An Environment for Analyzing Space Optimizations in Call-by-Need Functional Languages NilsDallmeyer ManfredSchmidt-Schauß Goethe-University Goethe-University FrankfurtamMain FrankfurtamMain [email protected] [email protected] WepresentanimplementationofaninterpreterLRPiforthecall-by-needcalculusLRP,basedona variantofSestoft’sabstractmachineMark1,extendedwithaneagergarbagecollector. Itisusedas atoolforexactspaceusageanalysesasasupportforourinvestigationsintospaceimprovementsof call-by-needcalculi. 1 Introduction Lazy functional languages like Haskell use call-by-need as evaluation strategy. This leads to a more declarative way of programming where a specification of the result is emphasized instead of specifying thesequenceofevaluations. Thisapproachallowsalotofcorrectprogramtransformationsthatcanpo- tentiallybeusedbyacompilerforoptimizationpurposes. Itwouldbeaveryhelpfulinformationtoknow, whetheraprogramtransformationdecreasestime/spaceusageorinwhichsituationsthismayoccur. We willcapturethisusingthenotionofimprovements. Inthispaperweemphasizespaceimprovements,pur- suingourlong-termresearchgoaltoanalyzetime-andspace-improvementsforHaskell-likelanguages. Thegoalofthispaperistoputforwardfurtherstudiesonimprovements,withamainfocusonproviding atestenvironmenttosupportandspeeduptheanalysisofimprovements. Previous work on improvements w.r.t. time usage (the number of reduction steps), is e.g. [9, 10, 11] for call-by-name and [8, 15, 13, 14] for call-by-need. There seem to be only a few studies on space improvements, by Gustavsson and Sands [4, 5, 3]. Their notion of (strong) space improvement is mainly the same as ours, however, they use an untyped (restricted) language. We will investigate a typedlanguagesincetypingenablesmoretransformationstobeimprovements,forexamplemap id xs isequivalenttoxsundertyping,butnotinuntypedcalculi. Thereasonisthatalsocontextsmustbetyped andthusonlyteststhatare(type-)compatiblewiththeintentionoftheprogramareusedforcharacterizing improvements. We will use the lazy typed functional core language LRP [12] for defining and analyzing space im- provements. LRPhasarichsyntaxincludingletrec,dataconstructorsandcase-expressions,Haskell’s seq-operator,andpolymorphictyping,modelingHaskell’scorelanguage. EvaluationinLRPisdefined by a rewriting semantics. An improvement w.r.t. a measure is a locally applicable (and correct) trans- formation that transforms an expression e to e , such that e is at least as good as e w.r.t. the chosen 1 2 2 1 measureinallcontexts. Ourcorrectnessnotioniscontextualequivalence,whichmeansthate ,e behave 1 2 identicallyw.r.t.terminationinallcontexts. Our approach is to use an abstract Sestoft-machine (see also [4]) as interpreter in order to have a realisticmodelfortheresourceconsumptionatruntime. Sincespaceisanissue, inparticularthemaxi- mallyusedspaceduringanevaluation,adetectionofdynamicallygeneratedgarbageisrequired,which leadstotheimplementationofan(eager)garbagecollector. Thisisnontrivial,sinceletrecpermitscyclic H.Cirstea,S.Escobar(Eds.):ThirdInternationalWorkshoponRewriting (cid:13)c N.Dallmeyer&M.Schmidt-Schauß TechniquesforProgramTransformationsandEvaluation(WPTE’16). Thisworkislicensedunderthe EPTCS235,2017,pp.78–92,doi:10.4204/EPTCS.235.6 CreativeCommonsAttributionLicense. N.Dallmeyer&M.Schmidt-Schauß 79 references. Furthermore, indirections x=y in letrec-environments turned out to lead to more space consumption in the Sestoft machine than in the calculus, which is defeated by removing indirections at compile time as well as adapting the abstract machine. Removing indirections can be done efficiently (see Section 5.1.1). The interpreter implementation is also shown to exactly count the maximal space usage for machine expressions (see Theorem 5.3). Our specific space analyses can exhibit in examples the reason for unexpected space increases, can refute transformations being space improvements, and canalsogivehintsonthecomplexityofevaluations. Outline In Section 2 LRP is introduced. In Section 3 LRP is extended with garbage collection. Space improvements are explained in Section 4. In Section 5 the LRP-interpreter is described. The analysesandsomeresultsareinSection6. WeconcludeinSection7. 2 Polymorphically Typed Lazy Lambda Calculus WerecallthePolymorphicallyTypedLazyLambdaCalculus(LRP)[13]aslanguage. Wealsomotivate andintroduceseveralnecessaryextensionsforsupportingrealisticspaceanalyses. LRP [12] is LR (e.g. see [16]) extended with types. I.e., LRP is an extension of the lambda cal- culus by polymorphic types, recursive letrec-expressions, case-expressions, seq-expressions, data constructors, type abstractions Λa.s to express polymorphic functions and type applications (s τ) for typeinstantiations. ThesyntaxofexpressionsandtypesofLRPisdefinedinFig.1. Syntaxofexpressionsandtypes: Lettypevariablesa,a ∈TVarandtermvariablesxx ∈Var. Every i , i type constructor K has an arity ar(K)≥0 and a finite set D of data constructors c ∈D with an K K,i K arityar(c )≥0. K,i TypesTypandpolymorphictypesPTyparedefinedasfollows: τ ∈Typ ::= a|(τ →τ )|(K τ ... τ ) 1 2 1 ar(K) ρ ∈PTyp ::= τ |∀a.ρ ExpressionsExpraregeneratedbythisgrammarwithn≥1andk≥0: s,t ∈Expr ::= u|x::ρ |(sτ)|(st)|(seqst)|(letrecx ::ρ =s ,...,x ::ρ =s int) 1 1 1 n n n |(c ::(τ)s ... s )|(case sof{(Pat ->t ) ... (Pat ->t )}) K,i 1 ar(cK,i) K K,1 1 K,|DK| |DK| Pat ::= (c ::(τ)(x ::τ ) ... (x ::τ )) K,i K,i 1 1 ar(cK,i) ar(cK,i) u∈PExpr ::= (Λa .Λa ....Λa .λx::τ.s) 1 2 k Figure1: Syntaxofexpressionsandtypes An expression is well-typed if it can be typed using typing rules that are defined in [12]. LRP is a core language of Haskell and is simplified compared to Haskell, because it does not have type classes and is only polymorphic in the bindings of letrec variables. But LRP is strong enough to express polymorphicallytypedlists,andfunctionsworkingonsuchdatastructures. From now on we use Env as abbreviation for a letrec-environment, {x =s }m for x = g(i) f(i) i=j g(j) s ,...,x =s andaltsforcase-alternatives. WeuseFV(s)andBV(s)todenotefreeandbound f(j) g(m) f(m) variables of an expression s and LV(Env) to denote the binding variables of a letrec-environment. #» Furthermore we abbreviate (c s ... s )with c s and λx ....λx .s with λx ,...,x .s. The data K,i 1 ar(cK,i) 1 n 1 n constructorsNilandConsareusedtorepresentlists,butwemayalsousetheHaskell-notation[]and(:) instead. 80 AnalyzingSpaceOptimizationsinCall-by-NeedFunctionalLanguages AcontextCisanexpressionwithexactlyonehole[·]atexpressionposition. Avalueisanabstraction #» λx.s,atypeabstractionuoraconstructorapplicationc s. After the reduction position is determined using the labeling algorithm of [12], a unique reduction ruleofFig.2isappliedatthispositionwhichconstitutesanormal-orderreductionstep. (lbeta) C[((λx.s)sub r)]→C[(letrecx=rins)] (Tbeta) ((Λa.u)sub τ)→u[τ/a] (cp-in) (letrecx =vsub,{x =x }m ,EnvinC[xvis]) 1 i i−1 i=2 m →(letrecx =v,{x =x }m ,EnvinC[v]) 1 i i−1 i=2 wherevisapolymorphicabstraction (cp-e) (letrecx =vsub,{x =x }m ,Env,y=C[xvis]inr) 1 i i−1 i=2 m →(letrecx =v,{x =x }m ,Env,y=C[v]inr) 1 i i−1 i=2 wherevisapolymorphicabstraction (llet-in) (letrecEnv in(letrecEnv inr)sub)→(letrecEnv ,Env inr) 1 2 1 2 (llet-e) (letrecEnv ,x=(letrecEnv int)sub inr)→(letrecEnv ,Env ,x=t inr) 1 2 1 2 (lapp) C[((letrecEnvint)sub s)]→C[(letrecEnvin(t s))] (lcase) C[(case (letrecEnvint)sub ofalts)]→C[(letrecEnvin(case t ofalts))] K K (seq-c) C[(seqvsubt)]→C[t] ifvisavalue #» (seq-in) (letrecx =(c s)sub,{x =x }m ,EnvinC[(seqxvist)]) 1 i i−1 i=2 m →(letrecx =v,{x =x }m ,EnvinC[t]) ifvisavalue 1 #» i i−1 i=2 (seq-e) (letrecx =(c s)sub,{x =x }m ,Env,y=C[(seqxvist)]inr) 1 i i−1 i=2 m →(letrecx =v,{x =x }m ,Env,y=C[t]inr) ifvisavalue 1 i i−1 i=2 (lseq) C[(seq(letrecEnvins)subt)]→C[(letrecEnvin(seqst))] (case-c) C[(case csub of{...(c→t)...})]→C[t] ifar(c)=0,otherwise: K #» #» C[(case (c x)sub of{...((c y)→t)...})]→C[(letrec{y =x}ar(c) int)] K i i i=1 (case-in) (letrecx =csub,{x =x }m ,EnvinC[(case xvis of{...(c→r)...})]) 1 i i−1 i=2 K m →(letrecx =c,{x =x }m ,EnvinC[r]) ifar(c)=0; otherwise: 1 #» i i−1 i=2 #» (letrecx =(c t )sub,{x =x }m ,EnvinC[(case xvis of{...((c z)→r)...})]) 1 i i−1 i=2 K m #» →(letrecx =(c y),{y =t}ar(c),{x =x }m ,EnvinC[letrec{z=y}ar(c) inr]) 1 i i i=1 i i−1 i=2 i i i=1 (case-e) (letrecx =csub,{x =x }m ,u=C[(case xvis of{...(c→r )...})], Env 1 i i−1 i=2 K m 1 inr ) 2 →(letrecx =c,{x =x }m ,u=C[r ],Envinr ) ifar(c)=0; otherwise: 1 #» i i−1 i=2 1 2 (letrecx =(c t )sub,{x =x }m , 1 i i−1#»i=2 u=C[(case xvis of{...((c z)→r)...})],Envins) K m #» →(letrecx =(c y),{y =t}ar(c),{x =x }m , 1 i i i=1 i i−1 i=2 ar(c) u=C[letrec{z =y} inr],Envins) i i i=1 Figure2: Basicreductionrules. Thevariablesy arefresh. i The classical β-reduction is replaced by the sharing (lbeta). (Tbeta) is used for type instantiations concerning polymorphic type bindings. The rules (cp-in) and (cp-e) copy abstractions which is needed whenthereductionrulehastoreduceanapplication(f g)where f isanabstractiondefinedinaletrec- environment. Therules(llet-in)and(llet-e)areusedtomergenestedletrec-expressions;(lapp),(lcase) and (lseq) move a letrec-expression out of an application, a seq-expression or a case-expression; (seq-c), (seq-in) and (seq-e) evaluate seq-expressions, where the first argument has to be a value or a N.Dallmeyer&M.Schmidt-Schauß 81 valuewhichisreachablethroughaletrec-environment. (case-c),(case-in)and(case-e)evaluatecase- expressions by using letrec-expressions to realize the insertion of the variables for the appropriate case-alternative. The following abbreviations are used: (cp) is the union of (cp-in) and (cp-e); (llet) is the union of (llet-in) and (llet-e); (lll) is the union of (lapp), (lcase), (lseq) and (llet); (case) is the union of (case-c), (case-in),(case-e);(seq)istheunionof(seq-c),(seq-in),(seq-e). Normalorderreductionstepsandnotionsforterminationaredefinedasfollows: LRP Definition2.1(Normalorderreduction). Anormalorderreductionsteps−−→t isperformed(uniquely) if the labeling algorithm in [12] terminates on s, inserting sub (subexpression) and vis (visited by the LRP,∗ labeling), and the applicable rule of Fig. 2 produces t. The notation −−−→ is the reflexive, transitive LRP,+ LRP LRP,k closure,−−−→isthetransitiveclosureofs−−→t;and−−−→denotesknormalordersteps. Definition2.2. 1. Aweakheadnormalform(WHNF)isavalue,oranexpressionletrecEnvinv, #» wherevisavalue,oranexpressionletrecx =c t ,{x =x }m ,Envinx . 1 i i−1 i=2 m LRP,∗ 2. Anexpressionsconvergestoanexpressiont (s↓t ors↓ifwedonotneedt)ifs−−−→t wheret isa WHNF.Expressionsdiverges(s↑)ifitdoesnotconverge. 3. Thesymbol⊥representsacloseddivergingexpression,e.g.letrec x=x in x. Definition2.3. ForLRP-expressionss,t,s≤ t holdsiff∀C[·]:C[s]↓⇒C[t]↓,ands∼ t holdsiffs≤ t c c c andt ≤ s. Therelation≤ iscalledcontextualpreorderand∼ iscalledcontextualequivalence. c c c ThefollowingnotionofreductionlengthisusedformeasuringthetimebehaviorinLRP. Definition2.4. ForaclosedLRP-expressionswiths↓s ,letrln(s)bethesumofall(lbeta)-,(case)-and 0 (seq)-reductionstepsins↓s ,andletrlnall(s)bethenumberofallreductions,butnot(TBeta),ins↓s . 0 0 3 LRP with Eager Garbage Collection ThecalculusLRPdoesnotremovegarbageitself. However, formeasuringthespace-behavior, garbage shouldbeignored(andremoved). Thusinthissectionweaddreductionrulesforremovinggarbage,and show that an evaluation strategy with garbage collection does not change the semantics of the calculus. InFig.3therulesforgarbagecollectionaredefined. Weuse(gc)fortheunionof(gc1)and(gc2). (gc1) (letrec{x =s}n ,Envint)→(letrecEnvint) ifforalli:x ∈/ FV(t,Env) i i i=1 i (gc2) (letrecx =s , ..., x =s int)→t ifforalli:x ∈/ FV(t) 1 1 n n i Figure3: Garbagecollectionrules Since we focus on space improvements, it is useful to model eager garbage collection also in the calculus, which leads to the calculus LRPgc. It collects (dynamic) garbage only in the top letrec, whichissufficienttoremoveall(reference-)garbage,ifthestartingprogramdoesnotcontaingarbage. Definition3.1. LRPgcisLRPwherethenormal-orderreductionismodifiedasfollows: LetsbeanLRP-expression. Anormal-order-gc(nogc)reductionstepisdefinedbytwocases: 1. Ifa(gc)-transformationisapplicabletosinthetopletrec,thenthistransformationisappliedto s,wherethemaximalnumberofbindingsisremoved. 2. If1. isnotapplicableandanLRP-normal-orderreductionstepisapplicabletos,thenthisnormal- orderreductionisappliedtos. 82 AnalyzingSpaceOptimizationsinCall-by-NeedFunctionalLanguages Asequenceofnogc-reductionstepsiscalledannogc-reductionsequence. AnLRPgc-WHNFsiseitheran LRP-WHNFwhichisnotaletrecexpression,oritisanLRP-WHNFthatisaletrec-expressionwhich doesnotpermit(gc)-transformationinthetopletrec. Iffors,thereisannogc-reductionsequencethat leadstoanLRPgc-WHNF,thenwesaysconvergesw.r.t.LRPgcandwrites↓ . nogc InLRPgc,theequivalences∼ t isdefinedasforLRP,butw.r.t.↓ . c,nogc nogc Several subsequent (gc)-reductions are possible in an LRPgc-normal-order reduction sequence, for examplea(gc2)-reductionfollowedbya(gc1)-reduction. We will show in the following that the calculi LRP and LRPgc are equivalent w.r.t.convergences as wellasw.r.t.therln-measure. In the following we will use complete sets of forking (and commuting) diagrams (more informa- tion on this technique is in [16]). A forking is an overlapping between a normal-order transforma- tion and a non-normal-order transformation (also called internal transformation). A complete set of forking diagrams for transformation b contains a forking diagram for each possible forking of the form s ←no−g−c s →−b s(cid:48). The treatment is similar for commuting diagrams and commuting situations 2 1 1 s →−b s(cid:48) −n−og→c s(cid:48). We will use the notation (nogc,a) which is an arbitrary nogc-reduction if not oth- 1 1 2 erwise stated. If the label a is used twice, then all occurrences of a represent the same rule. Let LCSC:={(lbeta),(case),(seq),(cp)}. Lemma3.2. Theforkingdiagramsbetweenanogc-reductionandanon-normal-order(gc)-transforma- tioninLRPgcinanycontextarethefollowing: s gc (cid:47)(cid:47)s(cid:48) s gc (cid:47)(cid:47)s(cid:48) s gc (cid:47)(cid:47)s(cid:48) s gc (cid:47)(cid:47)(cid:57)(cid:57)s(cid:48) 1 1 1 1 1 1 1 1 nogc,a nogc,a nogc,a nogc,cp nogc,cp nogc,a nogc,lll (cid:15)(cid:15) (cid:15)(cid:15) (cid:15)(cid:15) (cid:15)(cid:15) (cid:15)(cid:15) (cid:121)(cid:121) (cid:15)(cid:15) gc s2 gc (cid:47)(cid:47)s(cid:48)2 s2 gc (cid:47)(cid:47)s3 gc (cid:47)(cid:47)s(cid:48)2 s2 s2 Thecommutingdiagramscanbeimmediatelyderivedfromtheforkingdiagrams. Proof. Thefirstdiagramoccursifthenogc-reductionandthetransformationcanbecommuted. Thesec- onddiagramshappensifthegc-transformationwasdoneinthecopiedabstraction. Thethirddiagramoc- gc curs,iftheeffectofthegc-transformationwasalsodonebythenogc-reduction,whereweassumethat−→ nogc,a nogc and−−−→aredifferent. Finallythefourthdiagramoccursforexamplein(letrecEnv in(s s ))←−− 1 1 2 gc gc ((letrecEnv ins )s )−→(s s )andwhere(letrecEnv in(s s ))−→(s s ). 1 1 2 1 2 1 1 2 1 2 Theorem3.3. LRPandLRPgcareconvergence-equivalent,i.e. forallexpressionss: s↓ ⇐⇒ s↓ . nogc Proof. Ifs↓ thens↓holds,since(gc)andallreductionsofthecalculusarecorrectw.r.t.LRP-normal- nogc orderreduction,whichfollowsfromtheiruntypedcorrectness(see[16]). Undertheassumptionthat(gc)iscorrectinLRPgc,itisstraightforwardtoshowthats↓impliess↓ . nogc Itremainstoshowthat(gc)iscorrectinLRPgc: ThereforewehavetousethediagramsinLemma3.2for (gc). Weconsiderthesituations ←no−g−c,−∗ s −g→c s(cid:48) wheres isanLRPgc-WHNF.Fortheinductionproof 0 1 1 0 weconsiderthesmallerdiagrams ←no−g−c s −g→c s(cid:48) andshowthatthereisanogc-reductionofs(cid:48) suchthat 2 1 1 1 rlnall(s(cid:48))≤rlnall(s ). FirstweobservethatLRPgc-WHNFsremainLRPgc-WHNFsunder(gc). 1 1 Theinductionmeasureisrlnall(s ). Forthesituations =s(cid:48) orifanyofthefourdiagramsappliestothe 1 2 1 N.Dallmeyer&M.Schmidt-Schauß 83 situation,theinductionhypothesisapplies,whereincaseofdiagrams2,wehavetoapplyittwice. This showsthatthereisanogc-reductionofs toaLRPgc-WHNF. 1 The second part is to consider the situation s −g→c s(cid:48) −n−og−c→,∗ s(cid:48), where s(cid:48) is an LRPgc-WHNF. Here 1 1 0 0 weshowmore: thatthereisannogc-reductionofs withrln (s )≤rln (s(cid:48)),whererln counts 1 LCSC 1 LCSC 1 LCSC thenormal-orderreductionsfromLCSCuntilaWHNFisreached. Theinductionisonthelexicographic combination of the measures (rln (s(cid:48)), µ (s ), |s(cid:48)|,rlnall(s(cid:48))), where µ is the measure from [16] LCSC 1 lll 1 1 1 lll that is strictly decreased by every −l→ll and −g→c -reduction, and |s(cid:48)| is the size of s(cid:48) as an expression. If 1 1 s(cid:48) is an LRP-WHNF, then either s −g→c s(cid:48) is a normal-order reduction, and we are done, or it is not a 1 1 1 normal-orderreduction,ands isalsoanLRP-WHNF. 1 Ifs −g→c s(cid:48) isannogc-reduction,thentheclaimholds. Inthecaseofthefirstdiagram,theinduction 1 1 hypothesis can be applied by the following reasoning: if the s(cid:48)-reduction is a LCSC-reduction, then 1 the measure is decreased; if it is an (lll) or (gc), then the first component is the same but pair of the secondandthirdcomponentisstrictlysmaller. Inthecaseoftheseconddiagram,rln (s(cid:48))isstrictly LCSC 2 smaller, and hence also, by the induction hypothesis, rln (s ) and we can again apply the induction LCSC 3 hypothesis. In the case of the third diagram, reasoning is obvious. Finally, in the case of the fourth diagram,µ (s )<µ (s(cid:48)),hencetheinductionhypothesiscanbeapplied. lll 2 lll 1 Corollary3.4. ThecontextualequivalencesofLRPandLRPgcareidentical. The proof of Theorem 3.3 also shows that the rln-measure of expressions is the same for LRP and LRPgc. HencewecandropthedistinctionbetweenLRPandLRPgcw.r.t.rlnaswellasfor∼ . c 4 Time- and Space-Improvements Forspaceanalyses,wefirstdefinethesizeofexpressions: Definition4.1. Thesizesize(s)ofanexpressionsisthefollowingnumber: size(x) =0 size(st) =1+size(s)+size(t) #» size(cs) =1+∑ni=1size(si) size(seqs1 s2) =1+size(s1)+size(s2) size(λ#x».s) =1+size(s) size(letrec{xi=si}ni=1 ins) =size(s)+∑ni=1size(si) size(cx ->e)=1+size(e) size(caseeof{alt1 ... altn})=1+size(e)+∑ni=1size(alti) Typeannotationsarenotcountedbythesizemeasureandthustheyarealsonotshowninthedefini- tion of size. Note that our chosen size measure also does not count variables, the number of letrec- bindings,northeletrec-labelitself. Thiscanbejustified,sincetheseconstructsareusuallyrepresented moreefficiently(ordonotoccur)inrealisticimplementations,forexampleintheabstractmachine. For measuring the space-behavior of s, we use the maximum size occurring in an nogc-reduction sequencetoaWHNF: nogc nogc nogc Definition4.2. LetsbeaclosedLRP-expression. Ifs=s −−→s −−→...−−→s wheres isaWHNF, 0 1 n n thenspmax(s)isthemaximumofsize(s). Ifs↑thenspmax(s)=∞. i Thismeasureisverystrictandespeciallyappropriateiftheavailablespaceislimited. Atransforma- tionisatimeimprovement[14,13]ifitneverincreasestherln-reductionlength,andatransformationis aspaceimprovementifitneverincreasesthespaceconsumption. Definition4.3. Lets,tbetwoexpressionswiths∼ t. Thensisamaxspace-improvementoft,s≤ c maxspace t,ifforallcontextsC: IfC[s],C[t]areclosedthenspmax(C[s])≤spmax(C[t]). Wesays(time-)improvest,s(cid:22)t,ifforallcontextsC: IfC[s],C[t]areclosed,thenrln(C[s])≤rln(C[t]). Theserelationsareprecongruences. Notethatweusen<∞,and∞≤∞. 84 AnalyzingSpaceOptimizationsinCall-by-NeedFunctionalLanguages 5 An Abstract Machine for LRP In this section we present the abstract machine (a variant of the Sestoft-machine) to evaluate LRP- programs and measure their time and space usage. However, the conceptually simple abstract machine has to be extended and adapted to obtain a good behavior w.r.t. space measuring: it must be able to removeunusedbindingsinletrecs,andithastopreventsuperfluousduplicationsofexpressionsinthe input as well as their dynamic creation. A first step is to transform the LRP-expressions into so-called machineexpressionsonwhichtheSestoft-machinecanbeapplied. TheseareLRP-expressionswiththe restrictionthatargumentsofapplications,constructorapplications,andthesecondargumentofseqmust bevariables. Wealsoremovealltypeinformation. Definition 5.1. The translation ψ from arbitrary LRP-expressions into machine expressions is defined asfollows,wherey,y arefreshvariables: i ψ(x::ρ) :=x ψ(st) :=letrecy=ψ(t)in(ψ(s)y) ψ(sτ) :=ψ(s) ψ(seqst):=letrecy=ψ(t)in(seqψ(s)y) #» #» ψ(Λa .Λa .....Λa .λx::τ.s) :=λx.ψ(s) ψ(c s) :=letrec{y =ψ(s)}n in(c y ) 1 2 k i i i=1 i ψ(letrec {x =s}n int):=letrec{x =ψ(s)}n inψ(t) i i i=1 i i i=1 ψ(case eof{(Pat ->t ) ... (Pat ->t )}) K K,1 1 K,|DK| |DK| :=case ψ(e)of{(Pat ->ψ(t ))...(Pat ->ψ(t ))} K K,1 1 K,|DK| |DK| The transformation adds letrec-expressions and removes type annotations. This transformation does not change the reduction length, i.e.rln(s)=rln(ψ(s)) (see [13]). It is easy to see that size(s)= size(ψ(s)) holds. Below we will show that for machine expressions s the value spmax(s) is correctly computed. Unfortunately, this does not hold in general: for example ((seq True (λx.a)) True) and (letrec x = True,x = λx.a in (seq True x ) x ) have different spmax-values for size(a) ≥ 1: 1 2 2 1 5+size(a)and4+2size(a),respectively,sincethelatterhasaspacepeakat(letrecx =True,x = 1 2 λx.ain(λx.a)x ). 1 The used abstract machine is defined in [14, 13] and is based on the abstract machine Mark 1 by Peter Sestoft (see [17]), which was designed for call-by-need evaluation. The machine is extended in a straightforwardwaytohandleseq-expressions,whereaseq-expressionevaluatesthefirstargumenttoa valueandthenreturnsthesecondargument. AstateQisatriple(cid:104)Γ|s|S(cid:105),whereΓisanenvironmentof variable-to-expressionbindings(sometimescalledheap),sisamachineexpression(oftencalledcontrol expression)andSisastackwithentries#app(x),#seq(x),#case(alts)and#upd(x)wherexisavariable and alts is a list of case alternatives. Because the stack is implemented as a list we sometimes use the usuallistnotationforthestack. Thecontrolexpressionistheexpressionwhichhastobeevaluatednext, togetherwiththestackitcontrolsthecontrolflowoftheprogram. Thestackisalsoresponsibletotrigger updates on the heap. Note that the WHNFs of the abstract machine are machine expressions that are WHNFs. TheabstractmachineisdefinedinFig.4. Theexecutionofaprogramstartswiththewholeprogram as control expression and an empty heap and stack. The transition rules define the transition from one statetothenext,whereatmostoneruleisapplicableineachstep. The rules (Unwind1), (Unwind2), and (Unwind3) perform the search for the redex (according to thelabelinginLRP),bystoringargumentsofapplications,seq-expressions,orcase-alternativesonthe stack. The rule (Lookup) moves heap bindings into the scope of evaluation (if they are demanded). If evaluation of a binding is finished, the rule (Update) restores the result in the heap. (Letrec) moves letrec-bindingsintotheheap,bycreatingnewheapbindings. (Subst)isapplicableifthefirstargument N.Dallmeyer&M.Schmidt-Schauß 85 of an application is evaluated to an abstraction and the stack contains the argument. It then performs a β-reduction (with a variable as argument). (Branch) analogously performs a (case)-reduction on the abstractmachine. (Seq)evaluatesaseq-expression. Rule(Blackhole)resultsinaninfiniteloop, i.e. an error. Theabstractmachineiterativelyappliestheserulesuntilafinalstateisreached. Notethatthecontrol expressionofastateisaMark1valueifnoruleisapplicable. The (optional) rule (GC) performs garbage collection of bindings. The (optional) rule (SCRem) performs a specific form of saving space: it prevents unnecessary copying of values by avoiding the intermediateconstructionofindirectionsy=xandapplyingthereplacementinstead. Foracorrectspace measurement,theseruleshavetobeappliedwheneverpossible. Initialstate: (cid:104)0/ |e|[](cid:105)whereeisamachineexpression. Transitionrules: (Unwind1) (cid:104)Γ|(sx)|S(cid:105)→(cid:104)Γ|s|#app(x):S(cid:105) (Unwind2) (cid:104)Γ|(seqsx)|S(cid:105)→(cid:104)Γ|s|#seq(x):S(cid:105) (Unwind3) (cid:104)Γ|case sofalts|S(cid:105)→(cid:104)Γ|s|#case(alts):S(cid:105) K (Lookup) (cid:104)Γ,x=s|x|S(cid:105)→(cid:104)Γ|s|#upd(x):S(cid:105) (Letrec) (cid:104)Γ|letrecEnvins|S(cid:105)→(cid:104)Γ,Env|s|S(cid:105) (Subst) (cid:104)Γ|λx.s|#app(y):S(cid:105)→(cid:104)Γ|s[y/x]|S(cid:105) #» #» #» #» (Branch) (cid:104)Γ|c x |#case(... ((c y)->t) ...):S(cid:105)→(cid:104)Γ|t[x/y]|S(cid:105) K,i K,i (Seq) (cid:104)Γ|v|#seq(y):S(cid:105)→(cid:104)Γ|y|S(cid:105) ifvisaMark1value (Update) (cid:104)Γ|v|#upd(x):S(cid:105)→(cid:104)Γ,x=v|v|S(cid:105) ifvisaMark1value (Blackhole) (cid:104)Γ|y|S(cid:105)→(cid:104)Γ|y|S(cid:105) ifnobindingforyexistsontheheap GarbageCollectionandStackChainRemoval(bothoptional): (GC) (cid:104)Γ,{x =s}|s|S(cid:105)→(cid:104)Γ|s|S(cid:105) where{x =s}isthemaximalsetsuchthatforalli: i i i i x ∈/ FV(Γ),x ∈/ FV(s),#app(x)∈/ S,#seq(x)∈/ S, andifx ∈FV(alts)then#case(alts)∈/ S i i i i i (SCRem) (cid:104)Γ|s|#upd(x):#upd(y):S(cid:105)→(cid:104)Γ[x/y]|s[x/y]|#upd(x):S[x/y](cid:105) Value: AmachineexpressionisaMark1valueifitisanabstractionorconstructorapplication. WHNF: Let v be a Mark 1 value. Then a machine expression is a Mark 1-WHNF if it is a Mark 1 valueoroftheformletrecx =e , ..., x =e inv. 1 1 n n FinalState: LetvbeaMark1value,thenafinalstateis: (cid:104)Γ|v|[](cid:105) Figure4: Mark1: Initialstate,transitionrules,value,WHNFandfinalstate The rule (Update) is only applicable if (Lookup) was used before, hence (Letrec) is the only rule whichisabletoaddcompletelynewbindingstotheheap. Moreover every (Lookup) triggers an (Update). There are situations where a variable as control expressionleadstoanothervariableascontrolexpression(e.g.variablechainsinletrec-environments). For example the state (cid:104)Γ|True|#upd(x):#upd(y):#upd(z):S(cid:105) leads to three (Update) in sequence. Seenasaletrec-environment,letrecx=y,y=z,z=Trueleadstoletrecx=True,y=True,z= True. ButifweconsidertherulesinFig.2,weseethatLRPdoescopysuchvaluesrighttotheneeded position, without copying it to each position of the corresponding chain. The following example even showsthatthedifferenceinspaceconsumptionisatleastc·n,wherecisthesizeofthevaluev: letrecid=(λx.x),x =(id x ),...,x =(id x ),x =vinseqx (Tx x ... x ) 1 2 n−1 n n 1 1 2 n The tuple (T x x ... x ) ensures that none of the bindings can be removed by the garbage collector. 1 2 n 86 AnalyzingSpaceOptimizationsinCall-by-NeedFunctionalLanguages Machine execution leads to a sequence of n (Update)-transitions, where the value v gets copied to each bindingofthechain. Toavoidthiseffect, therule(SCRem)hastobeappliedwheneverpossible. Ifwe considertheexampleabove,thenwehave: (SCRem),2 (cid:104)Γ|True|#upd(x):#upd(y):#upd(z):S(cid:105)−−−−−−→(cid:104)Γ[x/y,x/z]|True|#upd(x):S[x/y,x/z](cid:105) Therule(SCRem)iscorrect,since(cid:104)Γ|v|#upd(x):#upd(y)(cid:105)correspondstoletrecΓ,x=v,y=xiny with x(cid:54)=y before application, and after the application it is (cid:104)Γ[x/y]|v[y/x]|#upd(x)(cid:105)corresponding to letrecΓ[x/y],x=v[y/x]iny[y/x]andreplacingvariablesbyvariablesisshowntobecorrectin[16]. NowwecompareLRPwiththeabstractmachine: n Definition5.2. Letsbeaclosedmachineexpressionsuchthat(cid:104)0/ |s|[](cid:105)→QwhereQisafinalstate. 1. mln(s)isthenumberofall(Subst)-,(Branch)-and(Seq)-stepsinthesequence. 2. mlnall(s)isthenumberofallmachinestepsinthesequence,thusmlnall(s)=n. #» Update 3. mspmax(s)ismax{size(St)|1≤i≤n,¬(St =(cid:104)Γ,cx,S(cid:105)∧St −−−−→St)},(i.e.statesafter i i−1 i−1 i (Update)areignoredforconstructorapplications),where(cid:104)0/ |s|[](cid:105)=St →St →...→St =Q. 1 2 n Ifsdivergesthenmln(s)=mlnall(s)=mspmax(s):=∞. Thesizeofamachinestateisthesumoftheheapsizesseenasouterletrec,thesizeofthecontrol expressionandtheexpressionsonthestack,wherethe#-labelsarenotcounted. (Update)mightincrease thesizeofthecurrentstateincontrasttoLRP,wherevariablescanbeprocesseddirectlywithoutlooking upandthenupdatingthem(e.g.compare(case-in)ofLRPwith(Branch)oftheMark1). Weshowthattheabstractmachinecanbeusedforcomputingreductionlengthsandspacemeasures asneededforreasoningontime-andspace-improvements(restrictedtomachineexpressionsinthecase ofspace-improvements): Theorem5.3(Adequacyoftheabstractmachinew.r.t.resourceconsumption). LetsbeanLRPexpres- sionwiths↓. 1. Oninputψ(s),themeasuremln(ψ(s))coincideswithrln(s). 2. Ifs isamachine expressionand iftheabstract machineeagerlyapplies (GC)and(SCRem), then mspmax(s)coincideswithspmax(s). Proof. Sincein[13]itwasshownthatrln(s)=mln(ψ(s))holds,LRP,restrictedtomachineexpressions, and Mark-1 provide equal results concerning reduction lengths. Note that this does not hold for rlnall and mlnall, since the abstract machine moves letrec-environments directly on top, while LRP needs additional(lll)-reductionsteps. Because bindings x=y are eliminated by (SCRem) the only difference between evaluating the ma- chine expressions s in LRPgc and the evaluation of s on the abstract machine with eagerly applying rules (GC) and (SCRem) concerning space is the following: The abstract machine copies constructor applicationsincontrasttoLRP.Theconstructorapplicationsareeitherdirectlyprocessedbya(Seq)or (Branch),orthecopyingisafinal(Update)-transition. Theclaimholds,sincewedonotcountthesizes ofexactlytheseintermediatestatesbetween(Update)and(Seq)aswellas(Update)and(Branch),anda final(Update)inthecomputationofmspmax(s). N.Dallmeyer&M.Schmidt-Schauß 87 5.1 Implementation TheLRPinterpreter(LRPi)isimplementedinHaskellandcanbedownloadedhere: http://www.ki.informatik.uni-frankfurt.de/research/lrpi All details concerning compilation can be found on this page. The interpreter is able to execute LRP- programs and to generate statistics concerning reduction lengths and different space measures. Various sizeandspacemeasurescanbedefinedeasily,thustheinterpretercanbeusedtocomparedifferentsize andspacemeasurementsortoexploreotherresourceusagesapartfromtimeandspaceanalyses. The interpreter is user friendly and is able to calculate TikZ-pictures showing the size-values during runtime(foruseinLaTeX). The rule (GC) is implemented as a stop-and-copy garbage collector that is called by the abstract machine depending on the garbage collection mode. If we set the garbage collector to run after each state transition, then the reduction length and spmax-results (restricted to LRP-machine-expressions in the case of space measurement) are correctly counted for LRPgc, since the interpreter automatically applies(SCRem)wheneverpossible. 5.1.1 RemovingIndirectionChains We support the interpretation by two initial operations: There is a complete garbage collection before startingtheinterpretation, andanefficientalgorithmtoremovechainsofindirections(variable-variable binding chains) in the input expression, which avoids unnecessary space consumption in the Sestoft machine. The algorithm is only applied once at compile time, since none of the rules in Fig. 4 create variable-to-variablebindingsthatcannotberemovedby(SCRem). Sinceweoftenconfigurethegarbage collector to run whenever possible, this can reduce the runtime of garbage collection runs for large programs. ThisisimplementedefficientlyandrunsintimeO(nlogn)wherenisthenumberofvariables. Formoreinformationsee[1]. 6 Analyses for Examples This section contains analyses illustrating the performance and output of the interpreter and tool LRPi. In particular it shows several experiments: a simple program transformation, various fold-applications andafusion,comparingtwolist-reversevariants,andsharingvs. non-sharing. Thelatterisillustratedby anexamplethatcanbeseenasavariantofcommonsubexpressioneliminationwhichshowsthatsaving space may increase the runtime and that a transformation, which for a large class of tests reduces the space, might fail to be a space improvement in some cases. All analyses are done after translating the inputtomachineexpressionformat. One of the aims of LRPi is to support conjectures of space improvements by affirmative tests, or to refute the space improvement property of a specific transformation by finding a counter example. Since LRPi only tests in the empty environment, a complete test would require to perform the test also withincontexts,which,however,cannotbedonecompletely,sincethereareinfinitelymany,evenusing contextlemmastominimizethesetofnecessarycontexts. Usingasimulationmode,thecontextscould be restricted to testing the functions on arguments. For these tests typing makes a big difference, since certain transformations are correct only if typing is respected and also the space improvement property maydependontherestrictiontotypedargumentsortype-correctinsertionintocontexts. Examples for conjectured space improvements are the reductions of the calculus (see Fig.2) used as transformations,withtheexceptionofthe(cp)-reductions.