ebook img

An Exploration of the Adaptive Neuro-Fuzzy Inference System (ANFIS) PDF

212 Pages·2013·5.02 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview An Exploration of the Adaptive Neuro-Fuzzy Inference System (ANFIS)

An Exploration of the Adaptive Neuro-Fuzzy Inference System (ANFIS) in Modelling Survival By Hazlina Hamdan, BSc, MSc Thesis submitted to The University of Nottingham for the Degree of Doctor of Philosophy School of Computer Science The University of Nottingham Nottingham, United Kingdom March 2013 An Exploration of the Adaptive Neuro-Fuzzy Inference System (ANFIS) in Modelling Survival Hazlina Hamdan Submitted for the degree of Doctor of Philosophy March 2013 Abstract Medical prognosis is the prediction of the future course and outcome of a disease and an indication of the likelihood of recovery from that disease. Prognosis is important be- causeitisusedtoguidethetypeandintensityofthemedicationadministeredtopatients. Patients are usually concerned with how long they will survive after diagnosis. Survival analysis describes the analysis of data that corresponds to the time from when an indi- vidual enters a study until the occurrence of some particular event or end-point. It is concerned with the comparison of survival curves for different combinations of risk fac- tors. Analyticalmethodsthataretransparentfortheclinician’sunderstandingandexplain individualinferencesneedtobeconsideredwhendealingwithmedicaldata. This thesis describes a methodology for modelling survival by utilising the applica- tionoftheAdaptiveNeuro-FuzzyInferenceSystem(ANFIS).Ahybridintelligentsystem whichcombinesthefuzzylogicqualitativeapproachandadaptiveneuralnetworkcapabil- itiestowardsbetterperformance. TheANFISapproachwasappliedinmodellingsurvival of breast cancer based on patient groups derived from the Nottingham Prognostic Index (NPI). A comparison of the proposed method with the existing methods in the capability to predict the survival rate is presented. The use of a fuzzy inference system (FIS) in modellingsurvivalisexpectedtoofferthecapabilitytodelivertheprocessofturningdata intoknowledgethatcanbeunderstoodbypeople. The design of rules can be performed either by human experts or using appropriate iii approaches to build high quality FIS to represent the knowledge. In this thesis, represent an automatic generation of membership functions and rules from the data. Further, cor- responding subsequent adjustments have been made to the model to give towards more satisfactoryperformance. Thefinalpremiseandconsequentparametersobtainedarethen usedtopredictthesurvivalforeachtimeinterval. A framework for modelling survival with the application of fuzzy inference system andback-propagationneuralnetworkwasdevelopedandisdescribedinthisthesis. Inthis framework, a different way of partitioning the input space can be selected to define the membershipfunctionsforexamplesusingexpertknowledge,equaliserpartitioning,fuzzy c-means or subtractive clustering techniques. Further, the rule base can be established by enumerating all possible combinations of membership functions of all inputs. After the initialisationofthefuzzyinferencestructure,thereplicationdata(untiltimetoevent)will be subject to training using the gradient descent and nonnegative least square algorithm toestimatetheconditionaleventprobability. Thisframeworkisvalidatedoverasynthetic datasetandanoveldatasetofpatientsfollowingoperativesurgery ofovariancancer. The proposed framework can be applied to estimate the hazard and survival curve between differentprognosticfactorsandsurvivaltimewiththeexplanationcapabilities. Declaration The work in this thesis is based on research carried out at the Intelligent Modelling and AnalysisResearchGroup,theSchoolofComputerScience,theUniversityofNottingham, England. No part of this thesis has been submitted elsewhere for any other degree or qualificationanditallmyownworkunlessreferencedtothecontraryinthetext. Copyright© 2013byHazlinaHamdan. “The copyright of this thesis rests with the author. No quotations from it should be pub- lished without the author’s prior written consent and information derived from it should beacknowledged”. iv Acknowledgments Firstly, it gives me great pleasure to take this opportunity to thank Prof. Jonathan M. Garibaldi for invaluable guidance and supervision in making this research possible for me. ThanksalsototheheadofIntelligentModellingandAnalysis(IMA)researchgroup, Prof. Uwe Aickelin for giving me the opportunity to study my PhD in the IMA research group. Beside that, I would like to express my appreciation to Dr. Andy Green and all the peopleinvolvedinthebreastcancerresearchwithwhichIhavecollaborated,forproviding the data and also guidance and sharing of vast experience in the field of breast cancer. Many thanks also to Prof. Lindy Durrant from Department of Oncology, University of Nottingham,forprovidingmewiththedataforvalidationofthelastpieceofthiswork. I would also like to thank the Ministry of Higher Education (MOHE) of Malaysia and the Universiti Putra Malaysia (UPM) for the doctoral scholarship and other financial supportthroughoutthecourseofmyPhDstudy. Special thanks to my lovely husband, Kamal Taib with his encouragement and indi- rectlyhelpinginmakingthisresearchareality,mydaughterNurAtiqah,mysonMuham- mad Asyraf and Muhammad Afiq for their love, patience and understanding throughout the study. Another sincere thank you message to my family in Malaysia for all their supportwithdailyprayersallthetimeformyfamilyhereformanyyears. To all IMA Group members, thank you for the friendly working environment in the group,especiallyfriendsinroomB38. v Contents Abstract ii Acknowledgments v ListofFigures xv ListofTables xvii ListofSymbols xviii 1 Introduction 1 1.1 BackgroundandMotivation . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 ExpectedOutcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 OverviewofThesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 LiteratureReview 9 2.1 SurvivalAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 ArtificialIntelligenceTechniquesinCancerPrediction . . . . . . . . . . 15 2.3 ArtificialNeuralNetworks . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.1 ANNapproachinBreastCancersurvivalprediction . . . . . . . . 20 2.3.2 PartialLogisticArtificialNeuralNetworkinmodellingsurvival . 22 2.3.3 IssuesofANNapplicationincancerprediction . . . . . . . . . . 25 2.4 FuzzySystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 vi Contents vii 2.4.1 Fuzzysetsandmembershipfunctions . . . . . . . . . . . . . . . 28 2.4.2 Linguisticvariablesandfuzzyrules . . . . . . . . . . . . . . . . 30 2.4.3 Fuzzyinferencesystem . . . . . . . . . . . . . . . . . . . . . . . 33 2.4.4 Automaticdeterminationoffuzzysetsandrules . . . . . . . . . . 36 2.4.5 Fuzzyapplicationsincancerprediction . . . . . . . . . . . . . . 43 2.5 AdaptiveNeuro-FuzzyInferenceSystem . . . . . . . . . . . . . . . . . . 46 2.5.1 ForwardPass . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.5.2 BackwardPass . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.6 Datamanipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.6.1 Datapre-processing . . . . . . . . . . . . . . . . . . . . . . . . 53 2.6.2 Datareplicationuntiltimetoevent . . . . . . . . . . . . . . . . . 53 2.7 PerformanceEvaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3 OntheuseofFuzzyInferenceinModellingBreastCancerSurvival 57 3.1 BreastCancerdataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.2 ComparisonofPLANNandANFISinmodellingsurvival . . . . . . . . . 59 3.2.1 PLANNconfigurations . . . . . . . . . . . . . . . . . . . . . . . 59 3.2.2 ANFISconfigurations . . . . . . . . . . . . . . . . . . . . . . . 62 3.2.3 Datareplication . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.2.4 ResultsandDiscussion . . . . . . . . . . . . . . . . . . . . . . . 66 3.3 ANFISmethodinhandlingcontinuousvalues . . . . . . . . . . . . . . . 69 3.3.1 ResultsandDiscussion . . . . . . . . . . . . . . . . . . . . . . . 70 3.4 Problemonthenegativevalueofconditionaleventprobability . . . . . . 77 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4 RefinementofANFISforModellingSurvival 79 4.1 ANFISlearningandparameterupdate . . . . . . . . . . . . . . . . . . . 79 4.2 ProposedalterationtoANFISupdatemechanism . . . . . . . . . . . . . 81 Contents viii 4.3 Experimentssettings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.5 ValidationusingcategoricalNPI . . . . . . . . . . . . . . . . . . . . . . 91 4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5 AutomaticDeterminationofMembershipFunctionsandRules 100 5.1 InitialisationofFuzzyModel . . . . . . . . . . . . . . . . . . . . . . . . 101 5.2 Methodsconsidered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.2.1 TheEqualizedUniversemethod . . . . . . . . . . . . . . . . . . 103 5.2.2 Fuzzyc-meansclustering . . . . . . . . . . . . . . . . . . . . . . 105 5.2.3 Subtractiveclustering . . . . . . . . . . . . . . . . . . . . . . . . 117 5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 6 AFrameworkforAutomaticModellingofSurvivalusingFuzzyInference 130 6.1 Frameworkprocessandparametersetting . . . . . . . . . . . . . . . . . 133 6.2 Frameworkconfigurations . . . . . . . . . . . . . . . . . . . . . . . . . 137 6.3 Validationover‘synthetic’dataset . . . . . . . . . . . . . . . . . . . . . 137 6.3.1 Experimentalsetting . . . . . . . . . . . . . . . . . . . . . . . . 138 6.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 6.3.3 ApplyingsyntheticdatasetintothePLANNmodel . . . . . . . . 143 6.4 ValidationoverOvarianCancerdataset . . . . . . . . . . . . . . . . . . . 146 6.4.1 Experimentalsetting . . . . . . . . . . . . . . . . . . . . . . . . 147 6.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 6.4.3 Prognosticindexofepithelialovariancancer(PIEPOC) . . . . . . 150 6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Contents ix 7 Conclusions 167 7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 7.2 ThesisLimitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 7.3 Futurework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 7.4 Dissemination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 7.4.1 Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 7.4.2 Presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 A AJCCBreastCancerStaging 177 References 180 List of Figures 2.1 Survivaltimeofeightpatients(Collet,1994). . . . . . . . . . . . . . . . 10 2.2 Kaplan-MeierSurvivalCurveof10breastcancerpatients. . . . . . . . . 14 2.3 Thebiologicalneuron(Simon,2012). . . . . . . . . . . . . . . . . . . . 16 2.4 Activationfunctions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.5 Back-propagationANN. . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.6 PLANNarchitecture(Biganzolietal.,1998). . . . . . . . . . . . . . . . 23 2.7 Crispsetsoftallmen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.8 Fuzzysetsoftallmen. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.9 Exampleofmembershipfunctionsforfuzzysets. . . . . . . . . . . . . . 30 2.10 Fuzzysetsofshort,averageandtallmen(Negnevitsky,2005). . . . . . . 31 2.11 Fuzzysetoperations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.12 FuzzyInferenceSystem. . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.13 First-orderSugenofuzzymodel(Jang&Sun,1995). . . . . . . . . . . . 35 2.14 MembershipfunctionofNPIusingequalizeduniversemethod. . . . . . . 37 2.15 Equalizeduniversemethodintoninefuzzyregions(Jang,1993). . . . . . 38 2.16 Clusteringbasedpartitioning. . . . . . . . . . . . . . . . . . . . . . . . . 43 2.17 AdaptiveNeuro-FuzzyInferenceSystem(ANFIS)(Jang,1993). . . . . . 46 2.18 Gaussianmembershipfunctionwithcentre(c)andwidth(σ) . . . . . . 48 i i 3.1 ConditionalEventProbabilityofPLANNmodel(withhiddenlayernodes=12 andweightdecay=0.075). . . . . . . . . . . . . . . . . . . . . . . . . . . 61 x

Description:
The ANFIS approach was applied in modelling survival of breast cancer based on . 3.2 Comparison of PLANN and ANFIS in modelling survival . 59.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.