ebook img

An Autonomous Reference Frame for Relativistic GNSS PDF

0.67 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview An Autonomous Reference Frame for Relativistic GNSS

ANAUTONOMOUSREFERENCEFRAMEFORRELATIVISTICGNSS UrosˇKostic´1,2,MartinHorvat1,SanteCarloni3,PacoˆmeDelva4,andAndrejaGomboc1,2 1FacultyofMathematicsandPhysics,UniversityofLjubljana,Jadranska19,1000Ljubljana,Slovenia 2Sloveniancentreofexcellenceforspacesciencesandtechnologies,Asˇkercˇeva12,1000Ljubljana,Slovenia 3InstituteofTheoreticalPhysics,FacultyofMathematicsandPhysics,CharlesUniversity,VHolesovickach2,18000 Praha8,CzechRepublic 4LNE-SYRTE,ObservatoiredeParis,CNRSetUPMC,61avenuedelObservatoire,75014,Paris,France ABSTRACT well. Our previous work shows that it is possible to construct 4 1 Current GNSS systems rely on global reference frames such a system and do the positioning within it: the or- 0 which are fixed to the Earth (via the ground stations) bital parameters of the GNSS satellites can be deter- 2 so their precision and stability in time are limited by mined and checked internally by the GNSS system it- ourknowledgeoftheEarthdynamics. Thesedrawbacks self through inter-satellite links (Cˇadezˇ et al. 2011). In n a could be avoided by giving to the constellation of satel- thisway, wecanconstructanAutonomousBasisofCo- J lites the possibility of constituting by itself a primary ordinates(ABC)whichisindependentofanyEarthbased 4 and autonomous positioning system, without any a pri- coordinatesystem. Thissystemconstructsitselfaseach 2 orirealizationofaterrestrialreferenceframe. Ourwork satellite receives proper times of all other satellites, and shows that it is possible to construct such a system, an by comparison with its own proper time determines the ] Autonomous Basis of Coordinates, via emission coordi- parametersoftheABCsystemwithgreataccuracy. c nates. HerewepresenttheideaoftheAutonomousBasis q of Coordinates and its implementation in the perturbed Here we present the results of our recent work, where - r space-timeofEarth,wherethemotionofsatellites,light wehavefurtherdevelopedrelativisticpositioningandthe g propagation,andgravitationalperturbationsaretreatedin ABCbyincludingallrelevantgravitationalperturbations, [ theformalismofgeneralrelativity. suchasEarthmultipoles(uptothe6th), Earthsolidand 2 ocean tides, the Sun, the Moon, Jupiter, Venus, and the v Kerreffect. Keywords: RelativisticGNSS. 6 0 7 2. MOTIONOFSATELLITESINAPERTURBED 4 1. INTRODUCTION SPACE-TIME . 1 0 4 TheclassicalconceptofpositioningsystemforaGlobal The perturbed satellite orbits were calculated from the 1 navigation satellite system (GNSS) would work ideally perturbedHamiltonian(Goldstein1980) : ifallsatellitesandthereceiverwereatrestinaninertial v i referenceframe. Butatthelevelofprecisionneededbya H = 1gµνp p , (1) X GNSS,onehastoconsidercurvatureandrelativisticiner- 2 µ ν r tialeffectsofspacetime,whicharefarfrombeingnegligi- a ble.Theseeffectsaremosteasilyandelegantlydealtwith where the perturbed metric gµν is a sum of the unper- inarelativisticpositioningsystembasedonemissionco- turbed(i.e. Schwarzschild)metricgµ(0ν) andtheperturba- ordinates (Coll & Morales 1991; Rovelli 2002; Blago- tivemetrichµν jevic´ et al. 2002; Cˇadezˇ et al. 2010; Delva et al. 2011). Theydependonthesetoffoursatellitesandtheirdynam- gµν =gµ(0ν)+hµν , |hµν|(cid:28)gµ(0ν). (2) ics, and can be linked to a terrestrial reference system. The Hamiltonian (Eq.1) is rewritten with the canonical Consequently,thedifficultynolongerliesintheconcep- momentap =g x˙ν as tion of the primary reference frame but in its link with µ µν terrestrialreferenceframes(Cˇadezˇ etal.2010). Thisal- 1 1 H = g(0)µνp p − hµνp p =H(0)+∆H , (3) lowstocontrolmuchmorepreciselyalltheperturbations 2 µ ν 2 µ ν thatlimittheaccuracyandthestabilityoftheprimaryref- erenceframe,ifthedynamicsoftheGNSSsatellites,de- whereH(0) and∆H aretheunperturbedandthepertur- scribedbytheirorbitalparameters,isknownsufficiently bativepartoftheHamiltonian,respectively. Theunperturbedorbitisthengivenbytheequations 10000 400 ∂H(0) ∂H(0) 300 x˙µ = ∂p(0) and p˙(µ0) =− ∂xµ , (4) 8000 200 µ m 6000(cid:68) 100 where the coordinates and the momenta k (cid:64) 0 for Schwarzschild case are (xµ,pµ) = (cid:68)L 4000 0 2 4 6 8 10 (t,r,θ,φ,p ,p ,p ,p ). The unperturbed Hamilto- t r θ ϕ nian H(0) admits 6 constants of motion (Qk,P ): the 2000 k orbital energy P = E, the magnitude of the angular 1 momentumP = l,thez-componentoftheangularmo- 0 2 mentum P = l , the time of the first apoapsis passage 0 50 100 150 200 250 300 350 3 z Q1 = −t , the longitude of the apoapsis Q2 = ω, and t day a the longitude of the ascending node Q3 = Ω. These constantsareusedtofindtheanalyticalsolutionsforthe Figure1. Thedifferencesintheposition∆Lofthesatel- orbitsintheform: lite due to sum of all perturb(cid:64)atio(cid:68)ns. The gray graph shows the long-term changes in one year, while the red t=t(λ|Qk,Pk) r =r(λ|Qk,Pk) inset shows the short time-scale changes within the first (5) θ =θ(λ|Qk,P ) φ=φ(λ|Qk,P ), 10days. The(Schwarzschild)timeonx-axiscountsdays k k from1January2012at12:00noon.Axesonredandgray whereλisthetrueanomaly(Kostic´ 2012). plotshavethesameunits. Theinitialvaluesofparame- ters are: t = 12 h, ω = 0◦, Ω = 0◦, a = 29602 km, a If the metric is perturbed, (Qk,P ) are no longer con- ε=0.007,ι=56◦,correspondingtotheGalileosystem. k stants of motion – they are slowly changing functions of time. Labelling these new canonical variables as (Qˆk,Pˆ ),weobtaintheirtimeevolutionfromthefollow- oneyear. Adetailedstudyofeffectsofeachperturbation k ingexpressions(Goldstein1980): oneachorbitalparametershowsthatthesechangesarise mostlyfromtheprecessionsofΩandω;thechangesdue Qˆ˙k (cid:39) ∂∆H(cid:12)(cid:12)(cid:12) =−1∂hµνpµpν (6) to other orbital parameters are 2-3 orders of magnitude ∂P (cid:12) 2 ∂P smallerandoscillating. k Qk,Pk k Pˆ˙k (cid:39)− ∂∂∆QHk (cid:12)(cid:12)(cid:12)(cid:12) = 12∂h∂µνQpkµpν . (7) Qk,Pk 3. RELATIVISTICPOSITIONINGSYSTEM TheEqs.6and7arenumericallyintegratedtoobtainthe solutionsforQˆk(λ|Qk,P )andPˆ (λ|Qk,P ),whichare k k k We simulate a constellation of four satellites moving then used to replace (Qk,P ) in the analytical expres- k alongtheirtime-likegeodesics(Cˇadezˇ etal.2010;Delva sionsforunperturbedorbits(Eq.5). Inthisway,theper- et al. 2011; Kostic´ 2012). The initial orbital parameters turbedorbitisdescribedastime-evolvingunperturbedor- ofthegeodesicsareknownandtheirevolutionduetoper- bit: turbationsiscalculatedasshowninSection2. t=t(λ|Qˆk(λ),Pˆ (λ)) r =r(λ|Qˆk(λ),Pˆ (λ)) k k Ateverytime-stepofthesimulation,eachsatelliteemits θ =θ(λ|Qˆk(λ),Pˆk(λ)) φ=φ(λ|Qˆk(λ),Pˆk(λ)). a signal and a user on Earth receives signals from all (8) satellites – the signals are the proper times of satellites attheiremissioneventsandconstitutetheemissioncoor- dinates of the user. The emission coordinates determine Before the Eqs.6 and 7 are solved numerically, we cal- the user’s “position” in this particular relativistic refer- culatethemetrich forKerreffect, Jupiter, Venus, the µν ence frame defined by the four satellites and allow him Moon, the Sun, Earth multipoles, solid, and ocean tides to calculate his position and time in the more custom- using relativistic multipole expansion (Gomboc et al. ary Schwarzschild coordinates. So, to simulate the po- 2013;Horvatetal.2014). sitioningsystem,twomainalgorithmshavetobeimple- mented: (1) determination of the emission coordinates, We calculated the evolution of orbital parameters (with and(2)calculationoftheSchwarzschildcoordinates. initialvaluest =12h,ω =0◦,Ω=0◦,a=29602km, a ε=0.007,ι=56◦,correspondingtotheGalileosystem) foreachperturbationindividuallyaswellasforthesum of all perturbations and thus obtained the corresponding Determinationoftheemissioncoordinates Thesatel- orbits.Becausetheperturbedorbitsdonotdifferfromthe lites’trajectoriesareparametrizedbytheirtrueanomaly unperturbedonessignificantly,inFig.1weshowonlythe λ. The event P = (t ,x ,y ,z ) marks user’s o o o o o differencesbetweentheperturbedandunperturbedposi- Schwarzschildcoordinatesatthemomentofreceptionof tionsforallperturbationsincluded: thedifferenceinpo- the signals from four satellites. Each satellite emitted a sitions∆Lare∼300kmin10daysand∼10000kmin signal at event P = (t ,x ,y ,z ), corresponding to λ i i i i i i (i=1,...,4). EmissioncoordinatesoftheuseratP are, o Table 1. Orbital parameters for 4 satellites: longitude therefore, the proper times τ (λ ) of the satellites at P . i i i ofascendingnode(Ω),longitudeofperigee(ω),inclina- Taking into account that the events P and P are con- o i tion(ι),majorsemi-axis(a),eccentricity(ε),andtimeof nectedwithalight-likegeodesic,1 wecalculateλ atthe i apogeepassage(t ). emissionpointP usingtheequation a i t −t (λ |Qˆk(λ ),Pˆ (λ ))= # Ω[◦] ω[◦] ι[◦] a[km] ε ta[s] o i i i k i (9) 1 0 270 45 30000 0.007 0 T (R(cid:126) (λ |Qˆk(λ ),Pˆ (λ )),R(cid:126) ), f i i i k i o 2 0 315 45 30000 0.007 0 where R(cid:126) = (x ,y ,z ) and R(cid:126) = (x ,y ,z ) are the 3 0 275 135 30000 0.007 0 i i i i o o o o spatialvectorsofthesatellitesandtheuser,respectively. 4 0 320 135 30000 0.007 0 The function T calculates the time-of-flight of photons f betweenPo andPi asshownbyCˇadezˇ &Kostic´ (2005) 1 2 andCˇadezˇetal.(2010). TheEq.9isactuallyasystemof τ e [k+1] fourequationsforfourunknownλ –oncethevaluesof m λiaredetermined,itisstraightforwiardtocalculateτifor e ti eachsatelliteandthusobtainuser’semissioncoordinates at n τ atPo =(τ1,τ2,τ3,τ4). di [k+1] r o o c τ [k] Calculation of the Schwarzschild coordinates Here we solve the inverse problem of calculating τ Schwarzschild coordinates of the event Po from proper [k] times (τ ,τ ,τ ,τ ) sent by the four satellites. We 1 2 3 4 do this in the following way: For each satellite, we numericallysolvetheequation space coordinate τ(λ |Qˆk(λ ),Pˆ (λ ))=τ , (10) i i k i i Figure 2. A pair of satellites exchanging their proper toobtainλ ,whereτ(λ|Qˆk(λ),Pˆ (λ))isaknownfunc- times. At every time-step k, the satellite 1 sends the i k proper time of emission τ[k] to the satellite 2, which tionforpropertimeontime-likegeodesics(Kostic´2012). receives it at the time of reception τ[k]. The emission The Schwarzschild coordinates of the satellites are then andreceptioneventpairsareconnectedwithalight-like calculated from λ using Eq.8. With the satellites’ i geodesic. coordinates known, we can take the geometrical ap- proach presented by Cˇadezˇ et al. (2010) to calculate the Schwarzschild coordinates of the user. The final step in the true values of orbital parameters would be transmit- thismethodrequiresusagaintosolveEq.9,however,this tedtotheusertogetherwiththeemissioncoordinates,so timeitistreatedasasystemof4equationsfor4unknown to account for this in our simulations, we calculated the usercoordinates,i.e.,solvingit,gives(t ,x ,y ,z ). o o o o evolution of parameters from their initial values before starting the positioning, and (2) the position of the user Theaccuracyofthisalgorithmhasbeentestedforsatel- iscompletelyunknown,i.e.,wedonotstartfromthelast lites on orbits with initial parameters given in Table1 and a user at coordinates r = 6371 km, θ = 43.97◦, known position. If we did, the times for calculating the o o φ =14.5◦. Theuser’scoordinatesremainconstantdur- positionwouldbeevenshorter. o ingthesimulation. Therelativeerrors,definedas t −te R(cid:126) −R(cid:126)e 3.1. AutonomousBasisofCoordinates (cid:15) = o o, (cid:15) = o o , (11) t to x,y,z R(cid:126)o Toconstructanautonomouscoordinatesystem,weapply are of the order 10−32 − 10−30 for coordinate t, and theideaoftheAutonomousBasisofCoordinates(ABC) 10−28 −10−26 for x, y, and z; here teo and R(cid:126)oe are user presented in Cˇadezˇ et al. (2011) to a perturbed satellite timeandcoordinatesascalculatedfromtheemissionco- system,i.e.,wesimulatethemotionofapairofsatellites ordinates. Usingalaptop2forcalculations,theuser’spo- alongtheirperturbedorbits. sition(withsucherrors)wasdeterminedin0.04s,where weassumedthat(1)inrealapplicationsofthepositioning At each time-step of the simulation, both satellites ex- change emission coordinates as shown in Fig.2, where, 1Thelight-likegeodesicsarecalculatedinSchwarzschildspace-time forclarity, onlycommunicationfromsatellite1tosatel- withoutperturbations,becausetheeffectsofperturbationsonlightprop- lite2isplotted.Theseeventsofemissionatpropertimeτ agationarenegligible. 2Withthefollowingconfiguration: Intel(R)Core(TM)i7-3610QM ofthefirstsatelliteandreceptionatτ ofthesecondsatel- [email protected],8GBRAM,IntelC/C++/Fortrancompiler13.0.1. liteareconnectedwithalight-likegeodesic,i.e.,thedif- ference between the coordinate times of emission t (τ) 1 andreceptiont2(τ)mustbeequaltothetimeofflightof 1017 aphotonbetweenthetwosatellites(cf. Eq.9) 109 T =t (τ)−t (τ). (12) f 2 1 n ctio 10 However,thisisonlytrueifweknowtheexactvaluesof A the initial orbital parameters of each satellite, as well as 10(cid:45)7 theirevolution. 10(cid:45)15 When constructing the relativistic positioning system, it 10(cid:45)23 isreasonabletoassumethattheinitialorbitalparameters 0 2000 4000 6000 8000 10000 (Qˆi(0),Pˆ(0))arenotknownveryprecisely. Toimprove i step their values, we sum the differences between RHS and LHS of Eq.12 for all communication events into an ac- Figure 3. The action S(Qˆi(0),Pˆ(0)) during the mini- i tion mizationprocess. Thefirststagetakes1765stepsandthe S(Qˆi(0),Pˆ(0))=(cid:88)(cid:16)t (τ[k]|Qˆi(τ[k]),Pˆ(τ[k]))− secondonetakes8513steps. i 1 i k t (τ[k]|Qˆi(τ[k]),Pˆ(τ[k]))− Byrepeatingtheminimizationprocedureforallpossible 2 i pairs of satellites, we can reconstruct the orbital param- T (R(cid:126) (τ[k]|Qˆi(τ[k]),Pˆ(τ[k])), etersofeverysatelliteinthesystemwithouttrackingthe f 1 i (cid:17)2 satellites from the Earth and thus obtain an autonomous R(cid:126)2(τ[k]|Qˆi(τ[k]),Pˆi(τ[k]))) , coordinatesystem. (13) which has a minimum value (close to zero) for the true 4. SUMMARY initialvaluesoforbitalparameters–forthe2×6orbital parametersthatwehave(Qˆi(0),Pˆ(0)forbothsatellites), i this becomes a problem of finding a minimum of a 12D In this contribution we have shown how to construct an function. Becausetheorbitalparametersdependontime, AutonomousBasisofCoordinates(ABC)forrelativistic theirtimeevolutionhastoberecalculated(aspresentedin GNSSinaperturbedSchwarzschildspace-time. Section2)ateverystepoftheminimization,whichmakes The ABC concept establishes a local inertial frame, theminimizationprocessveryslow. which is based solely on dynamics of GNSS satellites The minimization was done in two stages. In the first andisthuscompletelyindependentofaterrestrialrefer- stage, we use the PRAXIS minimization method (Brent ence. Generalrelativitywasusedtocalculatethedynam- 1973)implementedintheNLOPTlibrary(Johnson2013) ics of the GNSS satellites and the gravitational pertur- todeterminetheparameterswithindoubleprecision.The bations affecting the dynamics (Earth multipoles, Earth resultingvaluesarethenusedasinitialvaluesforthesec- solidandoceantides,theSun,theMoon,Jupiter,Venus, ondstage,whereweusethesimplexmethodto“polish” andtheKerreffect),aswellastheinter-satellitecommu- the parameters within 128-bit quad precision.3 In Fig.3 nication,whichactuallymakespossibleforconstruction weplotthevaluesoftheactionduringtheminimization of the whole system. The numerical codes for position- process;thefirststagetakes1765steps,whilethesecond ing determine all four coordinates in 40 ms with 25-30 onetakes8513steps. digitaccuracy,showingthatgeneralrelativistictreatment presentsnotechnicalobstaclesforcurrentGPSdevices. The number of time-steps along the orbits was suffi- Because the system does not rely on Earth based refer- cientlylarge(k = 1...433)tocoverapproximatelytwo enceframesandisconstructedonlythroughpropertime orbital times. The initial values of the orbital param- exchange between satellites, it offers unprecedented ac- eters used as starting point in the minimization differ curacyandstability. Infact,presenttechnology,planned fromthetruevaluesbyanamountwhichinducestheer- to be used in the Galileo system, should be able to rou- ror of ∼ 2 − 3 km in the satellites’ positions. At the tinelyreachmillimetreaccuracywithrespecttoanabso- beginning of the minimization, the value of the action is S ≈ 1024(r /c)2, at the end of the first stage it is lute local inertial frame defined independently of Earth g 2 × 1010(r /c)2, and at the end of the second stage it based coordinates. At this level of accuracy it seems g necessary to decouple the local inertial frame from the drops to 8 × 10−24(r /c)2. The relative errors of the g geodetic Earth frame, and allow the comparison of the orbitalparameters(Qˆi(0),Pˆ(0))aftertheminimization i two, to tell us fine details about Earth rotation, gravita- areoftheorderof10−22. tionalpotentialanddynamicsofEarthcrust. Lastbutnot least,trackingofsatelliteswithgroundstationsisneces- 3Quadprecisionisrequirediftheresultingparametersareusedin sary only to link the relativistic positioning system to a Eq.8,wherecancellationeffectsbecomesignificantincaseofquasi- circularorbits. terrestrial frame, although this link can also be obtained byplacingseveralreceiversattheknownterrestrialposi- tions. ACKNOWLEDGMENTS U.K.,M.H,andA.G.acknowledgefinancialsupportfrom ESA PECS project Relativistic Global Navigation Sys- tem. REFERENCES Blagojevic´, M., Garecki, J., Hehl, F. W., & Obukhov, Y.N.2002,Phys.Rev.D,65,044018 Brent, R. 1973, Algorithms for Minimization With- outDerivatives,DoverBooksonMathematics(Dover Publications) Cˇadezˇ,A.&Kostic´,U.2005,Phys.Rev.D,72,104024 Cˇadezˇ, A., Kostic´, U., & Delva, P. 2010, Mapping the Spacetime Metric with a Global Navigation Satellite System, EuropeanSpaceAgency, theAdvancedCon- cepts Team, Ariadna Final Report (09/1301), Tech. rep.,EuropeanSpaceAgency Cˇadezˇ, A., Kostic´, U., & Delva, P. 2011, Mapping the Spacetime Metric with a Global Navigation Satellite System-extensionstudy: Recoveryoforbitalconstants using intersatellite links, European Space Agency, the Advanced Concepts Team, Ariadna Final Report (09/1301CCN),Tech.rep.,EuropeanSpaceAgency Coll,B.&Morales,J.A.1991,JournalofMathematical Physics,32,2450 Delva, P., Kostic´, U., & Cˇadezˇ, A. 2011, Advances in SpaceResearch,47,370 Goldstein, H. 1980, Classical Mechanics, 2nd edn. (Reading,MA:Addison-WesleyPublishingCompany) Gomboc, A., Kostic´, U., Horvat, M., Carloni, S., & Delva, P. 2013, in Acta Futura: Proceedings of the workshop Relativistic Positioning Systems and their ScientificApplications,ESA Horvat,M.,Kostic´,U.,Carloni,S.,&Gomboc,A.2014, submitted Johnson, S. 2013, The NLopt nonlinear-optimization package,http://ab-initio.mit.edu/nlopt Kostic´, U.2012, GeneralRelativity and Gravitation, 44, 1057 Rovelli,C.2002,Phys.Rev.D,65,044017

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.