  M.4M M. iMissicsciecselcellelalllanalnaneneoeeouoouusu ssas  laaaklllakkklaaaollliooodiiiddsd sses  xeeexaxxamaammimniinneiendeded i din inn it tn hhthiitssih s wwi swoowrorkkro.k.  r.k . HOHO HHOHOO OOO OOOHHH OOO OOHOHH HO OOHH OOHH OH OH 7777 7788 7799 8800 8181 77 78 79 80 81 (R)(-RL)i-nLainloaololol ThTyhmymooll TThhyymmooqquuiinnooll --DDoolalabbrirnin -T-hTuhjaupjalicpilnic in  (R)-Linalool Thymol Thymoquinol -Dolabrin -Thujaplicin  FiFgiFguiugreurer5 e5. 5.M .M Moononnoootteteerrrpppeeennnoooiiidddsss  eeexxxaaammmiinnineededd  iinni n tthhtihsis iw swoworkrok.r .k . Figure 5. Monoterpenoids examined in this work.  HOO OOHH HHOO O HO OH HO O H O OOO OO OOO O O O O O O O 82 83 84 85 11,11138,-1D8232e-Dheydhyroderorieorliionlin 2,21,01-0B-Bisiasba8bo83olal3addieienn-1-1--oonnee 22--HHyyddrro8ox8x4yy4ccaalalammeenneennee 22-9-2MM--gMeeutteahhioteoh8xnxoy85y-xf85ufyu-rofarunanrenaoon--o - 11,13-Dehydroeriolin 2,10-Bisaboladien-1-one 2-Hydroxycalamenene 9-guaien-8-one   9-guaien-8-one   Figure6.Cont. Antibiotics2016,5,30 10of113 Antibiotics 2016, 5, x   10 of 99  O O OH H O O O HO O O HO HO H H O O O 86 87 88 89 4,10-Dihydroxy-1,11(13)- Alantolactone Alliacol A Alliacol B guaiadien-12,8-olide   OH H H HO O O O O H H H O O H O O O O O O O OH OH O H O HO H H O 90 91 92 93 Baileyolin Bilobalide A Confertin 4,10-Dihydroxy-1,11(13)- guaiadien-12,8-olide   OHC O O COH O 2 OHC HO O 94 95 96 97 Cyperenal Cyperenol Ganodermycin Furanodienone   H H OHC H O O O O O O OHC O HO H O H COH H O 2 98 99 100 101 Helenalin Hydrogrammic acid Isoalantolactone Ivaxillin   O O CHO O OH CHO HO H H HO HO HO H 102 103 104 105 Petrovin A Petrovin B Polygodial Rishitin   H H H OH H H H 106 107 108 109 Xanthorrhizol -Amorphene -Cadinene -Muurolene   Figure6.Cont.

Description:
Schweinfurthin A. OH Schweinfurthin A (411) Antimicrobial agents from higher plants: Activity and structural revision of flemiflavanone-D from.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.