ebook img

An Approach to Non-Abelian Cyclotomic Fields PDF

0.16 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview An Approach to Non-Abelian Cyclotomic Fields

An Approach to Non-Abelian Cyclotomic Fields 7 1 Shinji Ishida 0 2 n January 16, 2017 a J 3 Abstract 1 T] kxnW−ke+ma··in·l+ys(tnu−dy1a)xp+olynnoomveiralZf1a,nn(dxt)h=e xGna−lo1i+s g2rxonu−p2+of3txhne−m3+in·i·m·a+l N splittingfield. First,weshowthatanarbitraryrootαn off1,n(x)satisfies |αn| → 1 (n → ∞), and discuss the irreducibility of f1,n(x) over Z for . h several type n. After that, we show that the Galois group of f1,n(x) at is Symmetric group Sn−1 for several type n. Although those roots of m f1,n(x) = 0 don’t draw an exact circle, it looks like a circle on complex plane. Moreover by considering that Galois groups of f1,n(x) are not [ abelian in manycases, we call such extension fieldsoverQ “Non-Abelian 2 Cycrotomic Fields” here. v Keywords: 1Algebraic number field, Non-Abelian extension field over ratio- 0 nal field Q, cyclotomic field, and polynomials over rational integer Z. 6 1 1 Contents 0 . 1 1 Introduction 2 0 7 1.1 The fundamental properties . . . . . . . . . . . . . . . . . . . . . 2 1 1.2 The list of Galois groups for 4 n 22 . . . . . . . . . . . . . . 4 v: 1.3 The reason why we studied the≤poly≤nomials f1,n(x) . . . . . . . . 5 i X 2 Some Properties of f (x) and f (x) 6 1,n p,N r a 3 The discriminant of f (x) 9 1,n 4 The generalization and a conjecture 12 4.1 The irreducibility conjecture. . . . . . . . . . . . . . . . . . . . . 13 5 Class Field Theory in case of n=4 and m=2 13 1The subject classification codes by 2010 Mathematics Subject Classification is primary- 11R21andsecondary11R37. 1 1 Introduction In this section, first, we explain severalfundamental properties of the following polynomial over Z f (x)=xn−1+2xn−2+3xn−3+ +kxn−k+ +(n 1)x+n. (1.1) 1,n ··· ··· − Second, we explain the reason why we call such extension fields defined by f (x) over Q “non-Abelian cyclotomic field” when the Galois group is not 1,n abelian. After that, we explain the reason why we studied such polynomials. 1.1 The fundamental properties The fundamental properties of f (x) are as follows. As for the proofs,look at 1,n 2 and 3. § § P1. <The distribution of the roots> Let α be an arbitrary root of f (x) = 0. Then 1 α < (n+1)2/n. n 1,n n ≤ | | In particular, α 1 (n ). n | |→ →∞ P2. <The irreducibility> If n+1 is a prime number, or n is a power of prime number, then f (x) 1,n is irreducible over Z. By using ”SageMath”, we can know that f (x) is 1,n irreducible for all 1 <n 3000. Hence we conjecture that f (x) is 1,n ≤ irreducible over Z for all n>1. P3. <The discriminant and the subfield of the minimal splitting field> The discriminant D(f1,n(x)) of f1,n(x) is ( 1)(n−1)2(n+2)2nn−3(n+1)n−2, − and it is not a square of a national number in case of n 0 or 3 (mod ≡ 4) because it is negative. For n>2, let K be the minimal splitting field n of f (x) over Q. Then K has the following quadratic field F as a sub 1,n n field: Q(√ 2l) (n=4l) −  Q(√2l+1) (n=4l+1) F = (1.2)  Q(√2l+1) (n=4l+2) Q( 2(l+1)) (n=4l+3)  p− where,wemustassumethat2l+1isasquarefreerationalintegerforn=4l+1 and 4l+2. Example 1.1. For n=4, Galois groupG of the minimalsplitting field K /Q 4 4 of f (x)=x3+2x2+3x+4 is Symmetric group S . 1,4 3 2 Proof. Actually, f (x) is irreducible by the property P2, and D(f (x)) = 1,4 1,4 200= 2352. Hence the splitting field K of f (x) has a sub quadratic field 4 1,4 − − Q(√ 2). This indicates G S . 4 3 − ≃ Example 1.2. For n=5, Galois groupG of the minimalsplitting field K /Q 5 5 of f (x)=x4+2x3+3x2+4x+5 is Symmetric group S . 1,5 4 Proof. BythepropertyP2,f (x)isirreducibleoverZandG hasatransposi- 1,5 5 tionbythepropertyP3andChebotarev’sdensitytheorem. Moreover,f (x)is 1,5 irreducible(mod7)andf (x) (x 7)(x3+9x2+4)(mod11). Thisindicates 1,5 ≡ − that G has two elements of order 4 and 3 respectively. Hence G S . 5 5 4 ≃ More generally, we have the following main result. Theorem 1.1. Assume that f (x) is irreducible over Z and p = n 1 is an 1,n − oddprimenumber,andletG betheGaloisgroupoftheminimalsplittingfield n K of f (x) over Q. Then we obtain the following result. n 1,n (1) G is not abelian. n (2) If D(f1,n(x)) / Z, Gn is Symmetric group Sn−1. ∈ p Proof. (1)G hasanelementσ oforder2whichisarestrictionofcomplexcon- n jugacy,andan elementρ oforderp(p-cyclic)because p=n 1 is an oddprime − and G acts transitively the of all roots of f (x) = 0 (from those conditions, n 1,n p divides the order of G and this indicates G has an element of order p). It n n iseasytoseethatf (x)=0hasanonlyonerealrootαandσ ρ(α)=ρ σ(α). 1,n ◦ 6 ◦ (2) This is proved by using Chebotarev’s density theorem and a theorem of GroupTheory(see[1][Theorem4.12.8]): “Letpbeaprimenumber. IfG S is p ⊂ transitive and contains a transposition, then G=S ”. Because D(f (x)) / p 1,n ∈ Z, the minimal splitting field K over Q of f (x) has a quapdratic field F n 1,n over Q. Hence by Chebotarev’s density theorem, there are an infinite numbers of rational prime numbers q such that unramified and (q) is a prime ideal in O (integer ring of F), and splits completely in K . Hence for such a prime F n numberq,f (x)(modq)=(irreduciblequadraticequation) Π(distinctlinear 1,n ∗ equations). Thisindicates thatGaloisgroupG hasatransposition. Moreover, n Galoisgroupactstransitivelyonthesetofallrootsgenerally,weobtainTheorem 1.1. (2). As such examples, we can consider some Mersenne prime numbers as n 1, − and Twin prime numbers as n 1 and n+1 which satisfy D(f (x)) / Z. 1,n − ∈ p Corollary 1.1. Let n=2p such that n 1 is a prime number. Then f (x) is 1,n − irreducible over Z and the Galois group is Symmetric group Sn−1. Proof. f (x) is irreducible by P2. The discriminant D(f (x)) < 0 from P3. 1,n 1,n Because 2p 1 is a prime number, by Theorem1.1, the Galois groupof f (x) 1,n − is Symmetric group Sn−1. 3 Corollary 1.2. Let n 1 and n+1 be prime numbers. Then f (x) is irre- 1,n − ducible over Z, and if D(f (x)) / Z, the Galois group is Symmetric group 1,n ∈ Sn−1. p Proof. By Proposition 2.3 below, f (x) is irreducible over Z. Hence by The- 1,n orem 1.1, if D(f1,n(x)) / Z, the Galois group is Symmetric group Sn−1. As ∈ the examplesp, n=4,6,12,20,etc... 1.2 The list of Galois groups for 4 n 22 ≤ ≤ By hand calculation and using a computer calculation software ”SageMath”, we list the Galois groups for for 4 n 22 below, where S and A means n n ≤ ≤ n-th symmetric group and n-th alternative group respectively. In case of only n=7, the Galoisgroupis neither a symmetric nor alternativegroup. However, the Galois groups are not abelian! Hence we call such Galois extension fields definedbyf (x)”non-abeliancyclotomicfieldoverQbyconsideringproperty 1,n P1 above. Table 1: List of Galois group n Galois group abelian? 4 S No 3 5 S No 4 6 S No 5 7 PGL(2,5) No 8 S No 7 9 S No 8 10 S No 9 11 S No 10 12 S No 11 13 S No 12 14 S No 13 15 S No 14 16 S No 15 17 A No 16 18 A No 17 19 S No 18 20 S No 19 21 S No 20 22 S No 21 4 1.3 The reason why we studied the polynomials f (x) 1,n As youknow,for anyprime number p,anpositive integer N (not divisible by p and larger than p) is uniquely expressed as N =a +a p+a p2+ +a pn (1.3) 0 1 2 n ··· where 0 a <p for 0 i n, a and a are not 0. The author thought that i 0 n ≤ ≤ ≤ if we replace the prime number p with a variable x in equation (1.3) above, then do the roots of the polynomial have any special mathematical meaning? Let’s think the following equation(1.4)by replacing prime number p with a variable x in (1.3) above: N =a +a x+a x2+ +a xn (1.4) 0 1 2 n ··· As a matter of convenience, let’s transform (1.4) like below: anxn+an−1xn−1+ +a2x2+a1x+a0 N =0 (1.5) ··· − Because we already know that the equation (1.5) has a root p, (x p) divides − left-hand side of (1.5). Let’s denote the quotient as f (x): p,N fp,N(x)=(anxn+an−1xn−1+ +a2x2+a1x+a0 N)/(x p) (1.6) ··· − − This polynomial f (x) is an element of Z[x], and f (x) of (1.1) is a special p,N 1,n case of f (x). p,N We havedefined f (x) for prime number p. Howeverwe caneasily extend p,N the definition for any positive integer m by using m-adic expansion of N by assuming that m and N are relatively prime numbers. As for the special case “m=1”, because N =11+12+ +1N, we obtain the following equation by ··· replacing “1” with a variable x. N =x+x2+ +xN. (1.7) ··· By transforming (1.7), xN +xN−1+xN−2+ +x2+x N ··· − =(x 1)(xN−1+2xN−2+ +(N 2)x2+(N 1)x+N). (1.8) − ··· − − Hence we obtain f (x)=xN−1+2xN−2+ +(N 2)x2+(N 1)x+N. (1.9) 1,N ··· − − These are the reason why we started to study f (x). Initially, we studied the 1,n range of roots of f (x) on complex plain for prime numbers p. However, we p,N thought that the studying of the Galois group would be interesting. 5 Acknowledgement The author expresses his thanks to his wife, son and daughter who gave him time to study this theme and to write this paper. Moreover, he expresses his thankstohissupervisorwhotaughthimamusingnessofnumbertheorywhenthe authorwasagraduatestudent. Thankyouverymuch. Further, the authorwas impressed by a bibliography [3]. It is a teaching certificate written in Japanese byProfessorIharaforyoungresearcherofmathematics. Theauthorfeelshappy because he can read the great book in his mother tongue Japanese. 2 Some Properties of f (x) and f (x) 1,n p,N Wediscussthedistributionofrootsoff (x)andf (x),andtheirreducibility 1,n p,N in this section. Proposition 2.1. If α is a root of f (x), then 1 α <(n+1)2/n. 1,n ≤| | Proof. By considering g (x)=(x 1)f (x), we have 1,n 1,n − g (α)=(α 1)f (α)=αn+αn−1+αn−2+ +α n=0. (2.1) 1,n 1,n − ··· − By transposition n of (2.1) to right-hand side, − αn+αn−1+αn−2+ +α=n. (2.2) ··· If α <1, then n= αn+αn−1+αn−2+ +α αn+ αn−2+ + α < | | | ··· |≤| | | | ··· | | 1+1+ +1 = n. Because this is inconsitent, α 1. Next, first let’s show ··· | | ≥ that α < n+1 (the following proof quotes from [6]). By transforming (2.2) | | above, we have αn =n (αn−1+αn−2+ +α), (2.3) − ··· and by dividing the both side by αn−1, 1 1 1 n α= 1 + + + . (2.4) − − α − α2 ··· −αn−2 αn−1 By taking the absolute values of both sides of (2.4), 1 1 1 1 α n(1+ + + + + ), (2.5) | |≤ α α2 ··· αn−2 αn−1 | | | | | | | | Further by considering the infinite series of the right-hand side, α α <n( | | ), (2.6) | | α 1 | |− Hence we obtain α <n+1. By using this fact, we can show α <(n+1)2/n. | | | | By (2.2) above, n= α αn−1+αn−2+ +α+1 αn−1+αn−2+ +α+1. (2.7) | || ··· |≥| ··· | 6 Therightside is (αn 1)/(α 1). Becauseofthe triangleinequality, α 1 | − − | | − |≤ α +1<n+2. Hence we have | | αn 1 αn 1 n − > | | − (2.8) ≥| α 1 | n+2 − This leads the required inequality α <(n+1)2/n. | | Although we don’t use the next proposition for Theorem 1.1, we show the similar result for f (x) just in case. p,N Proposition 2.2. Let p be a prime number and N be a positive integer which is not divisible by p. Further assume that the p-adic expanision of N is the same as (1.3). Then if α1,α2, ,αn−1 are roots of fp,N(x), p αi < p2 for ··· ≤ | | any 1 i n 1. ≤ ≤ − Proof. If α <p, it leads following contradiction: i | | N = a +a α +a α2+ +a αn a +a α +a α 2+ +a α n <N. | 0 1 i 2 i ··· n i|≤ 0 1| i| 2| i| ··· n| i| Hence p α . On the other hand, due to the relation between roots and i ≤ | | coefficients of f (x), we have p,N α1 α2 αn−1 =(N a0)/anp=(1/an)(anpn−1+an−1pn−2+ a2p+a1), | || |···| | − ··· (2.9) (1/an)(anpn−1+an−1pn−2+ a2p+a1) anpn−1+an−1pn−2+ a2p+a1 <pn. ··· ≤ ··· (2.10) Hence we obtain α1 α2 αn−1 < pn. If αi p2 for some i, then pn | || |···| | | | ≥ ≤ α1 α2 αn−1 . Because it is inconsistent, we obtain αi <p2 for any i. | || |···| | | | Next, we discuss the irreducibility of f (x) over Z for some n. 1,n Proposition 2.3. If n+1 is a prime number, f (x) is irreducible over Z. 1,n Proof. WeshowthispropositionbyapplyingEisenstein’sirreducibilitycriterion. Let’s consider f (x+1), 1,n f (x+1)=(x+1)n−1+2(x+1)n−2+ +(n 1)(x+1)+n. (2.11) 1,n ··· − Then, the coefficient of xn−k is n 1 n 2 n 3 n k n k 1 − +2 − +3 − + +k − +(k+1) − − . (2.12) (cid:18)k 1(cid:19) (cid:18)k 2(cid:19) (cid:18)k 3(cid:19) ··· (cid:18) 1 (cid:19) (cid:18) 0 (cid:19) − − − By the next Lemma 2.1, (2.12) is n+1 . Hence we have k−1 (cid:0) (cid:1) n+1 n+1 n+1 f (x+1)=xn−1+ xn−2+ xn−3 + x+n(n+1)/2. 1,n (cid:18) 1 (cid:19) (cid:18) 2 (cid:19) ··· (cid:18)n 2(cid:19) − (2.13) If n+1 is a prime number, because n+1 is divisible by n+1, and n(n+1)/2 k can be divided by n + 1 only one t(cid:0)ime,(cid:1)f1,n(x +1) is irreducible over Z by Eisenstein’s irreducibility criterion. Hence f (x) is irreducible over Z. 1,n 7 Lemma 2.1. n+1 n 1 n 2 n 3 n k n k 1 = − +2 − +3 − + +k − +(k+1) − − . (cid:18)k 1(cid:19) (cid:18)k 1(cid:19) (cid:18)k 2(cid:19) (cid:18)k 3(cid:19) ··· (cid:18) 1 (cid:19) (cid:18) 0 (cid:19) − − − − (2.14) Proof. We show this lemma by induction. For n=3, 3 5 +2=5= , (2.15) (cid:18)1(cid:19) (cid:18)1(cid:19) 3 2 5 +2 +3=10= , (2.16) (cid:18)2(cid:19) (cid:18)1(cid:19) (cid:18)2(cid:19) 3 2 1 5 +2 +3 =10= . (2.17) (cid:18)3(cid:19) (cid:18)2(cid:19) (cid:18)1(cid:19) (cid:18)3(cid:19) For n>3, because n−1 = n−2 + n−2 , (2.14) is extended like below: k−1 k−2 k−1 (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) n 2 n 3 n 4 n k 1 = − +2 − +3 − + +k − − (2.18) (cid:18)k 2(cid:19) (cid:18)k 3(cid:19) (cid:18)k 4(cid:19) ··· (cid:18) 0 (cid:19) − − − n 2 n 3 n 4 n k 1 + − +2 − +3 − + +k − − +k+1. (2.19) (cid:18)k 1(cid:19) (cid:18)k 2(cid:19) (cid:18)k 3(cid:19) ··· (cid:18) 1 (cid:19) − − − Byinduction,(2.18)is n and(2.19)is n . Henceweobtain(2.14)because k−2 k−1 of n + n = n+(cid:0)1 . (cid:1) (cid:0) (cid:1) k−2 k−1 k−1 (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) Proposition 2.4. If p is a prime number, f (x) is irreducible over Z. 1,p Proof. If f (x) = xp−1 +2xp−2 + +(p 1)x+p is reducible in Z[x], we 1,p ··· − have the following decomposition in Z[x]: f1,p(x)=(xm+am−1xm−1+ +a1x 1)(xl+bl−1xl−1+ +b1x p). (2.20) ··· ± ··· ± The absolute values of roots of the equation g(x) = (xm +am−1xm−1 + + ··· a x 1) are 1 because of Proposition 2.1 and the relation between roots and 1 ± coefficients of g(x). Further, all complex conjugations of the roots are roots of g(x) = 0 because of g(x) Z[x]. Hence by Kronecker’s Theorem (see [4]), the ∈ roots of g(x) are roots of zk =1 for some k. Let α be a root of g(x). Then for some positive integer d < p 1, αd = 1. − Hence we have αd−1+αd−2 +α+1=0. (2.21) ··· Ontheotherhand,bythedefinitionoff (x),αsatisfiesthefollowingequation: 1,p αp+αp−1+ +αd+αd−1+αd−2+ +α+1=p+1. (2.22) ··· ··· 8 By combining (2.21) with (2.22), and taking the absolute values, we have p+1= αp+αp−1+ +αd+αd−1+αd−2+ +α+1 p d. (2.23) | ··· ··· |≤ − Because this is inconsistent, f (x) is irreducible over Z. 1,p Proposition 2.5. Let p be a prime number. Then f1,pn(x) is irreducible over Z for any integer n 1. ≥ Proof. According to the proof of Proposition 2.4 above, f1,pn(x) doesn’t have anyrootof1. Hencelet’sassumethatf1,pn(x)isdecomposedintothefollowing two factors in Z[x]: f1,pn(x)=(xm+am−1xm−1+ +a1x pr)(xl+bl−1xl−1+ +b1x ps). (2.24) ··· ± ··· ± wherer+s=n,andr,s>0. Thenbycomparingthecoefficientsofx, (a ps+ 1 ± b pr) = pn 1. The left-hand side is divisible by p, but the right-hand side is 1 − not divisible by p. This is inconsistent. 3 The discriminant of f (x) 1,n Proposition3.1. Thediscriminantoff1,n(x)is( 1)(n+2)2(n−1)2nn−3(n+1)n−2. − Proof. TocalculatethediscriminantD(f (x)),weuseg (x)=(x 1)f (x). 1,n 1,n 1,n By the definition of the discriminant, D(g (x)) = n−1(1 α )2−D(f (x)), 1,n i=1 − i 1,n where α1, ,αn−1 are roots of f1,n(x). On the othQer hand, by the definition of f (x),···n−1(1 α )=f (1)=n(n+1)/2. Hence we obtain 1,n i=1 − i 1,n Q D(g (x))= n(n+1)/2 2D(f (x)). (3.1) 1,n 1,n { } We calculate D(g (x)) by using Sylvester’s determinant Theorem (see [?]): 1,n D(g (x))=( 1)n(n+1)/2R(g,g′) (3.2) 1,n − where, for simplicity, we denote g =g (x) here. 1,n By the definition, g (x)=xn+xn−1+ +x n, (3.3) 1,n ··· − 9 hence we obtain R(g,g′)= 1 1 1 1 1 n 0 0 0 0 ··· − ··· (cid:12) 0 1 1 1 1 1 n 0 0 0 (cid:12) (cid:12) ··· − ··· (cid:12) (cid:12) 0 0 1 1 1 1 1 n 0 0 (cid:12) (cid:12) ··· − ··· (cid:12) (cid:12) (cid:12) (cid:12) ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· (cid:12) (cid:12) 0 0 0 1 1 1 1 1 1 n (cid:12) (cid:12) ··· ··· − (cid:12) (cid:12) n n 1 n 2 2 1 0 0 0 0 0 (cid:12) (cid:12) − − ··· ··· (cid:12) (cid:12) 0 n n 1 3 2 1 0 0 0 0 (cid:12) (cid:12) − ··· ··· (cid:12) (cid:12) 0 0 n 4 3 2 1 0 0 0 (cid:12) (cid:12) ··· ··· (cid:12) (cid:12) (cid:12) (cid:12) ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· (cid:12) (cid:12) 0 0 0 0 n n 1 n 2 n 3 n 4 1 (cid:12) (cid:12) ··· − − − − ··· (cid:12) (cid:12) (3.4)(cid:12) (cid:12) (cid:12) Please note that this is a determinant of (2n 1) (2n 1) matrix. − × − Next, for 1 i n 1, by subtracting “i-throw” nfrom(n 1+i)-throw in ≤ ≤ − × − (3.4) above, we have 1 1 1 1 1 1 n 0 0 0 0 ··· − ··· (cid:12) 0 1 1 1 1 1 1 n 0 0 0 (cid:12) (cid:12) ··· − ··· (cid:12) (cid:12) 0 0 1 1 1 1 1 1 n 0 0 (cid:12) (cid:12) ··· − ··· (cid:12) (cid:12) (cid:12) (cid:12) ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· (cid:12) (cid:12) 0 0 0 0 1 1 1 1 1 1 n (cid:12) (cid:12) ··· ··· − (cid:12) (cid:12) 0 1 2 3 2 n 1 n n2 0 0 0 0 (cid:12) (cid:12) − − − ··· − − − ··· (cid:12) (cid:12) 0 0 1 2 3 n 2 n 1 n n2 0 0 0 (cid:12) (cid:12) − − ··· − − − − ··· (cid:12) (cid:12) 0 0 0 0 4 n 3 n 2 n 1 n n2 0 0 (cid:12) (cid:12) ··· − − − − − ··· (cid:12) (cid:12) (cid:12) (cid:12) ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· (cid:12) (cid:12) 0 0 0 0 0 1 2 3 4 5 n2 (cid:12) (cid:12) ··· − − − − − ··· (cid:12) (cid:12) 0 0 0 0 0 n n 1 n 2 n 3 n 4 1 (cid:12) (cid:12) ··· − − − − ··· (cid:12) (cid:12) (3.5) (cid:12) (cid:12) (cid:12) Forn i 2n 2,byaddingsummationof“from(i n+2)-throwto(n 1)-th ≤ ≤ − − − row” to i-th row, (3.5) is equal to the following determinant of n n matrix: × 1 n2+n 2 3 4 n+1 n − − − − ··· − − (cid:12) 1 2 n2+n 3 4 n+1 n (cid:12) (cid:12) − − − − ··· − − (cid:12) (cid:12) 1 2 3 n2+n 4 n+1 n (cid:12) (cid:12) − − − − ··· − − (cid:12) (cid:12) (cid:12) (3.6) (cid:12) ··· ··· ··· ··· ··· ··· ··· (cid:12) (cid:12) 1 2 3 4 n2+1 n (cid:12) (cid:12) − − − − ··· − (cid:12) (cid:12) 1 2 3 4 1 n n2 (cid:12) (cid:12) − − − − ··· − (cid:12) (cid:12) n n 1 n 2 n 3 2 1 (cid:12) (cid:12) − − − ··· (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.