ebook img

An Artificially Lattice Mismatched Graphene/Metal Interface: Graphene/Ni/Ir(111) PDF

0.82 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview An Artificially Lattice Mismatched Graphene/Metal Interface: Graphene/Ni/Ir(111)

AnArtificiallyLatticeMismatchedGraphene/MetalInterface: Graphene/Ni/Ir(111) Daniela Pacile´1,2∗, Philipp Leicht3, Marco Papagno1,2, Polina M. Sheverdyaeva2, Paolo Moras2, Carlo Carbone 2, Konstantin Krausert3, Lukas Zielke3, Mikhail Fonin3, Yuriy S. Dedkov4,†, Florian Mittendorfer5, Jo¨rg Doppler5, Andreas Garhofer5, and Josef Redinger5 1 DipartimentodiFisica,Universita`dellaCalabria,87036ArcavacatadiRende(CS),Italy 2 IstitutodiStrutturadellaMateria,ConsiglioNazionaledelleRicerche,Trieste,Italy 3 FachbereichPhysik,Universita¨tKonstanz,78457Konstanz,Germany 3 4 Fritz-Haber-InstitutderMax-PlanckGesellschaft,Faradayweg4-6,14159Berlin,Germany 1 5InstituteforAppliedPhysicsandCenterforComputationalMaterialsScience,ViennaUniversityofTechnology,1040Vienna,Austria 0 2 n (Dated:December11,2013) a J 7 We report the structural and electronic properties of an artificial graphene/Ni(111) system obtained by the intercalation of a monoatomic layer of Ni in graphene/Ir(111). Upon intercalation, Ni grows epitaxially on ] i c Ir(111),resultinginalatticemismatchedgraphene/Nisystem.ByperformingScanningTunnelingMicroscopy s - (STM)measurementsandDensityFunctionalTheory(DFT)calculations,weshowthattheintercalatedNilayer l r leadstoapronouncedbucklingofthegraphenefilm. Atthesametimeanenhancedinteractionismeasuredby t m Angle-ResolvedPhoto-EmissionSpectroscopy(ARPES),showingacleartransitionfromanearly-undisturbed . t a to a strongly-hybridized graphene π-band. A comparison of the intercalation-like graphene system with flat m grapheneonbulkNi(111),andmildlycorrugatedgrapheneonIr(111),allowstodisentanglethetwokeyprop- - d ertieswhichleadtotheobservedincreasedinteraction,namelylatticematchingandelectronicinteraction. Al- n o thoughthelatterdeterminesthestrengthofthehybridization,wefindanimportantinfluenceofthelocalcarbon c configurationresultingfromthelatticemismatch. [ 1 v 9 I. INTRODUCTION 0 2 1 Metalsupportedgraphenehasreceivedrenewedinterestasitprovidesamodel-systemforstudyinggraphenemodificationson . 1 well-definedlargeareasamples. RecentphotoemissionandScanningTunnelingMicroscopy(STM)studieshaveshownthatthe 0 3 carriermobility,chirality,andbandgapcanbetailoredbyaperiodicperturbationpotential[1],doping[2,3],intercalation[4], 1 : andhybridizationwiththesupportingsubstrate[5]. Althoughtherearecountlessstudiesongraphenegrownontransitionmetals v i X [5–7],thevastlydifferinginteractionofgraphene(G)withtransitionmetals(Me)isnotfullyunderstoodonabasiclevel[8,9]. r Asanimportantcontributiontotheinteractionstemmsfromnon-local(van-der-Waalslike)interactions, thevariabilityofaG a film with the supporting metal is only partially explained by the so-called d band model [10]. That Pt and Ir interact more weaklywithGthanNiorCoisnotsurprisingaccordingtothismodel,butchangesfromonemetaltothenextoneintheperiodic tableareexpectedtobemoregradual. Instead, forneighboringelements, likePdandPt, andRhandIr, theG-Meinteraction ∗Emailaddress:daniela.pacile@fis.unical.it †Presentaddress:SPECSSurfaceNanoAnalysisGmbH,Berlin,Germany 2 seems to abruptly switch from strong to weak [5, 6]. According to the experimental findings, the G-Me interaction has been partitionedintothesetwomaincategories,wherefromanelectronicstructurepointofview,astrongoraweakinteractionmeans aperturbedoranalmostunperturbedgrapheneπ-bandattheK-pointoftheBrillouinzone. Ontheotherhand,thetermstrong appearsinappropriateifintendedforchemisorptionbetweengrapheneandtheunderlayingmetal. Indeed,forNi(111),whichis consideredoneofthemetalsbelongingtothestrongcategory,onlyamoderateadsorptionenergyof67meVpercarbonatomhas beenrecentlyevaluatedonthebasisofhigh-levelmany-bodycalculations(andupto160meV/Cusingsemi-empiricalforcefield corrections), whichstillisintherangeoftypicalphysisorptionsystems[11–13]. Therefore, itshouldbenotedthatthestrong interactionmainlyimpliesastronghybridizationbetweenthegrapheneπstatesandthesubstrate,butisnotnecessarilyreflected intheadsorptionenergies. ArelatedquestionisapossiblecorrelationbetweentheG-Melatticemismatchandthestrengthof interaction. Severalmetalsbelongingtothestrong(Rh,Ru)andweak(Ir,Pt,Cu)categoriesformmoire´ structures,comprising differentinteractionswiththeGlayer. Amongseveraltransitionmetals,Ni(111)hasbeenmoststudiedassubstratematerialforG-Meinterface,bothbytheoryand experiment. The close lattice match between G and Ni allows the growth of a commensurate (1×1) graphene overlayer, with carbonatomsatatopandfcc-hollowsites,separatedfromthesubstrateby2.11A˚ and2.16A˚,respectively[14]. Angle-resolved photoemission(ARPES)datashowapronouncedenergygapattheK-pointoftheBrillouinzonebetweenπ andπ∗ [15],asa resultofbrokensymmetryforthetwocarbonsublatticesaccompainedbystronghybridizationbetweenNi3dandgrapheneπ states. HerewereportanewG-Ni(111)system,obtainedbytheintercalationofasingleepitaxiallayerofNiingraphene/Ir(111).For thissystem,thelatticemismatchbetweengrapheneandtheNilayerisincreased. AlthoughtheepitaxialgrowthofNionIr(111) willleadtoadditionalelectroniceffects,suchasanarrowingoftheNidband,thelocalchemicalelectronicenvironmentisstill similarenoughtoallowforacomparisionwithG/Ni(111). Theintercalationleadstoalocallyenhancedinteraction, resulting in a strong corrugation of the graphene layer. We investigated the artificially mismatched G/Ni by STM, Density Functional Theory(DFT)includingvanderWaascontributions(vdW-DF)andARPES,providingawidecharacterizationofelectronicand structuralproperties.ThecomparisonbetweenG/Ni/Ir(111)andG/Ni(111)allowstoranktheinfluenceoftwoimportantfactors, latticemismatchandchemicalinteraction,affectingtheG-Meadsorptionmechanism. II. METHODS Thepresentedstudieswereperformedintwodifferentexperimentalchambersunderidenticalexperimentalconditions,allow- ing for a reproducible sample preparation. Photoemission experiments were carried out at the VUV-Photoemission beam line oftheElettrasynchrotronradiationfacility(Trieste,Italy),usingaScientaR4000electronenergyanalyzeratabasepressureof 5×10−11mbar. Angle-resolvedphotoemissionspectrawerecollectedatroomtemperature(RT)usingaphotonenergyof80 eV,withtotalenergyresolutionof100meVandangularresolutionof0.1◦. STMexperimentswerecarriedinultra-highvacuum(UHV)system(basepressure5×10−11mbar)equippedwithanOmicron variabletemperaturescanningtunnelingmicroscope. AllSTMmeasurementswereperformedintheconstant-current-modeat RTusingelectrochemicallyetchedpolycrystallinetungstentipscleanedinUHVbyflash-annealing. Thesignofthebiasvoltage correspondstothevoltageappliedtothesample. TunnelingcurrentandvoltagearelabeledI andU ,respectively. T T 3 FIG.1: (coloronline)(a)TopographicSTMoverviewshowingthemorphologyofgraphenewithapartiallyintercalatedNisub-monolayer. Niaccumulatesatstepedges(Barea)showingincreasedmoire´corrugationinSTMascomparedtoG/Ir(111)(AandCareas)(70×70nm2; U =0.65V;I =1.21nA).CorrespondingLEEDimageintheinset. (b)AreaswithNiintercalatedunderneathgraphene(Bareas)show T T reducedmeanapparentheightinthelineprofilesandthehistogram. Thehistogramshowsthefrequencyofapparentheightvaluesappearing inthemagnificationdepictedin(c)(blackcurve)andwithinareasonterraceA,BorC(yellow,orangeandbrowncurves,respectively). (c) Magnificationofthedottedsquarein(a)(46×8.6nm2). Experimentally, the G/Ir(111) system was prepared by the procedure described in [1]. Intercalation of Ni underneath a graphenelayerwasperformedviaannealingofthepre-depositedfilminthetemperaturerangeof670-800K.Startingfromthe sub-monolayerregime,theNicoveragewasestimatedonbareIr(111)bymeasuringtheintensityratioofNi-3pandIr-4fcore levels. Thespin-polarizedDFTcalculationswereperformedwiththeViennaAb-initioSimulationPackage(VASP)[16,17],using PAWpotentials[18,19]andanenergy-cutoffof400eV.AsGGAexchange-correlationfunctionalstendtoseverelyunderbind the adsorption of graphene on Ni(111) [11], the calculations were performed using van der Waals DFT (vdW-DF) with the opt86b functional [20, 21]. In the calculations, a (10×10) graphene sheet was adsorbed on a (9×9) Ir(111) substrate with a lattice constant of 2.735 A˚, consisting of a three layer slab and an additional intercalated epitaxial Ni layer. A Γ-centered 3×3×1 k-point mesh was used to relax the structures keeping only the two bottom-most layers fixed. The C 1s core level shiftswerecalculatedintheinitialstateapproximation. Forthegraphicalvisualisation,theresultingtotalcorelevelspectraare displayedasasumoverGaussianfunctionswithastandarddeviationof0.25. TheSTMsimulationswereperformedusingthe Tersoff-Hamannapproximation[22]usingtheintegratedchargedensitybetweenE andE +0.2eV. F F III. RESULTSANDDISCUSSION InSTM,theG/Ir(111)surfacedisplayslargefullygraphenecoveredterraceswithseveralhundredsofnanometerswidthand straight steps following the direction of the graphene moire´, consisting of distinct fcc-hcp carbon configurations and virtually indistinguishabletop-hollow(top-fccandtop-hcp)sites. G/Ir(111)wasimagedhereinthedark-atop-contrast[23], whereele- vatedfcc-hcpregionsappearasblackdepressionsinmiddleofbrightringsinSTMtopographies. UponNiintercalationstraight 4 FIG. 2: (color online) (a) Structural model for a single layer of graphene on Ni/Ir(111). The color coding indicates the height of the corrugation∆hinthegraphenelayer. (b)Comparisonofthecorrugationintheoptimizedstructureofgraphene/Ni/Ir(111)(upperpanel)and graphene/Ir(111)(lowerpanel). (c)SimulatedSTMimageforthestatesbetweenE and0.2eV.(d)AtomicallyresolvedSTMtopographyof F graphene/Ni/Ir(111)(8×8nm2; U =50.0mV;I =35.0nA).Theoretical(e)andexperimental(f)C1scorelevelshiftsofG/Ni/Ir(111) T T comparedtoG/Ir(111). terracesbecomedisruptedandirregularlyextendedbyareaswithinvertedmoire´contrast(whiteprotrusionsondarkbackground) ascomparedtopristineG/Ir(111)steps.Figure1adepictsadetailedSTMtopographywithgraphenecoveringIr(A,C)including anintermediateareawithinvertedcontrast(B)andtworemainingNiclusters(inwhite)ontopofgraphenewithheightinthe nanometer range. From the morphology of the sample after intercalation it becomes clear that areas A and C display pristine grapheneonadjacentIrsubstratelevels,whereasareaBcorrespondstographeneonaNi-intercalatedregion. Toshedmorelight on the overall as well as site specific graphene-substrate interaction we analyzed the area depicted in Figure 1c and evaluated lineprofilesacrosstheterracesandhistogramsshowingthedistributionofapparentheightvalues(Figure1b). Line profile 1 crosses the fcc-hcp sites of G/Ir(111) on terrace A, which appear as dark depressions, and continues across terraceBwherebrightprotrusionsnowoccupytheformerfcc-hcpsites. Heightprofile2crossesthebrightprotrusionsofterrace B.Alargepeak-to-valleyheightvariationof0.6A˚ ismeasuredonterraceBascomparedtothemuchshallowerpeak-to-valley corrugationof0.25A˚ ofG/Ir(111)onterracesAandC.InthehistograminFigure1bthefrequencyofapparentheightvaluesis shownforequallysizedareasonterraceA,BandC,respectively,aswellasforthecompleteareainFigure1c. ForG/Ir(111)on terraceAandCthedistributionisnarrow(0.45A˚ peakwidth)andfeaturesadistributionmaximumreflectingthetop-hollowsites andadistinctshoulderatlowerapparentheightcorrespondingtothefcc-hcpregions. ForNiintercalatedgrapheneonterrace Bthedistributionismuchwider(0.8A˚ peakwidth)withamaximum0.6A˚ belowthemaximumofG/Ir(111)andashoulder extendingfarintotheG/Ir(111)region. AssumingtheintercalatedNiatomsarrangepseudomorphicallyontheIr(111)surface withcomparableinterplanedistance,themeasureddistancebetweenequivalentpointsontheterracesAandBreflectstoalarge extentthedifferenceinthegraphene-metaldistance(seealsothediscussionoftheDFTresults),andleadstotheintriguingresult that graphene on intercalated Ni is in average 0.6A˚ closer to the topmost substrate layer compared to the pristine G/Ir(111). 5 Thealmostunaffectedcontinuationofthegraphenemoire´ onintercalatedNi–albeitwithincreasedcorrugation–justifiesthe assumption of pseudomorphic arrangement of the intercalated Ni atoms. Moreover, the experimental data do not show any indicationfortheformationofasurfacealloy. The DFT calculations allow to investigate the structural changes in the (10 × 10) graphene sheet adsorbed on a (9 × 9) Ni/Ir(111)substrate[1MLNipseudomorphicallyarrangedonIr(111)]. Itshouldbenotedthatthestrengthofthehybridization iscloselyrelatedtotheminimalgraphene-substratedistances[11]. Consequentlythestructuralanalysisallowstodeconvolute the effects of the lattice mismatch between the graphene sheet and the substrate, and the chemical properties of the interface. Figures2(a-b)displaythegeometryofthegraphenesheetaftertherelaxation. ThemodelshowsthattheintercalationoftheNi layerleadstoapronouncedcorrugationof∆h=1.51A˚ inthegraphenelayer, significantlylargerthanforG/Ir(111)(Figure 2b). Yet it should be noted that more than 70% of the carbon atoms in the graphene layer are adsorbed at a close distance of about2.0-2.2A˚ fromtheNilayer. Thecomparisonwiththeinter-planedistanceofGonNi(111)(2.1A˚)thereforehintsata similarbindingofgraphenetothesubstrate,despitethelargeexperimentalstrainofroughly9%duetopseudomorphicgrowth oftheNilatticeinG/1MLNi/Ir(111). Therefore,theG-Nibondingseemstobemainlyaffectedbytheelectroniccontribution, whichalsodrivesthestrongcorrugationofthegraphenelayerinthemismatchedstructure. Intheflatregions,themagneticmomentoftheNiatomsiscompletelyquenchedbytheinteractionwiththegraphenesheet, whiletheNiatomsunderthegraphenebubblesyieldasmallmagneticmoment(<0.4µ ). Wefindthatnomagneticmoment B is induced in the graphene sheet that can be due to the small net magnetic moment of the underlying Ni film, opposite to the graphene/Ni(111)systemshowinganinducedmagneticmomentofcarbonatoms[24]. Seen from an atomistic point of view, the close adsorption configuration of the graphene layer is reached not only for the top-fccconfigurationpreferredonNi(111),butalsofortheadsorptioninabridge-likeconfiguration. Bothconfigurationsyielda closeadsorptiondistancereachingvaluesaslowas1.94A˚.Incontrast,theweakinteractioninthefcc-hcpsites(greenregionsin Figure2a)leadstotheformationoflocalprotrusions,withamaximaldistanceof3.45A˚ totheNilayercommonforphysisorbed graphene. Nevertheless, thisdistanceisstillsmallerthanthecalculatedmaximal(vdW-DF)distance3.7A˚ (∆h=0.37A˚)for theadsorptionofGonthebareIr(111)surface(Figure2b). AdirectcomparisonoftheobtainedSTMdata(Figure2d)andasimulatedSTMimage(Figure2c)reflectsthestructureofthe adsorbedgraphenesheet: theelevatedfcc-hcpregionsappearbrightest,whilethelow-lyingareaswithtop-hollowconfiguration appearasadarkbackground. InagreementwiththestructurerecentlyreportedforG/Ru(0001)[25]andG/Rh(111)[26–28],the regionswherethegraphenesheetisadsorbedinalocalbridgeconfigurationistheareaofthesmallestdistancetothesurface. TheseareasappearasfaintlyvisibledepressionsinSTMtopographies. Apeak-to-valleycorrugationofupto1A˚ fitswellthe corrugationof1.3A˚ inthesimulatedimage. Ontheatomiclevel,G/Ni/Ir(111)showsringsofcarbonatomseverywherewithin themoire´ supercellinFigure1d, howeverwiththestronglyboundareasadifferenceintheintensitybetweentheneighboring atomsisobservedindicatingabrokensublatticesymmetry. Previousstudiesdemonstratethatthecorrugationandhybridizationofthegraphenelayerwiththemetallicsubstrateisstrongly reflectedintheC1sline-shape[29,30]. Figure2fshowstheC1scorelevel(CL)takenat445eVofG/Ir(111)anditsevolution during the intercalation of about one third of monolayer and one monolayer of Ni atoms. According to the existing literature [29,31],intheG/Ir(111)systemtheC1sbindingenergyisfoundat(284.10±0.20)eV.Aftertheintercalationof0.33MLofNi 6 FIG.3: (coloronline)(a-d)ARPESdispersionsalongΓKasafunctionoftheamountofNiatomsintercalatedunderneathG/Ir(111).(a)and (d)showextremecasesof0MLandthickNi,respectively.(e)Carbonprojectedbandstructureofa(1x1)modelsystemofgraphene/Ni/Ir(111). ThebandstructurewasevaluatedataG-Nidistanceof2.0A˚ (brown-darkgraydots)and3.4A˚ (green-lightgraydots). atomsasecondcomponentathigherbindingenergyisseen. Therelativeintensitiesofthetwocomponentsisfullyinvertedfor 1ML of Ni atoms intercalated. The main peak centered at 284.90 (±0.20) eV is close to the value found for graphene grown onbareNi(111)[32], whereasinglepeakat284.7(±0.18)eVwasmeasured, withanintrinsiclinewidthof216meV.Inour system,theC1sline-shapeexhibitsatotalwidthofabout840meVandastrongasymmetrytowardslowerbindingenergy,likely convolutingdifferentcomponents.ThisisconfirmedbythecalculatedcorelevelstatesofG/Ni/Ir(111):althoughthecalculations predictonlyaminorCLshiftforthecarbonatomsintheelevatedregionsofthemoire´ pattern,thestronglyinteractingCatoms inthelowerregionsaredominantintheconvolutionconsideringallcontributions(Figure2e)andthusdonotexhibitadouble C1speakasobservedforG/Re(0001),G/Rh(111)orG/Ru(0001)[29,30]. Toshed morelightonthe overallinteractionof graphenewiththemismatched Nilayers, wehave performedARPESmea- surements mainly looking at the graphene π-band. Figures 3(a-d) show ARPES maps of the electronic band dispersion of (a) G/Ir(111); (b) G/0.33MLNi/Ir(111); (c) G/1MLNi/Ir(111); (d) G/thickNi/Ir(111), all taken along the ΓK direction. The last measurementwascollectedaftertheintercalationofseveralmonolayersofNi. Theπ stateofG/Ir(111)(Figure3a)exhibitsa minimumattheΓ-pointat8.30eV,andapproachestheFermilevelattheK-pointat70meV,wheretheplanarσ statereaches 11.35eVofbindingenergy[1]. Accordingtotheliterature[1,3,29,33,34], replicasbandsofbothπ andσ statesduetothe moire´ superpotential are seen close to the K-point. After the intercalation of about 1/3 ML of Ni atoms (Figure 3b), new π andσ statesappearathigherbindingenergytogetherwiththedstatesofNi, weaklydispersingintherange0-2eVbelowthe Fermi level. The co-existence of double π and σ states reflects a non-homogenous surface with clean areas of G/Ir(111) and patcheswhereNiatomsareinbetween. WhenafullmonolayerofNiatomsisintercalatedviaannealing(Figure3c),thenew bandstructureevolvesclearly. TheπstatenowexhibitsaminimumattheΓ-pointat10.03eVandreachesamaximumatabout 2.16eVattheK-point,whereitmergeswiththedstatesofNi. Theσstateisalsoshiftedtoahigherbindingenergycompared toG/Ir(111), withaminimumattheK-pointatabout12.48eV.WhenseveralmonolayersofNi(above5)areintercalatedvia annealing(Figure3d), theelectronicstatesofIrarenolongerdetected, andthebandstructurereflectsthatofG/Ni(111)[15]. 7 Notably,whiletheσstateisunaffectedbythenumberofNilayersattheK-point,theπstateexhibitsaclearshifttowardslower bindingenergies(upto2.16eVfor1MLintercalatedNi)withrespecttoGgrownonmultilayers(Figure3d)orbulknickel[15], wheretheπ bandmaximumisfoundatabout2.65eV.ThisfindingisrelatedtothedifferencesinwidthoftheNi-dstatesofa singleintercalatedNilayercomparedtoasurfaceofbulknickel:narrowingoftheNi3dbanduponthedecreasingoftheNilayer thickness. Takingintoaccountthatthepositionofthegraphene-derivedπbandattheΓpointisthesameforboththickandthin (1ML)intercalatedNilayers,wecanconcludethattheenergyshiftofπ bandwithrespecttofree-standinggrapheneispurely definedbythechargetransferbetweenNiandCatomsattheclosestdistancethroughthedonation/back-donationmechanism [9]. Atthesametimethepresenceaswellasthewidthofthebandgapbetweenπandπ∗graphene-derivedstatesisdetermined by thebroken symmetryfor twocarbon atoms inthe grapheneunit cellin thissystem accompanied bya stronghybridization betweenNi3dandgrapheneπstates. For a comparison with experiment, we also evaluated the theoretical band structure. In order to avoid the back-folding induced by the larger supercell, we have mimicked the local interactions by calculating the electronic structure for a smaller (1×1) model of G/Ni/Ir(111) in a top-fcc configuration at an average distance of the flat regions (2.0 A˚) and at the maximal heightof thebubbles (3.4 A˚).The resultingband structureis shownin Figure3e. Although theeffect ofthe latticemismatch between the graphene sheet and the substrate is lost in this smaller model, the calculations clearly show that the interactions at the elevated regions of the bubbles (green-light gray dots in Figure 3e) are rather weak, resulting in a nearly unperturbed graphene band structure. On the other hand, a much stronger interaction can be expected for the dominant flat regions in the vicinityofthesurface,leadingtoalargesplittingoftheπ bandattheDiracpoint(brown-darkgraydotsinFigure3e). These findings agree with the experimentally observed opening of a band gap in the ARPES data. Furthermore, no π band splitting isobservedexperimentallyinoursystem,duetothemetallicnatureofgraphene[35],incontrasttotheelectronicbehaviorof h-BN grown on selected transition metals [36], where the dielectric nature of the overlayer allows to observe double σ and π statescorrespondingtoupperandlowerregions. IV. CONCLUSION Inconclusion,wehaveshownthattheadsorptionofgrapheneonepitaxiallayersallowstostudytheinfluenceofthelattice mismatch between the graphene layer and the support, while keeping the chemical environment similar. For graphene on Ni/Ir(111), we find that the interaction is locally strongly enhanced for specific adsorption configurations. Consequently, in contrast to G/Ir(111), the moire´ structure of G/Ni/Ir(111) exhibits a strong corrugation, with a modulation of about 1.5 A˚ and aminimumG-Medistanceslightlysmallerthan2A˚ .ThegraphenebandstructureprobedbyARPESshowsacleartransition from a nearly-free standing to a strongly-hybridized character of the π band, in analogy with graphene grown on bulk nickel. ThehybridizationbetweenNidstatesandgrapheneπstatesisdirectlyrelatedtothestronglyinteractingtop-hollowandbridge configurationsinthelowerpartsofthemoire´mesh,atadistanceofabout2.0-2.2A˚ fromtheNilayer.Incontrast,theinteraction issignificantlyweakerforotherregions(fcc-hcpconfigurations)ofthemoire´ mesh,whereonlyavanderWaalslikebindingis observed. Thereforewecanidentifytheroleoftwoimportantcontributionstotheadsorption: whiletheelectronicinteraction dominatesinthestronglyinteractingregions, thelatticemismatchbetweengrapheneandthemetalsupportisdecisiveforthe ratiobetweenstronglyandweaklyinteractingregions. Weexpectthatthisinterplayisoneofthekeyfeaturesformismatched 8 graphene-metalinteractions. Acknowledgements This work has been supported by the Italian Ministry of Education, University, and Research (FIRB Futuro in Ricerca, PLASMOGRAPH Project), by the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE, by the Austrian Science Fund (FWF) project I422-N16, and by the Research Center “UltraQuantum” of the University of Konstanz(ExcellenceInitiative). TheViennaScientificCluster(VSC)isacknowledgedforCPUtime. [1] S.Rusponi,M.Papagno,P.Moras,S.Vlaic,M.Etzkorn,P.M.Shverdyaeva,D.Pacile´,H.Brune,andC.Carbone,Phys.Rev.Lett.105, 246803(2010). [2] A.Nagashima,N.Tejima,andC.Oshima,Phys.Rev.B50,17487(1994). [3] M.Papagno,S.Rusponi,P.M.Sheverdyaeva,S.Vlaic,M.Etzkorn,D.Pacile´,P.Moras,C.Carbone,andH.Brune,ACSNano6,199 (2012). [4] A.Varykhalov,J.Sa´nchez-Barriga,A.M.Shikin,C.Biswas,E.Vescovo,A.Rybkin,D.Marchenko,andO.Rader,Phys.Rev.Lett.101, 157601(2008). [5] M.Batzill,Surf.Sci.Rep.67,83(2012). [6] J.WintterlinandM.-L.Bocquet,Surf.Sci.603,1841(2009). [7] Yu.S.Dedkov,K.Horn,A.Preobrajenskij,andM.Fonin,inGrapheneNanoelectronics(Springer,Berlin2012). [8] E.VoloshinaandYu.Dedkov,Phys.Chem.Chem.Phys.14,13502(2012). [9] S.M.Kozlov,F.Vin˜es,andA.Go¨rling,J.Phys.Chem.C116,7360(2012). [10] B.HammerandJ.K.Nørskov,Adv.Catal.45,71(2000). [11] F.Mittendorfer,A.Garhofer,J.Redinger,J.Klimesˇ,J.Harl,andG.Kresse,Phys.Rev.B84,201401(R)(2011). [12] E.N.Voloshina,A.Generalov,M.Weser,S.Bo¨ttcher,K.Horn,andYu.S.Dedkov,NewJ.Phys.13,113028(2011). [13] L.Adamska,Y.Lin,A.J.Ross,M.Batzill,andI.I.Oleynik,Phys.Rev.B85,195443(2012). [14] Y.Gamo,A,Nagashima,M.Wakabayashi,M.Terai,andC.Oshima,Surf.Sci.374,61(1997). [15] Yu.S.DedkovandM.Fonin,NewJ.Phys.12,125004(2010). [16] G.KresseandJ.Furthmu¨ller,Comput.Mater.Sci.6,15(1996). [17] G.KresseandJ.Hafner,Phys.Rev.B47,558(1993). [18] P.E.Blo¨chl,Phys.Rev.B50,17953(1994). [19] G.KresseandD.Joubert,Phys.Rev.B59,1758(1999). [20] J.Klimes˘,D.R.Bowler,andA.Michaelides,J.Phys.:Condens.Matter.22,022201(2010). [21] J.Klimes˘,D.R.Bowler,andA.Michaelides,Phys.Rev.B83,195131(2011). [22] J.TersoffandD.R.Hamann,Phys.Rev.B31,805(1985). [23] A.T.N’Diaye,J.Coraux,T.N.Plasa,C.Busse,andT.Michely,NewJ.Phys.10,043033(2008). [24] M.Weser,Y.Rehder,K.Horn,M.Sicot,M.Fonin,A.B.Preobrajenski,E.N.Voloshina,E.Goering,andYu.S.Dedkov,Appl.Phys. Lett.96,012504(2010). [25] M.IannuzziandJ.Hutter,Surf.Sci605,1360(2011). 9 [26] B.Wang,M.Caffio,C.Bromley,H.Fru¨chtl,andR.Schaub,ACSNano4,5773(2010). [27] M.Sicot,P.Leicht,A.Zusan,S.Bouvron,O.Zander,M.Weser,Yu.S.Dedkov,K.Horn,andM.Fonin,ACSNano6,151(2012). [28] E.N.Voloshina,Yu.S.Dedkov,STorbru¨gge,A.Thissen,andM.Fonin,Appl.Phys.Lett.100,241606(2012). [29] A.B.Preobrajenski,M.L.Ng,A.S.Vinogradov,andN.Ma˙rtensson,Phys.Rev.B78,073401(2008). [30] E.Miniussi,M.Pozzo,A.Baraldi,E.Vesselli,R.R.Zhan,G.Comelli,T.O.Mentes¸,M.A.Nin˜o,A.Locatelli,S.Lizzit,andD.Alfe`, Phys.Rev.Lett.106,216101(2011). [31] C.Busse,P.Lazic´,R.Djemour,J.Coraux,T.Gerber,N.Atodiresei,V.Caciuc,R.Brako,A.T.N’Diaye,S.Blu¨gel,J.Zegenhagen,and T.Michely,Phys.Rev.Lett.107,036101(2011). [32] A.Gru¨neis,K.Kummer,andD.V.Vyalikh,NewJ.Phys.11,073050(2009). [33] E.Starodub,A.Bostwick,L.Moreschini,S.Nie,F.ElGabaly,K.F.McCarty,andE.Rotenberg,Phys.Rev.B83,125428(2011). [34] M.Kralj,I.Pletikosic´,M.Petrovic´,P.Pervan,M.Milun,A.T.N’Diaye,C.Busse,T.Michely,J.Fujii,andI.Vobornik,Phys.Rev.B84, 075427(2011). [35] T.Brugger,S.Gu¨nther,B.Wang,J.H.Dil,M.-L.Bocquet,J.Ostewalder,J.Wintterlin,andT.Greber,Phys.Rev.B79,045407(2009). [36] T.Greber,M.Corso,andJ.Ostewalder,Surf.Sci.603,1373(2009).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.