ebook img

An approach to NNLO QCD analysis of non-singlet structure function PDF

0.18 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview An approach to NNLO QCD analysis of non-singlet structure function

IPM School and Conference on Hadrn and Lepton Physics, Tehran, 15-20 May 2006 1 An approach to NNLO QCD analysis of non-singlet structure function AliN.Khorramian Physics Department, Semnan University, Semnan, Iran; Institute for Studies in Theoretical Physics and Mathematics (IPM), P.O.Box 19395-5531, Tehran, Iran S.AtashbarTehrani Physics Department, Persian Gulf University, Boushehr, Iran; Institute for Studies in Theoretical Physics and Mathematics (IPM), P.O.Box 19395-5531, Tehran, Iran Weusethenext-to-next-to-leadingorder(NNLO)contributionstoanomalousdimensiongoverningtheevolution of non-singlet quark distributions. We use the xF3 data of the CCFR collaboration to obtain some unknown 7 parameters which exist in the non-singlet quark distributions in the NNLO approximation. In the fitting 0 procedure, Bernsteinpolynomial method isused. Theresults ofvalence quarkdistributions inthe NNLO,are 0 ingoodagreementwiththeavailabletheoretical model. 2 n a 1. Introduction 2. The theoretical background of the J QCD analysis 1 1 Theglobalpartonanalysesofdeepinelasticscatter- In the NNLO approximation the deep inelastic co- 2 ing(DIS)andtherelatedhardscatteringdataaregen- efficient functions are known and also the anomalous v erallyperformedatNLOorder. Presentlythe next-to dimensions in n-Moment space are available at this 2 leading order (NLO) is the standard approximation order[16, 17]. Since in this paper we want to calcu- 7 for most important processes in QCD. late the non-singlet parton distribution functions in 1 0 The corresponding one- and two-loop split- the NNLO by using CCFR experimental data, we in- 1 ting functions have been known for a long time troducethemomentsofnon-singletstructurefunction 6 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. The NNLO cor- up to three loops order. 0 rections should to be included in order to arrive at Let us define the Mellin moments for the νN struc- h/ quantitatively reliable predictions for hard processes ture function xF3(x,Q2): p occurring at present and future high-energy colliders. - These corrections are so far known only for the 1 p structure functions in the deep-inelastic scattering n(Q2)= xn−1F3(x,Q2)dx. (1) e M Z [12, 13, 14, 15]. 0 h : v The theoretical expression for these moments obey Recently much effort has been invested in com- i the following renormalization group equation X puting NNLO QCD corrections to a wide variety r of partonic processes and therefore it is needed ∂ ∂ a to generate parton distributions also at NNLO so (cid:18)µ∂µ+β(As)∂A +γN(nS)(As)(cid:19)Mn(Q2/µ2,As(µ2))=0, thatthetheorycanbeappliedinaconsistentmanner. s (2) whereA =α /(4π)istherenormalizationgroupcou- s s S.Mochandet al. [16,17]computedthe higheror- pling and is governedby the QCD β-function as dercontributionsuptothree-loopssplittingfunctions governing the evolution of unpolarized non-singlet ∂A µ s =β(A )= 2 β Ai+2 . (3) quark densities in perturbative QCD. ∂µ s − i s Xi≥0 During the recent years the interest to use CCFR data [18] for xF structure function in higher orders, 3 The solution of Eq.(3) in the NNLO is given by based on orthogonal polynomial expansion method has been increased [19, 20, 21, 22, 23, 24]. 1 β1ln(lnQ2/Λ2 ) In this paper we determine the flavor non- ANNLO = MS + s β lnQ2/Λ2 − β3(lnQ2/Λ2 )2 singlet parton distribution functions, xuv(x,Q2) and 0 MS 0 MS xd (x,Q2), using the Bernstein polynomial approach 1 v [β2ln2(lnQ2/Λ2 ) up to NNLO level. This calculation is possible now, β5(lnQ2/Λ2 )3 1 MS − 0 MS asthenon-singletanomalousdimensionsinn-Moment β2ln(lnQ2/Λ2 )+β β β2]. space in three loops have been already introduced 1 MS 2 0− 1 [16, 17]. (4) IPM-LHP06-19May 2 IPM School and Conference on Hadrn and Lepton Physics, Tehran, 15-20 May 2006 Notice that in the above the numerical expressions Innextsectionwewillintroducethefunctionalform for β , β and β are of the valence quark distributions and we will param- 0 1 2 eterize these distributions at the scale of Q2. 0 β0 = 11 0.6667f , Byusingtheanomalousdimensionsinone,twoand − β = 102 12.6667f , three loops from [16] and inserting them in Eq. (9), 1 β = 1428−.50 279.611f +6.01852f2, (5) the moment of non-singlet structure function in the 2 − NNLO as a function of n and Q2 is available. where f denotes the number of active flavors. 3. Parametrization of the parton The solution of the renormalization group equa- tionfornon-singletstructurefunctionxF canbepre- densities 3 sented in the following form [22]: Inthissectionwewilldiscusshowwecandetermine the parton distribution at the input scale of Q2 = 1 Mn(Q2) =exp As(Q2) γN(nS)(x)dx CN(nS)(As(Q2)) , GeV2. To start the parameterizations of the a0bove Mn(Q20) (cid:20)−ZAs(Q20) β(x) (cid:21)CN(nS)(As(Q20()6)) mQ20enwtieonaessdumpaerttohne fdoilsltorwibinugtiofunnscattiotnhael fionrpmut scale of where (Q2)isaphenomenologicalquantityrelated Mn 0 xu (x,Q2)=N xa(1 x)b(1+c√x+dx), (11) to the factorization scale dependent factor which we v 0 u − will parameterize in next section. γNS is the anoma- n lous function and has a perturbative expansion as N xd (x,Q2)= d(1 x)e xu (x,Q2). (12) v 0 N − v 0 γNS(A )= γNS(n)Ai+1 . (7) u n s i s Xi≥0 Intheabovethexatermcontrolsthelow-xbehavior partondensities, and (1 x)b,e large values of x. The − At the NNLO the expression for the coefficient func- remaining polynomial factor accounts for additional tion CN(nS) can be presented as [25] medium-x values. Normalization constants Nu and N are fixed by d C(n)(A )=1+C(1)(n)A +C(2)(n)A2 . (8) NS s s s 1 With the corresponding expansion of the anomalous u (x)dx=2, (13) v dimensions,givenbyEq.(7),thesolutiontothethree Z0 loops evolution equation from Eq. (6), is as follows 1 NNLO(Q2)= As(Q2) γ0NS/2β0 Z0 dv(x)dx=1. (14) Mn (cid:18)A (Q2)(cid:19) × s 0 Theabovenormalizationsareveryeffectivetocontrol γ γNS β 1+[A (Q2) A (Q2)] 1 0 1 unknown parameters in Eqs. (11,12) via the fitting (cid:26) s − s 0 (cid:18)2β1 − 2β0 (cid:19)β0 procedure. The five parameters with ΛNf=4 will β2 γ γNS 2 be extracted by using the Bernstain poQlyCnDomials +[A (Q2) A (Q2)]2 1 1 0 s − s 0 8β2 (cid:18)β − β (cid:19) approach. 0 1 0 1 +4[A2s(Q2)−A2s(Q20)] Using the valence quark distribution functions, the momentsof u (x,Q2) andd (x,Q2)distributions can 1 β β2 β β v 0 v 0 γ 1γ + 1 − 2 0γNS be easily calculated. Now by inserting the Mellinmo- (cid:18)β 2− β2 1 β3 0 (cid:19)(cid:27) 0 0 0 ments of uv and dv valence quark in the Eq.(10), the 1+C(1)As(Q2)+C(2)A2s(Q2) V(n,Q20). (9) function of V(n,Q20) involves some unknown parame- (cid:16) (cid:17) ters. Where V is the valence quark compositions as V(n,Q2)=u (n,Q2)+d (n,Q2). (10) 4. Averaged structure functions 0 v 0 v 0 AsweseeinMellin-nspacethenon-singlet(NS)parts Although it is relatively easy to compute the nth of structure function in the NNLO approximationfor momentfromthestructurefunctions,theinversepro- example, i.e. NNLO(Q2), can be obtained from the cess is not obvious. To do this inversion, we adopt a Mn corresponding Wilson coefficients C(k) and the non- mathematically rigorous but easy method [26] to in- singlet quark densities. vertthemomentsandretrievethestructurefunctions. IPM-LHP06-19May IPM School and Conference on Hadrn and Lepton Physics, Tehran, 15-20 May 2006 3 Themethodisbasedonthefactthatforagivenvalue with the available experimental data we can only use of Q2, only a limited number of experimental points, the following 28 averages,including covering a partial range of values of x are available. The method devised to deal with this situation is to take averages of the structure function weighted by F(exp)(Q2),F(exp)(Q2),F(exp)(Q2),..., F(exp)(Q2). 2,1 3,1 4,2 13,4 suitable polynomials. These are the Bernstein poly- nomials which are defined by Anotherrestrictionweassumehere,istoignorethe effects of moments with high order n which do not Γ(n+2) stronglyconstrainthefits. Toobtaintheseexperimen- B (x)= xk(1 x)n−k ; n k . nk Γ(k+1)Γ(n k+1) − ≥ tal averages from CCFR data [18], we fit xF3(x,Q2) − (15) for each bin in Q2 separately to the convenient phe- Usingthebinomialexpansion,theaboveequationcan nomenologicalexpression be written as xF(phen) = xB(1 x)C . (20) 3 Γ(n+2)n−k ( 1)l A − Bn,k(x)= Γ(k+1) l!(n −k l)! xk+l . (16) ThisformensureszerovaluesforxF3 atx=0,and Xl=0 − − x = 1. In Table 1 we have presented the numerical values of , and at Q2 =20,31.6,50.1,79.4,125.9 Now,wecancomparetheoreticalpredictionswiththe A B C GeV2. experimentalresultsfortheBernsteinaverages,which are given by [27, 28] Q2(GeV2) A B C 1 20 4.742 0.636 3.376 F (Q2) dxB (x)F (x,Q2). (17) nk ≡Z nk 3 31.6 5.473 0.694 3.659 0 50.1 5.679 0.698 3.839 Therefore, the integral Eq. (17) represents an aver- 79.4 4.508 0.567 3.757 age of the function F (x,Q2) in the region x¯ 3 nk 1∆x x x¯ + 1∆x . The key point is, the va−l- 125.9 7.077 0.819 4.246 2 nk≤ ≤ n,k 2 nk ues of F3 outside this interval have a small contribu- Table1: Numericalvaluesoffitting , , tion to the above integral, as Bnk(x) tends to zero parametersinEq.(20). A B C very quickly. In order to ensure the equivalence of the integralEq.(17)tothe sameintegralinthe range Using Eq. (20) with the fitted values of , and , A B C txo1u=sex¯tnhke−no12r∆mxalnikzattoionx2fa=ctox¯rn,k +x212d∆xBxnk(,xw)einhathvee ofunnecctaionnsth.eSnomcoemspaumtpelFen(eekxxpp)e(rQim2)enintatleBrmersnostfeGinamavmera- x1 nk denominator of Eq. (17) which obRviously is not equal agesareplottedinFig.1inthehigherapproximations. to 1. So it can be written: The errors in the F(exp)(Q2) correspond to allowing nk theCCFRdataforxF tovarywithintheexperimen- Fnk(Q2)≡Rx¯x¯nnkk−+R21x¯12x¯∆n∆nkxkx−n+nk12k21∆∆dxxxnnkkBndkx(xB)nFk(3x(x),Q2) . (18) atafoannrladQelysrt2rsa≥iostr2ibsb0tyGaicraeasvVl,oe2iirn,drcitolnhurgsids[ie1nh3v8gao]s.ltuthWtheioeeenmhxatpehverreirtoiomuongfelhynstiiflmanalcpvlsluoyifrdsytetiendhmgrdeatasththiaec- By a suitable choice of n, k we manage to adjust to olds. the region where the averageis peaked around values Using Eq. (19), the 28 Bernstein averages F (Q2) nk which we have experimental data [18]. can be written in terms of odd and even moments. For instance: SubstitutingEq.(16)inEq.(17),itfollowsthatthe averagesofF withB (x)asweightfunctionscanbe F (Q2)=6 (2,Q2) (3,Q2) , 3 nk 2,1 M −M obtained in terms of odd and even moments, . (cid:0) (cid:1) . . (21) (n k)!Γ(n+2) F = − nk Γ(k+1)Γ(n k+1) × TheunknownparametersaccordingtoEqs.(11,12) n−k ( 1)l− will be a,b,c,d,e and ΛNQCfD. Thus, there are 6 pa- − ((k+l)+1,Q2). rametersfor each orderto be simultaneously fitted to Xl=0 l!(n−k−l)! M the experimentalFnk(Q2)averages. Using the CERN (19) subroutine MINUIT [30], we defined a global χ2 for allthe experimentaldatapointsandfoundanaccept- WecanonlyincludeaBernsteinaverage,F ,ifwe able fit with minimum χ2/dof = 74.772/134= 0.558 nk have experimental points covering the whole range in the NNLO case with the standard error of order [x¯ 1∆x ,x¯ + 1∆x ] [29]. This means that 10−3. The best fit is indicated by some sample nk − 2 nk nk 2 nk IPM-LHP06-19May 4 IPM School and Conference on Hadrn and Lepton Physics, Tehran, 15-20 May 2006 2.5 NNLO 0.8 xu (x) F v 2 62 NNLO Fit Fnk F 0.6 MA0R5ST 1.5 52 Q2=1 GeV2 0 F 42 0.4 1 1 0.2 Fnk0.75 F105 0 F116 10-4 10-3 10-2 10-1 x 0.5 F 85 0 50 100 Q2 xd (x) 0.5 v NNLO Fit Figure 1: NNLO fit to Bernstein averages of xF3. 0.4 MA0R5ST 0.3 curves in the Fig. 1. The fitting parameters and the minimumχ2 valuesineachorderarelistedinTable2. 0.2 0.1 From Eqs.(11,12), we are able now to determine the xu and xd at the scale of Q2 in higher order v v 0 0 corrections. In Fig. 2 we have plotted the NLO and 10-4 10-3 10-2 10-1 x NNLO approximation results of xu and xd at the v v input scale Q2 = 1.0 GeV2 (solid line) compared Figure 2: The parton densities xuv and xdv at the input to the results0obtained from NNLO analysis (left scale Q20 =1.0GeV2 (solid line) compared to results obtained from NNLOanalysis by MRST(dashed line) panels) and NLO analysis (right panels) by MRST [31] and A05(dashed-dotted line)[32]. (dashed-dotted line) [31] and A05(dashed line)[32]. 5. x dependent of valence quark densities NNLO N 5.134 In the previous section we parameterized the non- u a 0.830 singlet parton distribution functions at input scale of Q2 = 1 GeV2 in the NNLO approximations by us- b 3.724 0 ing Bernstein averages method. To obtain the non- c 0.040 singlet parton distribution functions in x-space and d 1.449 for Q2 > Q2 GeV2 we need to use the Q2-evolution 0 N 3.348 inn-space. Toobtainthex-dependenceofpartondis- d tributions from the n dependent exact analytical so- e 1.460 − lutions in the Mellin-moment space, one has to per- Λ(Q4C)D,MeV 230 formanumericalintegralinordertoinverttheMellin- χ2/ndf 0.558 transformation[33] Table2: ParametervaluesoftheNNLOnon-singlet 1 ∞ fk(x,Q2) = dw QCDfitatQ20 =1GeV2. π Z0 × Im[eiφx−c−weiφM (n=c+weiφ,Q2)], k All of the non-singlet parton distribution functions (22) in moment space for any order are now available, so we can use the inverse Mellin technics to obtain the where the contour of the integration lies on the right Q2 evolutionofvalancequarkdistributionswhichwill of all singularities of M (n = c + weiφ,Q2) in the k be done in the next section. complex n-plane. For all practical purposes one may IPM-LHP06-19May IPM School and Conference on Hadrn and Lepton Physics, Tehran, 15-20 May 2006 5 choose c 1,φ=135◦ and an upper limit of integra- References tion, for≃any Q2, of about 5+10/lnx−1, instead of ,whichguaranteesstablenumericalresults[34,35]. ∞ [1] D.J.GrossandF.Wilczek,Phys.Rev.D8(1973) 3633. 6. Conclusion [2] H. Georgi and H.D. Politzer, Phys. Rev. D9 (1974) 416. [3] G. Altarelli and G. Parisi, Nucl. Phys. B126 The QCD analysis is performed in NNLO basedon (1977) 298. Bernstein polynomial approach. We determine the [4] E.G. Floratos, D.A. Ross and C.T. Sachrajda, valence quark densities in a wide range of x and Q2. Nucl. Phys. B129 (1977) 66. Insertingthe functions ofqv(n,Q2)for q =u,dinEq. [5] E.G. Floratos, D.A. Ross and C.T. Sachrajda, (22)wecanobtainallvalencedistributionfunctionsin Nucl. Phys. B152 (1979) 493. fixed Q2 and in x-space. In Fig. 3 we have presented [6] A.Gonzalez-Arroyo,C.LopezandF.J.Yndurain, the parton distribution xuv at some different values Nucl. Phys. B153 (1979) 161. of Q2. These distributions were compared with some [7] A. Gonzalez-Arroyo and C. Lopez, Nucl. Phys. theoretical models [31, 32]. B166 (1980) 429. InFig.3wehavealsopresentedthesamedistributions [8] G. Curci, W. Furmanski and R. Petronzio,Nucl. for xdv. Phys. B175 (1980) 27. [9] W.FurmanskiandR.Petronzio,Phys.Lett. 97B 0.8 (1980) 437. 0.7 Q2=10 GeV2 Q2=100 GeV2 Q2=1000 GeV2 [10] E.G. Floratos, C. Kounnas and R. Lacaze, Nucl. 0.6 NNLO Fit Phys. B192 (1981) 417. 2Q) 0.5 MA0R5ST04 [11] R. Hamberg and W.L. van Neerven, Nucl. Phys. xu(x,v00..43 [12] BW3.7L9. (v1a9n92N)e1er4v3e.n and E.B. Zijlstra, Phys. Lett. 0.2 B272 (1991) 127. 0.1 [13] E.B. Zijlstra and W.L. van Neerven, Phys. Lett. 0 B273 (1991) 476. 0.5 [14] E.B. Zijlstra and W.L. van Neerven, Phys. Lett. Q2=10 GeV2 Q2=100 GeV2 Q2=1000 GeV2 B297 (1992) 377. 2Q) 0.4 [15] E.B. Zijlstra and W.L. van Neerven, Nucl. Phys. x, 0.3 d(v B383 (1992) 525. x 0.2 [16] S.Moch,J.A.M.VermaserenandA.Vogt,Nucl. Phys. B 688 (2004) 101. 0.1 [17] A. Vogt, Comput. Phys. Commun. 170, (2005) 0 10-4 10-3 10-2 10-1 x 10-3 10-2 10-1 x 10-3 10-2 10-1 x 65. [18] W.G.Seligmanetal.,Phys.Rev.Lett.79,(1997) Figure 3: The parton distribution xuv and xdv at some 1213. different values of Q2. The solid line is ourmodel, [19] A. L. Kataev, A. V. Kotikov, G. Parente and dashed line is theMRST model [31], dashed-dotted line A. V. Sidorov, Phys. Lett. B 417, (1998) 374. is themodel from [32]. [20] A. L. Kataev, G. Parente and A. V. Sidorov, arXiv:hep-ph/9809500. The QCD scale ΛNQfC=D4 is determined together with [21] S. I. Alekhin and A. L. Kataev, Phys. Lett. B the parameters of the parton distributions. In our fit 452, (1999) 402. results the value of ΛNQfC=D4 and αs(MZ2) at the NNLO [22] A. L. Kataev, G. Parente and A. V. Sidorov, analysis is 230 MeV and 0.1142 respectively. Nucl. Phys. B 573, (2000) 405. CompletedetailsofthispaperwithcalculationofLO, [23] A. L. Kataev, G. Parente and A. V. Sidorov, NLO and NNLO and also comparing them with to- Phys. Part. Nucl. 34, (2003) 20; A. L. Kataev, gether is reported in Ref. [36]. G. Parente and A. V. Sidorov, Nucl. Phys. Proc. Suppl. 116 (2003) 105. [24] J. Santiago and F. J. Yndurain, Nucl. Phys. B 611, (2001) 447. 7. Acknowledgments [25] S.MochandJ.A.M.Vermaseren,Nucl.Phys.B 573, (2000) 853. WearegratefultoA.Mirjaliliforusefulsuggestions [26] F. J. Yndurain, Phys. Lett. B 74 (1978) 68. and discussions. A.N.K acknowledge to Semnan uni- [27] C.J.MaxwellandA.Mirjalili,Nucl.Phys.B645 versity for the financial support of this project. (2002) 298. IPM-LHP06-19May 6 IPM School and Conference on Hadrn and Lepton Physics, Tehran, 15-20 May 2006 [28] Ali N. Khorramian, A. Mirjalili, S. Atashbar S. Alekhin, Phys. Rev. D 68 (2003) 014002. Tehrani, JHEP10, 062 (2004). [33] D.Graudenz,M.Hampel,A.VogtandC.Berger, [29] J. Santiago and F. J. Yndurain, Nucl. Phys. B Z. Phys. C 70, (1996) 77 563 (1999) 45 ; [34] M. Gluck, E. Reya and A. Vogt, Z. Phys. C 48 J. Santiago and F. J. Yndurain, Nucl. Phys. B (1990) 471. 611 (2001) 447 [35] M.Gluck,E.ReyaandA.Vogt,Phys.Rev.D45 [30] F.James,CERNProgramLibraryLongWriteup (1992) 3986. D506. [36] Ali N. Khorramian, S. Atashbar Tehrani, [31] A. D. Martin, R. G. Roberts, W. J. Stirling and hep-ph/0610136. R. S. Thorne, Phys. Lett. B 604, (2004) 61 [32] S. Alekhin, JETP Lett. 82, 628 (2005) ; IPM-LHP06-19May

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.