ebook img

An Excursion through Elementary Mathematics: Real Numbers and Functions: 1 PDF

657 Pages·2017·8.684 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview An Excursion through Elementary Mathematics: Real Numbers and Functions: 1

Problem Books in Mathematics Antonio Caminha Muniz Neto An Excursion through Elementary Mathematics, Volume I Real Numbers and Functions Problem Books in Mathematics SeriesEditor: PeterWinkler DepartmentofMathematics DartmouthCollege Hanover,NH03755 USA Moreinformationaboutthisseriesathttp://www.springer.com/series/714 Antonio Caminha Muniz Neto An Excursion through Elementary Mathematics, Volume I Real Numbers and Functions 123 AntonioCaminhaMunizNeto Mathematics UniversidadeFederaldoCeará Fortaleza,Ceará,Brazil ISSN0941-3502 ISSN2197-8506 (electronic) ProblemBooksinMathematics ISBN978-3-319-53870-9 ISBN978-3-319-53871-6 (eBook) DOI10.1007/978-3-319-53871-6 LibraryofCongressControlNumber:2017933290 ©SpringerInternationalPublishingAG2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland To Gabrieland Isabela,mymostbeautiful theorems. To myteacher ValdenísioBezerra,in memorian Preface This is the first of a series of three volumes (the other ones being [4] and [5]) devoted to the mathematics of mathematical olympiads. Generally speaking, they are somewhat expanded versions of a collection of six volumes, first published in Portuguese by the Brazilian Mathematical Society in 2012 and currently in its secondedition. The material collected here and in the other two volumes is based on course notesthatevolvedovertheyearssince1991,whenI firstbegancoachingstudents of Fortaleza to the Brazilian Mathematical Olympiad and to the International MathematicalOlympiad.Some10yearsago,preliminaryversionsofthePortuguese texts also served as textbooksfor several editions of summer courses delivered at UFCtomathteachersoftheCapeVerdeRepublic. All volumes were carefully planned to be a balanced mixture of a smooth and self-containedintroductiontothe fascinatingworldofmathematicalcompetitions, aswellastoserveastextbooksforstudentsandinstructorsinvolvedwithmathclubs forgiftedhighschoolstudents. Upon writing the books, I have stuck myself to an invaluable advice of the eminent Hungarian-Americanmathematician George Pólya, who used to say that one cannot learn mathematics without getting one’s hands dirty. That’s why, in several points throughout the text, I left to the reader the task of checking minor aspectsofmoregeneraldevelopments.Theseappeareitherassmallomitteddetails in proofs or as subsidiary extensions of the theory. In this last case, I sometimes refer the reader to specific problemsalong the book, which are marked with an * andwhosesolutionsareconsideredtobeanessentialpartofthetext.Ingeneral,in eachsection,Icollectalistofproblems,carefullychoseninthedirectionofapplying thematerialandideaspresentedinthetext.Dozensofthemaretakenfromformer editionsofmathematicalcompetitionsandrangefromthealmostimmediatetoreal challengingones.Regardlessoftheirlevelofdifficulty,weprovidegeneroushints, orevencompletesolutions,tovirtuallyallofthem. This first volume concentrates on real numbers, elementary algebra, and real functions.Thebookstartswithanon-axiomaticdiscussionofthemostelementary propertiesofrealnumbers,followedbyadetailedstudyofbasicalgebraicidentities, vii viii Preface equationsandsystemsofequations,elementarysequences,mathematicalinduction, andthebinomialtheorem.Thesepavethewayforaninitialpresentationofalgebraic inequalitieslikethatbetweenthearithmeticandgeometricmeans,aswellasthose of Cauchy, Chebyshev, and Abel. We then run through an exhaustive elementary studyoffunctionsthatculminateswith a first lookatimplicitlydefinedfunctions. This is followed by a second look on real numbers, focusing on the concept of convergence for sequences and series of reals. We then return to functions, this time to successively develop, in detail, the basics of continuity, differentiability, and integrability. Along the way, the text stays somewhere between a thorough calculuscourseandanintroductoryanalysisone.Lotsofinterestingexamplesand importantapplicationsarepresentedthroughout.Wheneverpossible(ordesirable), the examplesare taken from mathematicalcompetitions,whereas the applications vary from the proof and several applications of Jensen’s convexity inequality to Lambert’stheoremontheirrationalityof(cid:2)andStirling’sformulaontheasymptotic behaviorof nŠ. Thetextendswith a chapteron sequencesand seriesof functions, where,amongotherinterestingtopics,weconstructanexampleofacontinuousand nowhere differentiable function,develop the rudiments of the generating function method,anddiscussWeierstrass’ approximationtheoremandtherudimentsofthe theoryofFourierseries. Several people and institutions contributed throughout the years for my effort of turning a bunch of handwritten notes into these books. The State of Ceará Mathematical Olympiad, created by the Mathematics Department of the Federal University of Ceará (UFC) back in 1980 and now in its 36th edition, has since then motivated hundreds of youngsters of Fortaleza to deepen their studies of mathematics.Iwasonesuchstudentinthelate1980s,andmyinvolvementwiththis competitionandwiththeBrazilianMathematicalOlympiadafewyearslaterhada decisive influenceon my choice of career. Throughoutthe 1990s,I had the honor of coaching several brilliant students of Fortaleza to the Brazilian Mathematical Olympiad.SomeofthementeredBrazilianteamstotheIMOorotherinternational competitions, and their doubts, comments, and criticisms were of great help in shapingmyviewonmathematicalcompetitions.Inthissense,sincerethanksgoto JoãoLuizFalcão,RoneyCastro,MarceloOliveira,MarcondesFrançaJr.,Marcelo C. de Souza, Eduardo Balreira, Breno Falcão, Fabrício Benevides, Rui Vigelis, DanielSobreira,SamuelFeitosa,DaviMáximoNogueira,andYuriLima. Professor João Lucas Barbosa, upon inviting me to write the textbooks to the Amílcar Cabral Educational Cooperation Project with Cape Verde Republic, had unconsciouslyprovidedmewiththemotivationtocompletethePortugueseversion of these books. The continuoussupportof Professor Hilário Alencar, presidentof theBrazilianMathematicalSocietywhenthePortugueseeditionwasfirstpublished, was also of great importance for me. Special thanks go to professors Abdênago Barros and Fernanda Camargo, my colleagues at the Mathematics Department of UFC, who had made quite useful comments on the Portuguese editions, which were incorporated in the text in a way or another; they had also read the entire Englishversionandhelpedmeinimprovingitinanumberofways.Ifitweren’tfor myeditoratSpringer-Verlag,Mr.RobinsondosSantos,Ialmostsurelywouldnot Preface ix havehadthecouragetoembracethetaskoftranslatingmorethan1500pagesfrom PortugueseintoEnglish.IacknowledgeallthestaffofSpringerinvolvedwiththis projectinhisname. Finally,andmostly,Iwouldlike toexpressmydeepestgratitudetomyparents Antonioand Rosemary,my wife Monica, and our kidsGabriel and Isabela. From early childhood,my parentshave always called my attention to the importanceof a solid education, having done their best for me and my brothers to attend the best possible schools. My wife and kids filled our home with the harmony and softness I needed to get to endure on several months of solitary nights of work whiletranslatingthisbook. Fortaleza,Brazil AntonioCaminhaMunizNeto December2016 Contents 1 TheSetofRealNumbers .................................................. 1 1.1 ArithmeticinR ..................................................... 3 1.2 TheOrderRelationinR............................................ 7 1.3 CompletenessoftheRealNumberSystem........................ 12 1.4 TheGeometricRepresentation..................................... 15 2 AlgebraicIdentities,EquationsandSystems............................ 19 2.1 AlgebraicIdentities................................................. 19 2.2 TheModulusofaRealNumber.................................... 27 2.3 AFirstLookatPolynomialEquations............................. 33 2.4 LinearSystemsandElimination ................................... 45 2.5 Miscellaneous....................................................... 54 3 ElementarySequences ..................................................... 61 3.1 Progressions......................................................... 61 3.2 LinearRecurrencesofOrders2and3 ............................. 70 3.3 The†and…Notations ............................................ 78 4 InductionandtheBinomialFormula .................................... 87 4.1 ThePrincipleofMathematicalInduction.......................... 87 4.2 BinomialNumbers.................................................. 98 4.3 TheBinomialFormula.............................................. 104 5 ElementaryInequalities.................................................... 111 5.1 TheAM-GMInequality............................................ 111 5.2 Cauchy’sInequality................................................. 123 5.3 MoreonInequalities................................................ 128 6 TheConceptofFunction .................................................. 143 6.1 DefinitionsandExamples .......................................... 143 6.2 Monotonicity,ExtremaandImage................................. 153 6.3 CompositionofFunctions.......................................... 163 6.4 InversionofFunctions.............................................. 172 xi xii Contents 6.5 DefiningFunctionsImplicitly...................................... 176 6.6 GraphsofFunctions ................................................ 185 6.7 TrigonometricFunctions ........................................... 195 7 MoreonRealNumbers .................................................... 201 7.1 SupremumandInfimum............................................ 201 7.2 LimitsofSequences ................................................ 208 7.3 Kronecker’sLemma ................................................ 221 7.4 SeriesofRealNumbers............................................. 228 8 ContinuousFunctions...................................................... 245 8.1 TheConceptofContinuity......................................... 245 8.2 SequentialContinuity............................................... 256 8.3 TheIntermediateValueTheorem .................................. 264 9 LimitsandDerivatives..................................................... 275 9.1 SomeHeuristicsI................................................... 275 9.2 LimitsofFunctions................................................. 277 9.3 BasicPropertiesofDerivatives..................................... 292 9.4 ComputingDerivatives ............................................. 302 9.5 Rôlle’sTheoremandApplications................................. 312 9.6 TheFirstVariationofaFunction................................... 318 9.7 TheSecondVariationofaFunction................................ 328 9.8 SketchingGraphs................................................... 339 10 Riemann’sIntegral......................................................... 347 10.1 SomeHeuristicsII .................................................. 347 10.2 TheConceptofIntegral ............................................ 351 10.3 Riemann’sTheoremandSomeRemarks.......................... 360 10.4 OperatingwithIntegrableFunctions............................... 368 10.5 TheFundamentalTheoremofCalculus ........................... 381 10.6 TheChangeofVariablesFormula ................................. 392 10.7 LogarithmsandExponentials ...................................... 398 10.8 Miscellaneous....................................................... 414 10.9 ImproperIntegration................................................ 426 10.10 TwoImportantApplications........................................ 437 11 SeriesofFunctions.......................................................... 447 11.1 TaylorSeries ........................................................ 447 11.2 SeriesofFunctions.................................................. 456 11.3 PowerSeries ........................................................ 472 11.4 SomeApplications.................................................. 486 11.5 AGlimpseonAnalyticFunctions.................................. 499

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.