ebook img

An examination of competitive gametic isolation mechanisms between the damselfliesIschnura graellsiiandI. elegans PDF

2013·0.14 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview An examination of competitive gametic isolation mechanisms between the damselfliesIschnura graellsiiandI. elegans

InternationalJournalofOdonatology,2013 Vol.16,No.3,259–267,http://dx.doi.org/10.1080/13887890.2013.821868 An examination of competitive gametic isolation mechanisms between the damselflies Ischnura graellsii and I. elegans RosaAnaSánchez-Guilléna,b*,AlexCórdoba-AguilarbandAdolfoCordero-Riveraa aGrupodeEcoloxíaEvolutivaedaConservación,E.U.E.T.Forestal,CampusUniversitario,36005 Pontevedra,Spain;bDepartamentodeEcologíaEvolutiva,InstitutodeEcología,UniversidadNacional AutónomadeMéxico,Apdo.Postal70-275,CiudadUniversitaria,04510,MéxicoD.F.,México (Received25November2012;finalversionreceived30June2013) Recentfindingssuggestthatpostmatingprezygoticisolation(i.e.gameticbarriers)couldbeanimportant factorpreventinghybridformation.Competitivegameticbarriersemergewhenafemaleisinseminatedby aconspecificandaheterospecificmale.Weexaminedwhetherspermproportionsafterdoublematingsand copulationdurationimpedehybridformation.Forthis,weusedfemalesofIschnuragraellsiithatmated withoneconspecificandoneheterospecific(I.elegans)maleandviceversa,andcalculatedpaternityof thesecondmalebyusingRFLPs.Valuesofpaternity(althoughpreliminarybecauseofasmallsample size)suggestnobiasinpaternitytowardsconspecificmales.However,proportionofspermstoredinthe bursaandspermathecaofthefemalewasbiasedtowardstheconspecificmalewhentheheterospecificmale wasthefirstmale,whilecopulationdurationdidnotdifferbetweenconspecificandheterospecificmales. Ourresultssuggestthattherelativespermvolumesmayplayaroleasagameticbarrierinthisspecies. However,crypticfemalechoicemediatedbythepreferentialuseoftheconspecificsperm,althoughnot detected,couldnotbediscardedowingtosmallsamplesizesinsomecases. Keywords: prezygoticbarriers;competitivegameticmechanisms;paternity;RFLPs;copulationduration; spermvolumes;ischnurines Introduction Classically,thestudyofprezygoticisolationhasbeenfocusedonprematingbarriers(Coyne&Orr, 1998).However,severalfindings(Eady,2001;Fricke&Arnqvist,2004;Howard,1999)suggest thatpostmatingprezygoticbarriers(alsoknownasgameticbarriers)couldbeanimportantfactor. Gameticbarriersaredividedintonon-competitive,whenthefemalehasbeeninseminatedonly byaheterospecificmale,andcompetitive,whenthefemalehasdoublymated,withaconspecific andaheterospecificmale(inanyorder). Competitive gametic barriers are important isolation processes for preventing hybrid forma- tion between closely related species (Howard, 1999), and have been reported in several insect taxa, including Coleoptera (Hewitt, Mason, & Nichols, 1989; Rugman-Jones & Eady, 2007), Orthoptera(Bella,Butlin,Ferris,&Hewitt,1992;Gregory&Howard,1994)andDiptera(Price, 1997).Competitivegameticbarrierscanbeduetothreedifferenttypesoffertilizationbarriers: (1)competitionbetweenejaculatesforfertilization(namelyspermcompetition),whichfavours conspecificspermduetohighercompetitiveness(Coyne&Orr,2004);(2)male-drivenadaptations *Correspondingauthor.Email:[email protected] ©2013WorldwideDragonflyAssociation 260 R.A.Sánchez-Guillénetal. bythematingmaletoincreasefertilizationchancesoverthoseofrivals;and(3)crypticfemale choiceduetopreferentialstorageorusageofconspecificmales’sperm(Coyne&Orr,2004).We arelargelyunawareofthemechanisticbasisthatunderlieseachofthesebarriers.Inparticular, twomechanismshavebeenscarcelyexplored:therelativecontributionofspermvolumesbyeach male (male-drive mechanisms) and copulation duration as a form of copulatory courtship that femalesmayusetobiaspaternity(crypticfemalechoice;Coyne&Orr,2004). ThebluetaileddamselfliesIschnuraelegansandI.graellsiishowremarkablemorphological (Monetti, Sánchez-Guillén, & Cordero Rivera, 2002) and genetical (Nei’s genetic distance is only 0.2%; Sánchez-Guillén,Van Gossum, & Cordero-Rivera, 2005) similarities. Interestingly, unidirectionalhybridization,mainlyduetodifferencesinsecondarygenitalia,betweenI.graell- sii females and I. elegans males has been shown (Monetti et al., 2002; Sánchez-Guillén et al., 2005;Sánchez-Guillén,Wellenreuther,Cordero-Rivera,&Hansson,2011).Apreviousstudyusing I.elegansandI.graellsiiassessedtheabsoluteandrelativeimportanceof19prematingprezygotic, postmating prezygotic (non-competitive gametic barriers) and postmating postzygotic barriers (Sánchez-Guillén,Wellenreuther, & Cordero-Rivera, 2012). Notice that relative sperm volume contributionandcopulationduration(competitivegameticbarriers)werenotassessedinthispre- viousstudy,althoughthesemechanismsmayberelevantindamselfliesandarthropodsingeneral. Thus more studies in the context of both conspecific and heterospecific males mating with the samefemale(competitivegameticbarriers)areneeded.Inalltheseanimals,spermvolumestrans- ferredduringmatingarecontrolledbythematingmaleandareexplainedbyspermcompetition: males transfer large sperm volumes with a previously mated female to increase the chances of fertilizationwithrespecttothoseofpreviousmatingmales(reviewedbySimmons,2001).Onthe otherhand,copulationdurationisknowntobeusedbyinsectstobiaspaternity,favoringmales thatprolongcopulation(fordamselfliesseeAndrés&CorderoRivera,2000;Cordero,1990;Uhía &CorderoRivera,2005;forotherinsectsseereviewbySimmons,2001).Thus,inthecontextof ischnurinedamselflies,wepredictthathybridformationcanbeimpededbyreducedheterospecific spermvolumeand/orshortercopulationdurationoftheheterospecificmale. Totesttheabove,wefirstinvestigatedanypaternitybiastowardtheconspecificmaleinfemales doublymatedwithaconspecificandaheterospecificmale.Second,sincenon-competitivebarriers (e.g. an inability of a heterospecific male to fertilize eggs) may explain paternity biases rather thanrelativespermvolumecontributionandcopulationduration,thefertilityofthedoublymated females(withtwoconspecificmalesoroneconspecificandoneheterospecificmaleandviceversa) wascompared.NoticethatwhenSánchezGuillénetal.(2012)estimatedfertilitytoinvestigate non-competitivegameticbarriers,aclearlyreducedrateoffertilitywasdetectedinheterospecific crosses.Third,weinferredspermproportions(conspecificversusheterospecific)frombothfemale spermstorageorgans(bursaandspermatheca).NoticeagainthatSanchez-Guillénetal.(2012) estimated sperm volumes but this was done to assess the ability to inseminate and the ability of rival’s sperm removal by the mating male. In this study we use this information to infer the contributionbyeachmaletowardsexceedingthespermvolumetriccontributionofarivalmale. Fourth,weestimated,usingconspecificandheterospecificmatingsofI.graellsiiandI.elegans, copulationduration. Materialandmethods Laboratoryrearing Final instar larvae of both species were collected from a sympatric region in north-west Spain in June 2000: for Ischnura elegans, larvae collection was made at Louro (42◦69(cid:3)08.8(cid:3)(cid:3)N, 8◦66(cid:3)03.5(cid:3)(cid:3)E) and for I. graellsii was made at (42◦34(cid:3)35.29(cid:3)(cid:3)N, 9◦4(cid:3)30.52(cid:3)(cid:3)E), Lanzada Mechanismofcompetitivegameticisolationinodonates 261 (42◦25(cid:3)44.46(cid:3)(cid:3)N, 8◦52(cid:3)20.20(cid:3)(cid:3)E) and Alba 156 (42◦26(cid:3)29.39(cid:3)(cid:3)N, 8◦38(cid:3)40.99(cid:3)(cid:3)E) localities. Lar- vae were transported to the laboratory and reared to adulthood (for methodological details see Sánchez-Guillén et al., 2005;Van Gossum, Sánchez-Guillén, & Cordero Rivera, 2003). Males andfemalesofbothspeciesweremaintainedinseparateinsectariesuntiltheyreachedmaturity (6 days for males and 8–10 days for females) (Sánchez-Guillén et al., 2005, 2012) when they wereusedinthedifferentexperiments. Paternityindoublymatedfemales WeestimatedpaternityusingninefemalesofI.graellsiimatedtoaconspecificandaheterospecific male with an inter-mating interval of one day, as obtaining second matings in the same day is extremelydifficult.Inthreecasestheconspecificmalewasthefirstmate,whileintheremaining sixtheheterospecificmalewasthefirstmate.Again,thisinequalitywasduetothedifficultyin gettingsecondmatingsunderlaboratoryconditions.Onedayafterthesecondmating,thefemale wasplacedinasmalljar,withhumidfilterpaper,tooviposit.Allfemalesovipositedduringthree consecutive days or until they reached their third clutch. Eggs were incubated in Petri dishes at room temperature (23–25◦C) until hatching (which normally took from 12 to 15 days). We randomlyselected15larvaeofeachofthethreeclutchesofeachfemaleforpaternityanalyses (detailsinTable1).Additionallyandinordertocomparepaternityinheterospecificandconspecific matings,weuseddatafromCordero,SantolamazzaCarbone,andUtzeri(1998)whichconsistedof sixdoublymatedfemalesofI.graellsiiwithconspecificmales(P =0.82±0.10;mean±SE). 2 Forpaternitybetweenspeciesweusedadiagnosticsequence,whichincludesapartialfragment of the small nuclear ribosomal DNA unit (18 nrDNA), the spacer ITS1, 5.8S gene, the spacer ITS2andpartofthelargenuclearribosomalDNAunit(28nrDNA)(GenBankaccessionnumbers AF461239andAJ488545).Thissequenceisidenticalinbothspeciesexceptforonepositionof theITS1,whichshowsatransition(T/C)thatallowstheidentificationofbothspecies.Firstwe testedthereliabilityoftheselectedmarkertoidentifytheparentalspeciesandthehybrids,and tothisendweamplified14samplesofI.elegans,15ofI.graellsii,and67laboratoryhybrids. Afterthat,weamplifiedtheDNAof337larvaefromtheninefemales,toestimatetheproportion ofI.graellsiilarvae(siredbytheconspecificmale)andthenumberofhybridlarvae(siredbythe heterospecificmale). DNA was extracted from larval by proteinase K digestion followed by a standard phenol/chloroform-isoamylalcoholextraction(Sambrook,Fritsch,&Maniatis,1989).Thesmall sub-unit of rDNA (18 nrDNA), ITS1, 5.8S, ITS2 and part of the large sub-unit of rDNA (28 nrDNA)wereamplifiedusingtheprimersdescribedbySamraoui,Weekers,&Dumont(2002): LITSandH28S.DNAamplificationwasdoneinatotalreactionvolumeof20μl.Theamplifi- cationconditionswereasfollows:50ngofDNA(1μl),1unit(0.2μl)ofTaqDNApolymerase (Ecogen,Barcelona,Spain),2μl10×ofreactionbuffer(Ecogen),0.5μlofMgCl (50mM)(Eco- 2 gen),0.5μlofdNTPsMixSigma(200μM),and1μlofeachprimer(10pmol).AllPCRreactions werecompletedina“GeneAmpPCRsystem2700”thermocycler(AppliedBiosystems,Valencia, Spain).ThePCRprogramhadaninitialcycleof95◦Cfor3min,theannealingtemperaturefor 1min, and an elongation period at 72◦C for 45s, followed by 34 cycles at 95◦C for 30s, with annealingfor45s,andanelongationphaseat72◦Cfor45s,andafinalextensionphaseat72◦C for10min.ThePCRproducts(10μl)of18samples(sixofI.graellsii,sixofI.elegansandsixF 1 hybrids)weresenttoanexternalsequencingservice(UniversityofValencia)wherebidirectional sequencing reactions were conducted using Bigdye™ terminator cycle sequencing kit (Applied Biosystems,Valencia,Spain)usinganautomaticsequencerABI3100(AppliedBiosystems,Valen- cia, Spain). Forward and reverse sequences were edited in Codon CodeAligned (CodonCode, Dedham, MA, USA).Variable positions were revised by eye, and only high quality sequences 262 R.A.Sánchez-Guillénetal. wereconsidered.PCRproductsoftheremainingsamplesweredigestedfor1hat37◦Cwith2μl ofbuffer(10×)and0.2μloftheenzymeMboII(AmershanBioscience,Barcelona,Spain)which showed: (1) in I. elegans, three cutting points, resulting in four fragments of 290, 221, 73 and 46bp;(2)inI.graellsii,fourcuttingpointswithfivefragmentsof290,116,105,73and46bp; and(3)inhybrids,fivecuttingpointswithsixfragmentsof290,221,116,105,73and46bp.All specimens(I.elegans,I.graellsiiandF hybrids)wereunequivocallyidentified,demonstrating 1 thatthismethodologycanbeusedtoestimatepaternityinhybridcrossings.Todetectdifferences inthepaternityofthetwofemalegroups,andgiventhattheexperimentalunitisthecrossingand notthemale,wecomputedaGLMwithbinomialerrorscorrectedforoverdispersion,assuming thateachcrossingisindependent(thesamepairofmalesisnotrepeated). Fertilitydata(fromSánchez-Guillénetal.,2012)ofdoublymatedfemaleswithtwoconspecific males,orwithoneconspecificandoneheterospecificmaleandviceversawereanalysedusinga GLMwithabinomialdistributionandalogit-linkfunction,withthenumberofhatchedeggsas theresponsevariable,clutchsizeasbinomialtotalsandtreatmentasthepredictorvariable. Spermproportionsindoublymatedfemales Byusingmeandataonspermvolumetransferredafteroneconspecificmating,oneheterospecific mating, and two matings (one conspecific and one heterospecific and vice versa), and sperm volume removed from previous matings in conspecific and heterospecific matings (data from Sánchez-Guillén et al., 2012), we calculated the proportion of heterospecific and conspecific sperm in doubly mated females when the conspecific male was the first male, and when the heterospecificmalewasthefirstmale.Wetheninferredthevolumeofspermtransferredbythe firstandsecondmale,presentinthebursaandthespermathecaofdoublymatedfemales.Volume ofspermofthefirstmaledependsonthevolumeofspermtransferredbythefirstmale,andthe volumeofspermremovedbythesecondmale.However,thevolumeofspermofthesecondmale dependsonhisabilitytoremovespermfromapreviousmating,hisabilitytoinseminate,andalso themaximumvolumeofspermthatthefemalecanstore.Thustheproportionofspermofthefirst versusthesecondmaleindoublymatedfemaleswasinferredbyusingthefollowingformulae. Theinferredspermvolumeforthefirstmaleissimplythevolumeofspermtransferredbyhim minus the volume removed by the second male.The second male can, at most, only transfer a volume of sperm equal to the difference between the maximum volume of the female’s sperm storage ogans and the volume still occupied by the first male’s remaining sperm. We take the maximumvolumetobethemeanvolumefordoublyinseminatedfemalesthatmatedwithmales in the specified order (Table 2), from Sanchez-Guillen et al. (2012), even though this volume is numerically less than the sperm volume of females singly inseminated by I. graellsi males. Thus the volume contributed by the second male is equal to: (volume of a doubly inseminated female) – (volume of the remaining sperm of the first male) = (volume of doubly inseminated female)–(volumetransferredbyfirstmale–volumeremovedbythesecondmale).Intheory,the secondmalemightnothaveenoughspermavailabletofillthefemalestorageorgans,butthedata ofSanchez-Guillenetal.(2012)showthattheamountamalecantranferisnormallymuchmore thanheremovesfromthefemale’sexistingstore.Spermvolumesareprovidedinmm3. Copulationduration We measured copulation duration in conspecific matings (of both species) and heterospecific matingsofI.graellsiifemalesandI.elegansmales(seesamplesizesinTable3).Allmatingpairs wereisolatedinaglassjartopreventothermalesfromdisturbingthecopulatingpair,whichcould affectcopulationduration(seeCordero,SantolamazzaCarbone,&Utzeri,1995).Timeofdaywas Mechanismofcompetitivegameticisolationinodonates 263 consideredinstatisticalanalysesgiventhatitaffectscopulationduration(seeCórdoba-Aguilar& Cordero-Rivera,2008).Copulationdurationwaslog10transformedtofulfillnormalitycriteria. AGLMwasusedtotestwhetherdurationwasdependentonthematingcrosstype,withtimeof dayincludedasacovariate.Posthoc,between-groupscomparisonswerecarriedoutusingTukey tests.Dataareexpressedasmean±STD. Results Paternityindoublymatedfemales Whentheheterospecificmalewasthelasttomate,paternityofthesecondmale(P )was0.26± 2 0.26(threefemales;119larvae).Conversely,P was0.80±0.10(sixfemales,218larvae)when 2 thelastmalewasconspecific(Table1).Therewasasignificanteffectoftypeofmatingonpaternity (devianceratio=3.97,p =0.026),aneffectmainlyduetothezeropaternityoftwoofthethree I. elegans males when they were the second mate. However, 58% of I. graellsii females that matedonlywithoneI.elegansmalehadnospermintheirspermstorageorgans(seeSánchez- Guillénetal.,2012).Thisobservationcouldexplainwhyinthreeoutoftheninecrossesnolarvae weresiredbytheheterospecificmale.Sincewewerenotinterestedindefectiveinsemination,we removedsuchcases.ThisresultedinaP of0.79(onefemale;29larvae)forthesoleheterospecific 2 malethatwasthelastmale,similartothemeanvalueforconspecificmaleswhentheywerethe lastinaheterospecificmating(P =0.77±0.11,fivefemales,173larvae).Bothvaluesarealso 2 similartothoseoftwoconspecificmalesmatedtothesamefemale(P =0.82±0.10,6females, 2 250larvae)(Table1). Paternityofthesecondmaleindoublymatedfemaleswithaconspecificandaheterospecific malewassimilartopaternityofthesecondmaleindoublymatedfemaleswithtwoconspecific males. There were no differences in fertility for I. graellsii females that mated twice with two conspecifics (0.967±0.009, n=7) against females that mated with one conspecific and one heterospecificmale(0.979±0.020,n=3;Tukeytest,p =0.99)andfemalesthatmatedwithone heterospecificandthenwithoneconspecificmale(0.981±0.011,n=6;Tukeytest,p =0.99) (Table1). Spermproportionsindoublymatedfemales As shown in Table 2, in the first set of females (doubly mated females with two I. graell- sii males), the inferred proportion of sperm from the first (conspecific) male (67.57%) was Table 1. Paternityofthesecondmale(P2)andfertilityinthefirstthreeclutchesofconspecificmatings betweenI.graellsiifemalesandI.graellsiimales,andheterospecificmatingsbetweenI.graellsiifemales withaconspecificandaheterospecificmaleandviceversa.G(I.graellsii),E(I.elegans). Female Firstmale–secondmale N P2 FemaleG1 MaleG1–MaleE1 45 0.00 FemaleG2 MaleG2–MaleE2 29 79.31 FemaleG3 MaleG3–MaleE3 45 0.00 FemaleG4 MaleE1–MaleG4 45 97.78 FemaleG5 MaleE1–MaleG5 45 100.00 FemaleG6 MaleE4–MaleG3 45 97.78 FemaleG7 MaleE5–MaleG3 17 88.24 FemaleG8 MaleE6–MaleG6 31 41.94 FemaleG9 MaleE7–MaleG7 35 57.14 264 R.A.Sánchez-Guillénetal. Table 2. Spermproportionsofcalculationsofactualspermvolumes(inmm3)offirstversussecondmaleforboth femalespermstorageorgans(bursa+spermatheca)ofdoublymatedI.graellsiifemales. Spermvolumecalculations Spermproportioncalculations Spermproportions(%) First Second Maleorder Firstmale Secondmale Firstmale Secondmale male male MaleG–MaleG 7.623–3.320 6.323–(7.623–3.320) 4.303×100/6.365 2.065×100/6.365 67.57 32.43 MaleG–MaleE 7.623–3.342 6.502–(7.623–3.342) 4.281×100/6.502 2.221×100/6.502 65.84 34.16 MaleE–MaleG 5.381–3.320 6.840–(5.381–3.320) 2.061×100/6.840 4.779×100/6.840 30.13 69.87 higher than from the second (conspecific) male (32.43%). Similarly, the inferred proportion of sperm from the first male (65.84%) was higher than from the second male (34.16%) in the second set of females (doubly mated females: first with I. graellsii males and second with I.elegans males).However,inthethirdsetoffemales(doublymatedfemales:firstwithI.ele- gans males and second with I. graellsii males), the inferred proportion of sperm from the first (heterospecific)malewas(30.13%)lowerthanfromthesecond(conspecific)male(69.87%). Copulationdurationofthefirstmating Copulationdurationwasstronglyaffectedbytimeofday(Figure1):matingsstartingearlywere longerthanthosestartinglateintheafternoon(F =27.255,p <0.0001).Copulationdura- 1,71 tionvariedamonggroups(F =4.919,p =0.01).Inconspecificcopulations,matingpairsof 2,71 I. graellsii male and female spent longer times than mating pairs of I. elegans male and Figure 1. Relationshipbetweentimeofdayandcopulationduration(inmin)forconspecificmatingscomparedto heterospecificmatingsbetweenfemaleI.graellsiiandmaleI.elegans. Table 3. Copulation duration (mean±SE; in min) of conspecific matings of Ischnura graellsii and I.elegansfemalesandinheterospecificmatingbetweenI.graellsiifemalesandI.elegansmalesintheirfirst mating.GmeansI.graellsiiwhileEmeansI.elegans.Samplesize(N)indicatesthenumberoffemales. Female Typeofcross N mean±SE FemaleG–maleG Conspecific 17 226.6±7.57 FemaleG–maleE Heterospecific 17 200.1±24.40 FemaleE–maleE Conspecific 38 158.7±13.06 Mechanismofcompetitivegameticisolationinodonates 265 female(Table3;Tukeytest,p =0.011).Copulationdurationinheterospecificmatings(200.1± 24.40min)didnotdifferfromeitherofthetwoconspecificmatingtypes(pforbothafterTukey tests>0.05). Discussion Competitive gametic barriers can be important factors preventing hybrid formation.A putative bias in the paternity could be the result of non-competitive mechanisms (i.e. an inability of the heterospecific gametes to fertilize) or two competitive gametic mechanisms (male-driven mechanismsbythematingmaleand/orcrypticfemalechoice).Ourresultsshowedthatpaternity ofthesecondmaleindoublymatedfemaleswithtwoconspecificmales,andwithaconspecific andaheterospecificmale,andviceversadidnotdiffer.Paternitywasnotexplainedbyaninability ofheterospecificmalestofertilize,becausefertilityindoublymatedfemaleswithtwoconspecific malesandwithoneconspecificandoneheterospecificmaleandviceversawassimilar.However, wecannotruleoutabiasinthepaternityduetooursmallsamplesize. Interspecific differences in sperm volumes being transferred to females in insects can be explainedbytheintensityofsexualselection(Simmons,2001),andinthiscasemayincidentally serveasacompetitivebarrierofreproductiveisolation.Inparticular,weknowlittleofhowsperm numbersofconspecificandheterospecificmales,oncestoredinthefemale’sspermstorageorgans, candeterminepaternity.Actually,I.graellsiimalestransfermorespermtotheirownfemalesthan I.elegansdo,butbothspeciesareequallyabletoremovespermfrompreviousmatings(Sánchez- Guillénetal.,2012).Consistentwiththisobservation,weinferredalowerproportionofstored heterospecificspermindoublymatedfemalesbothwhentheheterospecificmale(I.elegans)was thefirstmale,andwhenitwasthesecondmale.Inourstudy,weobservedthattheprogenywas mainlysiredbythesecondmale,regardlessofwhetherthemalewasconspecificorheterospecific. ThiswasconsistentwithpreviousstudiesshowingthatinI.graellsii (Cordero&Miller,1992) andI.elegans(Cooperetal.,1996)thereisabiasinthepaternitytowardthesecondmale,and discardsinourischnurinesaroleofspermproportionstodeterminatepaternity. Femalesmaybiaspaternityintheformofcrypticchoice(Coyne&Orr,2004).Onewaythat thiscanbedoneinourischnurinesisviacopulationduration,ifthisistakenasamalecopulatory courtshiptrait.Coenagrionidfemalesusecopulationdurationasacuetobiaspaternity,favoring malesthatprolongcopulation(aneffectthatisnotexplainedbydifferentialspermremoval;Andrés & Cordero Rivera, 2000). In odonates, copulation is highly variable (Uhía & Cordero-Rivera, 2005);duringthefirststagethematingmaledisplacesthespermstoredfrompreviousmatings from the female’s sperm storage organs – the bursa copulatrix and the spermatheca (reviewed byCórdoba-Aguilar,2003).InterspecificvariationinstageIdurationhasbeeninterpretedasthe resultofacoevolutionarygamebetweenthesexestoretaincontrolof(forthecaseoffemales)or haveaccessto(forthecaseofmales)thestoredsperm(Cordero-Rivera&Córdoba-Aguilar,2010). Our results showed that copulation duration of I. graellsii tended to be longer than copulation durationofI.elegans.Thisissurprisingbecauseinthefield,copulationsofI.elegansareclearly longer (Miller, 1987). This shorter duration in I. elegans could be due to the fact that in the laboratory, copulations started relatively late compared to what occurs in the field (see Miller, 1987). Biased paternity by cryptic female choice, however, was not supported by our results, as males of both species spend similar copulation times when mating with I. graellsii females. Of course, our results need to be completed by incorporating double matings for each female and/oratleastmatingsofI.elegansfemaleswithI.graellsiimales.Althoughcopulationduration may be used as a courtship device, it is by no means the only one.Another candidate for this is sensory stimulation as has been documented in odonates (reviewed by Córdoba-Aguilar & Cordero-Rivera,2008). 266 R.A.Sánchez-Guillénetal. Inodonates,nopreviousstudieshaveelucidatedthemechanismsofthecompetitivegameticbar- riers.Therefore,accordingtoourevidenceitseemsthatmaleabilitytoinseminatethefemaleand removespermfrompreviousmatingspartlyexplainspaternity,andcrypticfemalechoice,medi- atedbythepreferentialuseoftheconspecificsperm,althoughnotdetected,cannotbeexcluded becauseofoursmallsamplesizesinsomecases. Acknowledgements We are grateful to the external sequencing service of the University ofValencia, and to Mario García-París for his suggestionsabouttheappropriatemoleculartechniquesforourgoals.OlaM.Finckeprovidedkeycommentstoaprevious version.ThisworkwasfundedbygrantsfromtheSpanishMinistryofScienceandInnovationasaFPIgranttoRSGand asresearchgrantstoACR(CGL2005-00122andCGL2008-02799),whichincludedFEDERfunds.RSGwassupported byapostdoctoralgrant(DGAPA-UNAM)fromUniversidadNacionalAutónomadeMéxico. References Andrés,J.A.,&CorderoRivera,A.(2000).Copulationdurationandfertilizationsuccessinadamselfly:Anexampleof crypticfemalechoice?AnimalBehaviour,59,695–703.http://dx.doi.org/10.1006/anbe.1999.1372 Bella,J.L.,Butlin,R.K.,Ferris,C.,&Hewitt,G.M.(1992).Asymmetricalhomogamyandunequalsexratiofromrecipro- calmating-ordercrossesbetweenChothippusparallelussubspecies.Heredity,68,345–352.doi:10.1038/hdy.1992.49 Cooper,G.,Miller,P.L.,&Holland,P.W.H.(1996).Moleculargeneticanalysisofspermcompetitioninthedamselfly Ischnuraelegans(VanderLinden).ProceedingsoftheRoyalSocietyofLondonSeriesBBiologicalSciences,263, 1343–1349.doi:10.1098/rspb.1996.0197 Cordero,A.(1990).Theadaptivesignificanceoftheprolongedcopulationsofthedamselfly,Ischnuragraellsii(Odonata: Coenagrionidae).AnimalBehaviour,40,43–48.http://dx.doi.org/10.1016/S0003-3472(05)80664-5 Cordero, A., & Miller, P. L. (1992). Sperm transfer, displacement and precedence in Ischnura graellsii (Odonata: Coenagrionidae).BehavioralEcologyandSociobiology,30,261–267.doi:10.1007/BF00166711 Cordero, A., Santolamazza Carbone, S., & Utzeri, C. (1995). Male disturbance, repeated insemination and sperm competitioninthedamselflyCoenagrionscitulum(Zygoptera:Coenagrionidae).AnimalBehaviour,49,437–449. http://dx.doi.org/10.1006/anbe.1995.0057 Cordero, A., Santolamazza Carbone, S., & Utzeri, C. (1998). Mating opportunities and mating costs are reduced in androchrome female damselflies, Ischnura elegans (Odonata). Animal Behaviour, 55, 185–197. doi:10.1006/ anbe.1997.0603 Cordero-Rivera, A., & Córdoba-Aguilar, A. (2010). Selective forces propelling genitalic evolution in Odonata. In: J.Leonard(Ed.),Theevolutionofprimarysexualcharactersinanimals(pp.332–352).Oxford:OxfordUniversity Press. Córdoba-Aguilar,A.(2003).Adescriptionofmaleandfemalegenitaliaandareconstructionofcopulatoryandfertilisation eventsinCalopteryxhaemorrhoidalis(VanderLinden)(Zygoptera:Calopterygidae).Odonatologica,32,205–214. Córdoba-Aguilar,A.,&Cordero-Rivera,A.(2008).Crypticfemalechoiceandsexualconflict.In:A.Córdoba-Aguilar (Ed.),Damsefliesanddragonflies:Modelorganismsforecologicalandevolutionaryresearch(pp.7–20).Oxford: OxfordUniversityPress. Coyne,J.A.,&Orr,H.A.(1998).Theevolutionarygeneticsofspeciation.PhilosophicalTransactionsoftheRoyalSociety ofLondonB,353,287–305.doi:10.1098/rstb.1998.0210 Coyne,J.A.,&Orr,H.A.(2004).Speciation.Sunderland,MA:SinauerAssociates. Eady, P. E. (2001). Postcopularoy, prezygotic reproductive isolation. Journal of Zoology, 253, 47–52. doi: 10.1017/S095283690100005X Fricke, C., &Arnqvist, G. (2004). Conspecific sperm precedence in flour beetles. Animal Behaviour, 67, 729–732. http://dx.doi.org/10.1016/j.anbehav.2003.08.014 Gregory,P.G.,&Howard,D.J.(1994).Apostinseminationbarriertofertilizationisolatestwocloselyrelatedground crickets.Evolution,48,705–710. Hewitt,G.M.,Mason,P.,&Nichols,R.A.(1989).Spermprecedenceandhomogamyacrossahybridzoneinthealpine grasshopperPodismapedestris.Heredity,62,343–353.doi:10.1038/hdy.1989.49 Howard,D.J.(1999).Conspecificspermprecedenceandpollenprecedenceandspeciation.AnnualReviewofEcology andSystematics,30,109–132.doi:10.1146/annurev.ecolsys.30.1.109 Miller,P.L.(1987).AnexaminationoftheprolongedcopulationsofIschnuraelegans (VanderLinden)(Zygoptera: Coenagrionidae).Odonatologica,16,37–56. Monetti,L.,Sánchez-Guillén,R.A.,&CorderoRivera,A.(2002).HybridizationbetweenIschnuragraellsii(Vander Linder)andI.elegans(Rambur)(Odonata:Coenagrionidae):Aretheydifferentspecies?BiologicalJournalofthe LinneanSociety,76,225–235.doi:10.1111/j.1095-8312.2002.tb02084.x Price, C. S. C. (1997). Conspecific sperm precedence in Drosophila. Nature, 388, 663–666. Available from: http://www.nature.com/nature/journal/v388/n6643/pdf/388663a0.pdf Mechanismofcompetitivegameticisolationinodonates 267 Rugman-Jones,P.F.,&Eady,P.E.(2007).ConspecificspermprecedenceinCallosobruchussubinnotatus(Coleoptera: Bruchidae):mechanismsandconsequences.ProceedingsoftheRoyalSocietyB:BiologicalSciences,274(1612), 983–988.doi:10.1098/rspb.2006.0343 Sambrook,J.,Fritsch,E.F.,&Maniatis,T.(1989).Molecularcloning.Alaboratorymanual.NewYork:ColdSpring HarborLaboratoryPress. Samraoui,B.,Weekers,P.H.H.,&Dumont,H.J.(2002).TheEnallagmaofthewesternandcentralPalaearctic(Zygoptera: Coenagrionidae).Odonatologica,31,371–381. Sánchez-Guillén,R.A.,VanGossum,H.,&Cordero-Rivera,A.(2005).Hybridizationandtheinheritanceofintrasexual polymorphismintwoIschnuriddamselflies(Odonata:Coenagrionidae).BiologicalJournaloftheLinneanSociety, 85,471–481.doi:10.1111/j.1095-8312.2005.00506.x Sánchez-Guillén,R.A.,Wellenreuther,M.,&Cordero-Rivera,A.(2012).Strongasymmetryintherelativestrengths of prezygotic and postzygotic barriers between two damselfly sister species. Evolution, 66, 690–707. doi: 10.1111/j.1558-5646.2011.01469.x Sánchez-Guillén,R.A.,Wellenreuther,M.,Cordero-Rivera,A.,&Hansson,B.(2011).Introgressionandrapidspecies turnoverinsympatricdamselflies.BMCEvolutionaryBiology,11,210.doi:10.1186/1471-2148-11-210 Simmons, L. W. (2001). Sperm competition and its evolutionary consequences in the insects. Princeton: Princeton UniversityPress. Uhía,E.,&CorderoRivera,A.(2005).Maledamselfliesdetectfemalematingstatus:importanceforpostcopulatory sexualselection.AnimalBehaviour,69,797–804.http://dx.doi.org/10.1016/j.anbehav.2004.08.005 Van Gossum, H., Sánchez-Guillén, R.A., & Cordero Rivera,A. (2003). Observations on rearing damselflies under laboratoryconditions.AnimalBiology,53,37–45.doi:10.1163/157075603769682567

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.