ebook img

An Applications Guide for Op Amps - (Natl Semiconductor) PDF

12 Pages·1969·0.193 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview An Applications Guide for Op Amps - (Natl Semiconductor)

A An Applications Guide for NationalSemiconductor n ApplicationNote20 A Op Amps February1969 p p l i c INTRODUCTION a t The general utility of the operational amplifier is derived satedsofrequencystabilizationcomponentsarenotshown(cid:59) i o fromthefactthatitisintendedforuseinafeedbackloop however(cid:44)otheramplifiersmaybeusedtoachievegreater n whose feedback properties determine the feed-forward operatingspeedinmanycircuitsaswillbeshowninthetext(cid:46) s characteristicsoftheamplifierandloopcombination(cid:46)Tosuit AmplifierparameterdefinitionsarecontainedinAppendixI(cid:46) G itforthisusage(cid:44)theidealoperationalamplifierwouldhave infinite input impedance(cid:44) zero output impedance(cid:44) infinite THEINVERTINGAMPLIFIER u gainandanopen-loop3dBpointatinfinitefrequencyrolling ThebasicoperationalamplifiercircuitisshowninFigure1(cid:46) id offat6dBperoctave(cid:46)Unfortunately(cid:44)theunitcost–inquan- Thiscircuitgivesclosed-loopgainofR2(cid:47)R1whenthisratio e tity–wouldalsobeinfinite(cid:46) issmallcomparedwiththeamplifieropen-loopgainand(cid:44)as f thenameimplies(cid:44)isaninvertingcircuit(cid:46)Theinputimped- o Intensivedevelopmentoftheoperationalamplifier(cid:44)particu- anceisequaltoR1(cid:46)Theclosed-loopbandwidthisequalto r larlyinintegratedform(cid:44)hasyieldedcircuitswhicharequite theunity-gainfrequencydividedbyoneplustheclosed-loop O goodengineeringapproximationsoftheidealforfinitecost(cid:46) Quantitypricesforthebestcontemporaryintegratedamplifi- gain(cid:46) p ers are low compared with transistor prices of five years The only cautions to be observed are that R3 should be A ago(cid:46)Thelowcostandhighqualityoftheseamplifiersallows chosentobeequaltotheparallelcombinationofR1andR2 m theimplementationofequipmentandsystemsfunctionsim- tominimizetheoffsetvoltageerrorduetobiascurrentand practicalwithdiscretecomponents(cid:46)Anexampleisthelow thattherewillbeanoffsetvoltageattheamplifieroutput p frequencyfunctiongeneratorwhichmayuse15to20opera- equal to closed-loop gain times the offset voltage at the s tionalamplifiersingeneration(cid:44)waveshaping(cid:44)triggeringand amplifierinput(cid:46) phase-locking(cid:46) Theavailabilityofthelow-costintegratedamplifiermakesit mandatorythatsystemsandequipmentsengineersbefa- miliarwithoperationalamplifierapplications(cid:46)Thispaperwill presentamplifierusagesrangingfromthesimpleunity-gain buffertorelativelycomplexgeneratorandwaveshapingcir- cuits(cid:46) The general theory of operational amplifiers is not within the scope of this paper and many excellent refer- beencsehsaadreedatvoawilaarbdlethinetphreaclittiecraal(cid:44)tuarme(cid:46)p1l(cid:44)i2f(cid:44)ie3(cid:44)r4pTahraemaeptperrosawchillwbiell VOUTeRR21VIN discussedastheyaffectcircuitperformance(cid:44)andapplica- R3eR1llR2 tionrestrictionswillbeoutlined(cid:46) Forminimumerrordue toinputbiascurrent Theapplicationsdiscussedwillbearrangedinorderofin- TL(cid:47)H(cid:47)6822–1 creasingcomplexityinfivecategories(cid:58)simpleamplifiers(cid:44)op- FIGURE1(cid:46)InvertingAmplifier erationalcircuits(cid:44)transduceramplifiers(cid:44)waveshapersand generators(cid:44) and power supplies(cid:46) The integrated amplifiers Offset voltage at the input of an operational amplifier is showninthefiguresareforthemostpartinternallycompen- comprisedoftwocomponents(cid:44)thesecomponentsareiden- tifiedinspecifyingtheamplifierasinputoffsetvoltageand input bias current(cid:46) The input offset voltage is fixed for a particular amplifier(cid:44) however the contribution due to input A N - 2 0 C1995NationalSemiconductorCorporation TL(cid:47)H(cid:47)6822 RRD-B30M115(cid:47)PrintedinU(cid:46)S(cid:46)A(cid:46) biascurrentisdependentonthecircuitconfigurationused(cid:46) THENON-INVERTINGAMPLIFIER For minimum offset voltage at the amplifier input without Figure2showsahighinputimpedancenon-invertingcircuit(cid:46) circuit adjustment the source resistance for both inputs Thiscircuitgivesaclosed-loopgainequaltotheratioofthe shouldbeequal(cid:46)Inthiscasethemaximumoffsetvoltage sumofR1andR2toR1andaclosed-loop3dBbandwidth wouldbethealgebraicsumofamplifieroffsetvoltageand equal to the amplifier unity-gain frequency divided by the thevoltagedropacrossthesourceresistanceduetooffset closed-loopgain(cid:46) current(cid:46) Amplifier offset voltage is the predominant error The primary differences between this connection and the termforlowsourceresistancesandoffsetcurrentcauses invertingcircuitarethattheoutputisnotinvertedandthat themainerrorforhighsourceresistances(cid:46) theinputimpedanceisveryhighandisequaltothedifferen- Inhighsourceresistanceapplications(cid:44)offsetvoltageatthe tial input impedance multiplied by loop gain(cid:46) (Open loop amplifieroutputmaybeadjustedbyadjustingthevalueof gain(cid:47)Closed loop gain(cid:46)) In DC coupled applications(cid:44) input R3andusingthevariationinvoltagedropacrossitasan impedanceisnotasimportantasinputcurrentanditsvolt- inputoffsetvoltagetrim(cid:46) agedropacrossthesourceresistance(cid:46) Offsetvoltageattheamplifieroutputisnotasimportantin Applicationscautionsarethesameforthisamplifierasfor ACcoupledapplications(cid:46)Heretheonlyconsiderationisthat theinvertingamplifierwithoneexception(cid:46)Theamplifierout- anyoffsetvoltageattheoutputreducesthepeaktopeak putwillgointosaturationiftheinputisallowedtofloat(cid:46)This linearoutputswingoftheamplifier(cid:46) may be important if the amplifier must be switched from The gain-frequency characteristic of the amplifier and its sourcetosource(cid:46)Thecompensationtradeoffdiscussedfor feedback network must be such that oscillation does not theinvertingamplifierisalsovalidforthisconnection(cid:46) occur(cid:46)Tomeetthiscondition(cid:44)thephaseshiftthroughampli- fierandfeedbacknetworkmustneverexceed180(cid:167)forany frequencywherethegainoftheamplifieranditsfeedback networkisgreaterthanunity(cid:46)Inpracticalapplications(cid:44)the phaseshiftshouldnotapproach180(cid:167)sincethisisthesitua- tionofconditionalstability(cid:46)Obviouslythemostcriticalcase occurs when the attenuation of the feedback network is zero(cid:46) Ausmepdliftioersacwhiheivceh ianrcerenaostedintpeernrfaolrlmyacnocmepeinnscairtceuditsmwayhebree VOUTeR1Ra1R2VIN feedbacknetworkattenuationishigh(cid:46)Asanexample(cid:44)the R1llR2eRSOURCE LM101maybeoperatedatunitygainintheinvertingamplifi- Forminimumerrordue toinputbiascurrent er circuit with a 15 pF compensating capacitor(cid:44) since the feedbacknetworkhasanattenuationof6dB(cid:44)whileitre- TL(cid:47)H(cid:47)6822–2 quires 30 pF in the non-inverting unity gain connection FIGURE2(cid:46)Non-InvertingAmplifier where the feedback network has zero attenuation(cid:46) Since amplifier slew rate is dependent on compensation(cid:44) the THEUNITY-GAINBUFFER LM101slewrateintheinvertingunitygainconnectionwill Theunity-gainbufferisshowninFigure3(cid:46)Thecircuitgives be twice that for the non-inverting connection and the in- thehighestinputimpedanceofanyoperationalamplifiercir- verting gain of ten connection will yield eleven times the cuit(cid:46)Inputimpedanceisequaltothedifferentialinputimped- slew rate of the non-inverting unity gain connection(cid:46) The ancemultipliedbytheopen-loopgain(cid:44)inparallelwithcom- compensationtrade-offforaparticularconnectionisstabili- monmodeinputimpedance(cid:46)Thegainerrorofthiscircuitis tyversusbandwidth(cid:44)largervaluesofcompensationcapaci- equaltothereciprocaloftheamplifieropen-loopgainorto tor yield greater stability and lower bandwidth and vice thecommonmoderejection(cid:44)whicheverisless(cid:46) versa(cid:46) Theprecedingdiscussionofoffsetvoltage(cid:44)biascurrentand stabilityisapplicabletomostamplifierapplicationsandwill bereferencedinlatersections(cid:46)Amorecompletetreatment iscontainedinReference4(cid:46) VOUTeVIN R1eRSOURCE Forminimumerrordue toinputbiascurrent TL(cid:47)H(cid:47)6822–3 FIGURE3(cid:46)UnityGainBuffer 2 InputimpedanceisamisleadingconceptinaDCcoupled unity-gainbuffer(cid:46)Biascurrentfortheamplifierwillbesup- pliedbythesourceresistanceandwillcauseanerroratthe amplifier input due to its voltage drop across the source resistance(cid:46)Sincethisisthecase(cid:44)alowbiascurrentamplifi- er such as the LH1026 should be chosen as a unity-gain bufferwhenworkingfromhighsourceresistances(cid:46)Biascur- VOUTe(cid:35)RR31aaRR42JRR41V2bRR21V1 rentcompensationtechniquesarediscussedinReference ForR1eR3andR2eR4 5(cid:46) The cautions to be observed in applying this circuit are VOUTeRR21(V2bV1) three(cid:58)theamplifiermustbecompensatedforunitygainop- R1llR2eR3llR4 eration(cid:44)theoutputswingoftheamplifiermaybelimitedby TL(cid:47)H(cid:47)6822–5 Forminimumoffseterror theamplifiercommonmoderange(cid:44)andsomeamplifiersex- duetoinputbiascurrent hibit a latch-up mode when the amplifier common mode rangeisexceeded(cid:46)TheLM107maybeusedinthiscircuit with none of these problems(cid:59) or(cid:44) for faster operation(cid:44) the FIGURE5(cid:46)DifferenceAmplifier LM102maybechosen(cid:46) Circuitbandwidthmaybecalculatedinthesamemanneras fortheinvertingamplifier(cid:44)butinputimpedanceissomewhat morecomplicated(cid:46)Inputimpedanceforthetwoinputsisnot necessarilyequal(cid:59)invertinginputimpedanceisthesameas fortheinvertingamplifierofFigure1andthenon-inverting inputimpedanceisthesumofR3andR4(cid:46)Gainforeither inputistheratioofR1toR2forthespecialcaseofadiffer- entialinputsingle-endedoutputwhereR1eR3andR2e R4(cid:46)Thegeneralexpressionforgainisgiveninthefigure(cid:46) VOUTebR4(cid:35)RV11aRV22aRV33J Cbaonmdpweidntsha(cid:46)tionshouldbechosenonthebasisofamplifier R5eR1llR2llR3llR4 Caremustbeexercisedinapplyingthiscircuitsinceinput Forminimumoffseterrordue impedancesarenotequalforminimumbiascurrenterror(cid:46) toinputbiascurrent DIFFERENTIATOR TL(cid:47)H(cid:47)6822–4 FIGURE4(cid:46)SummingAmplifier The differentiator is shown inFigure6and(cid:44) as the name implies(cid:44) is used to perform the mathematical operation of SUMMINGAMPLIFIER differentiation(cid:46)Theformshownisnotthepracticalform(cid:44)itis Thesummingamplifier(cid:44)aspecialcaseoftheinvertingam- atruedifferentiatorandisextremelysusceptibletohighfre- plifier(cid:44) is shown inFigure4(cid:46) The circuit gives an inverted quencynoisesinceACgainincreasesattherateof6dB outputwhichisequaltotheweightedalgebraicsumofall peroctave(cid:46)Inaddition(cid:44)thefeedbacknetworkofthediffer- threeinputs(cid:46)Thegainofanyinputofthiscircuitisequalto entiator(cid:44)R1C1(cid:44)isanRClowpassfilterwhichcontributes the ratio of the appropriate input resistor to the feedback 90(cid:167)phaseshifttotheloopandmaycausestabilityproblems resistor(cid:44) R4(cid:46) Amplifier bandwidth may be calculated as in evenwithanamplifierwhichiscompensatedforunitygain(cid:46) theinvertingamplifiershowninFigure1byassumingthe inputresistortobetheparallelcombinationofR1(cid:44)R2(cid:44)and R3(cid:46)Applicationcautionsarethesameasfortheinverting amplifier(cid:46)Ifanuncompensatedamplifierisused(cid:44)compensa- tioniscalculatedonthebasisofthisbandwidthasisdis- cussedinthesectiondescribingthesimpleinvertingamplifi- er(cid:46) Tbehtewaedevnanintapguetsofanthdisocpirecruaittioisnsthastutchhereasissnuomimntienrgacationnd VOUTebR1C1ddt(VIN) weightedaveragingareimplementedveryeasily(cid:46) R1eR2 Forminimumoffseterror THEDIFFERENCEAMPLIFIER duetoinputbiascurrent Thedifferenceamplifieristhecomplementofthesumming TL(cid:47)H(cid:47)6822–6 amplifierandallowsthesubtractionoftwovoltagesor(cid:44)asa FIGURE6(cid:46)Differentiator special case(cid:44) the cancellation of a signal common to the twoinputs(cid:46)ThiscircuitisshowninFigure5andisusefulas acomputationalamplifier(cid:44)inmakingadifferentialtosingle- endedconversionorinrejectingacommonmodesignal(cid:46) 3 a low-pass filter with a frequency response decreasing at 6dBperoctave(cid:46)Anamplitude-frequencyplotisshownin Figure10(cid:46) fce2qR12C1 fhe2qR11C1e2qR12C2 fcmfhmfunitygain TL(cid:47)H(cid:47)6822–7 FIGURE7(cid:46)PracticalDifferentiator ApracticaldifferentiatorisshowninFigure7(cid:46)Hereboththe TL(cid:47)H(cid:47)6822–10 stabilityandnoiseproblemsarecorrectedbyadditionoftwo FIGURE10(cid:46)IntegratorFrequencyResponse additionalcomponents(cid:44)R1andC2(cid:46)R2andC2forma6dB peroctavehighfrequencyroll-offinthefeedbacknetwork The circuit must be provided with an external method of and R1C1 form a 6 dB per octave roll-off network in the establishinginitialconditions(cid:46)Thisisshowninthefigureas inputnetworkforatotalhighfrequencyroll-offof12dBper S1(cid:46)WhenS1isinposition1(cid:44)theamplifierisconnectedin octavetoreducetheeffectofhighfrequencyinputandam- unity-gainandcapacitorC1isdischarged(cid:44)settinganinitial plifiernoise(cid:46)InadditionR1C1andR2C2formleadnetworks conditionofzerovolts(cid:46)WhenS1isinposition2(cid:44)theamplifi- in the feedback loop which(cid:44) if placed below the amplifier erisconnectedasanintegratoranditsoutputwillchangein unitygainfrequency(cid:44)provide90(cid:167)phaseleadtocompensate accordancewithaconstanttimesthetimeintegralofthe the90(cid:167) phaselagofR2C1andpreventloopinstability(cid:46)A inputvoltage(cid:46) gainfrequencyplotisshowninFigure8forclarity(cid:46) Thecautionstobeobservedwiththiscircuitaretwo(cid:58)the amplifierusedshouldgenerallybestabilizedforunity-gain operationandR2mustequalR1forminimumerrordueto biascurrent(cid:46) SIMPLELOW-PASSFILTER Thesimplelow-passfilterisshowninFigure11(cid:46)Thiscircuit hasa6dBperoctaveroll-offafteraclosed-loop3dBpoint definedbyfc(cid:46)Gainbelowthiscornerfrequencyisdefinedby theratioofR3toR1(cid:46)Thecircuitmaybeconsideredasan AC integrator at frequencies well above fc(cid:59) however(cid:44) the timedomainresponseisthatofasingleRCratherthanan integral(cid:46) TL(cid:47)H(cid:47)6822–8 FIGURE8(cid:46)DifferentiatorFrequencyResponse INTEGRATOR TheintegratorisshowninFigure9andperformsthemathe- matical operation of integration(cid:46) This circuit is essentially fLe2qR11C1 fce2qR13C1 ALeRR31 TL(cid:47)H(cid:47)6822–11 FIGURE11(cid:46)SimpleLowPassFilter R2shouldbechosenequaltotheparallelcombinationof R1andR3tominimizeerrorsduetobiascurrent(cid:46)Theampli- VOUTeR11C1(cid:35)tt21VINdt fcieormspheonusladtebdeacmopmlipfieenrscaatnedbefoursuendi(cid:46)ty-gain or an internally fce2qR11C1 TL(cid:47)H(cid:47)6822–9 R1eR2 Forminimumoffseterror duetoinputbiascurrent FIGURE9(cid:46)Integrator 4 TL(cid:47)H(cid:47)6822–14 TL(cid:47)H(cid:47)6822–12 FIGURE14(cid:46)AmplifierforPhotoconductiveCell FIGURE12(cid:46)LowPassFilterResponse AgainfrequencyplotofcircuitresponseisshowninFigure PHOTOCELLAMPLIFIERS 12toillustratethedifferencebetweenthiscircuitandthe Amplifiersforphotoconductive(cid:44)photodiodeandphotovolta- trueintegrator(cid:46) iccellsareshowninFigures14(cid:44)15and16respectively(cid:46) THECURRENT-TO-VOLTAGECONVERTER All photogenerators display some voltage dependence of both speed and linearity(cid:46) It is obvious that the current Currentmaybemeasuredintwowayswithanoperational rhoughaphotoconductivecellwillnotdisplaystrictpropor- amplifier(cid:46)Thecurrentmaybeconvertedintoavoltagewith tionalitytoincidentlightifthecellterminalvoltageisallowed aresistorandthenamplifiedorthecurrentmaybeinjected tovarywithcellconductance(cid:46)Somewhatlessobviousisthe directlyintoasummingnode(cid:46)Convertingintovoltageisun- factthatphotodiodeleakageandphotovoltaiccellinternal desirable for two reasons(cid:58) first(cid:44) an impedance is inserted lossesarealsofunctionsofterminalvoltage(cid:46)Thecurrent-to- intothemeasuringlinecausinganerror(cid:59)second(cid:44)amplifier voltageconverterneatlysidestepsgrosslinearityproblems offset voltage is also amplified with a subsequent loss of by fixing a constant terminal voltage(cid:44) zero in the case of accuracy(cid:46)Theuseofacurrent-to-voltagetransduceravoids photovoltaic cells and a fixed bias voltage in the case of bothoftheseproblems(cid:46) photoconductorsorphotodiodes(cid:46) The current-to-voltage transducer is shown inFigure13(cid:46) Theinputcurrentisfeddirectlyintothesummingnodeand the amplifier output voltage changes to extract the same currentfromthesummingnodethroughR1(cid:46)Thescalefac- torofthiscircuitisR1voltsperamp(cid:46)Theonlyconversion errorinthiscircuitisIbiaswhichissummedalgebraicallywith IIN(cid:46) VOUTeR1ID TL(cid:47)H(cid:47)6822–15 VOUTeIINR1 FIGURE15(cid:46)PhotodiodeAmplifier TL(cid:47)H(cid:47)6822–13 Photodetectorspeedisoptimizedbyoperatingintoafixed FIGURE13(cid:46)CurrenttoVoltageConverter lowloadimpedance(cid:46)Currentlyavailablephotovoltaicdetec- torsshowresponsetimesinthemicrosecondrangeatzero Thisbasiccircuitisusefulformanyapplicationsotherthan load impedance and photoconductors(cid:44) even though slow(cid:44) currentmeasurement(cid:46)Itisshownasaphotocellamplifierin aremateriallyfasteratlowloadresistances(cid:46) thefollowingsection(cid:46) Theonlydesignconstraintsarethatscalefactorsmustbe chosen to minimize errors due to bias current and since voltagegainandsourceimpedanceareoftenindeterminate (aswithphotocells)theamplifiermustbecompensatedfor unity-gain operation(cid:46) Valuable techniques for bias current compensationarecontainedinReference5(cid:46) VOUTeICELLR1 TL(cid:47)H(cid:47)6822–16 FIGURE16(cid:46)PhotovoltaicCellAmplifier 5 Thefeedbackresistance(cid:44)R1(cid:44)isdependentoncellsensitivi- The amplifiers used must be compensated for unity-gain tyandshouldbechosenforeithermaximumdynamicrange andadditionalcompensationmayberequireddependingon orforadesiredscalefactor(cid:46)R2iselective(cid:58)inthecaseof loadreactanceandexternaltransistorparameters(cid:46) photovoltaiccellsorofphotodiodes(cid:44)itisnotrequiredinthe caseofphotoconductivecells(cid:44)itshouldbechosentomini- mizebiascurrenterrorovertheoperatingrange(cid:46) PRECISIONCURRENTSOURCE TheprecisioncurrentsourceisshowninFigures17and18(cid:46) Theconfigurationsshownwillsinkorsourceconventional currentrespectively(cid:46) TL(cid:47)H(cid:47)6822–19 FIGURE19a(cid:46)PositiveVoltageReference ADJUSTABLEVOLTAGEREFERENCES AdjustablevoltagereferencecircuitsareshowninFigures IOeVRI1N 19and20(cid:46)Thetwocircuitsshownhavedifferentareasof VINt0V applicability(cid:46)Thebasicdifferencebetweenthetwoisthat Figure19illustratesavoltagesourcewhichprovidesavolt- agegreaterthanthereferencediodewhileFigure20illus- TL(cid:47)H(cid:47)6822–17 tratesavoltagesourcewhichprovidesavoltagelowerthan FIGURE17(cid:46)PrecisionCurrentSink the reference diode(cid:46) The figures show both positive and Caution must be exercised in applying these circuits(cid:46) The negativevoltagesources(cid:46) voltagecomplianceofthesourceextendsfromBVCERof theexternaltransistortoapproximately1voltmorenegative thanVIN(cid:46)Thecomplianceofthecurrentsinkisthesamein thepositivedirection(cid:46) The impedance of these current generators is essentially infiniteforsmallcurrentsandtheyareaccuratesolongas VINismuchgreaterthanVOSandIOismuchgreaterthan Ibias(cid:46) ThesourceandsinkillustratedinFigures17and18usean FETtodriveabipolaroutputtransistor(cid:46)Itispossibletouse aDarlingtonconnectioninplaceoftheFET-bipolarcombi- nation in cases where the output current is high and the basecurrentoftheDarlingtoninputwouldnotcauseasig- nificanterror(cid:46) TL(cid:47)H(cid:47)6822–20 FIGURE19b(cid:46)NegativeVoltageReference Highprecisionextendedtemperatureapplicationsofthecir- cuit ofFigure19require that the range of adjustment of IOeVRI1N VOUTberestricted(cid:46)Whenthisisdone(cid:44)R1maybechosento provide optimum zener current for minimum zener T(cid:46)C(cid:46) VINs0V SinceIZisnotafunctionofVa(cid:44)referenceT(cid:46)C(cid:46)willbeinde- pendentofVa(cid:46) TL(cid:47)H(cid:47)6822–18 FIGURE18(cid:46)PrecisionCurrentSource 6 TL(cid:47)H(cid:47)6822–21 FIGURE20a(cid:46)PositiveVoltageReference TL(cid:47)H(cid:47)6822–23 FIGURE21(cid:46)ResetStabilizedAmplifier Theconnectionisusefulineliminatingerrorsduetooffset voltageandbiascurrent(cid:46)Theoutputofthiscircuitisapulse whoseamplitudeisequaltoVIN(cid:46)Operationmaybeunder- stood by considering the two conditions corresponding to thepositionofS1(cid:46)WhenS1isinposition2(cid:44)theamplifieris connectedintheunitygainconnectionandthevoltageat theoutputwillbeequaltothesumoftheinputoffsetvolt- ageandthedropacrossR2duetoinputbiascurrent(cid:46)The voltage at the inverting input will be equal to input offset voltage(cid:46)CapacitorC1willchargetothesumofinputoffset voltageandVINthroughR1(cid:46)WhenC1ischarged(cid:44)nocur- rentflowsthroughthesourceresistanceandR1sothereis noerrorduetoinputresistance(cid:46)S1isthenchangedtoposi- tion 1(cid:46) The voltage stored on C1 is inserted between the outputandinvertinginputoftheamplifierandtheoutputof theamplifierchangesbyVINtomaintaintheamplifierinput attheinputoffsetvoltage(cid:46)Theoutputthenchangesfrom TL(cid:47)H(cid:47)6822–22 FIGURE20b(cid:46)NegativeVoltageReference (VOSaIbiasR2)to(VINaIbiasR2)asS1ischangedfrom position 2 to position 1(cid:46) Amplifier bias current is supplied ThecircuitofFigure20issuitedforhighprecisionextended throughR2fromtheoutputoftheamplifierorfromC2when tdeempepnedraetnutreosneVrvaic(cid:46)eRif1V(cid:44)aR2i(cid:44)sRre3a(cid:44)saonndabRly4caorensctahnotsesinnctoeIpZrois- Sre1diuscientphoesoitfiofsnet2aatnthdepaomsiptiolifnie1roreustppuetcitfivtheely(cid:46)aRm3plsifeierrvemsutsot videtheproperIZforminimumT(cid:46)C(cid:46)andtominimizeerrors havemaximumlinearrangeorifitisdesiredtoDCcouple duetoIbias(cid:46) theamplifier(cid:46) Thecircuitsshownshouldbothbecompensatedforunity- Anadditionaladvantageofthisconnectionisthatinputre- gain operation or(cid:44) if large capacitive loads are expected(cid:44) sistance approaches infinity as the capacitor C1 ap- shouldbeovercompensated(cid:46)Outputnoisemaybereduced proachesfullcharge(cid:44)eliminatingerrorsduetoloadingofthe inbothcircuitsbybypassingtheamplifierinput(cid:46) sourceresistance(cid:46)Thetimespentinposition2shouldbe Thecircuitsshownemployasinglepowersupply(cid:44)thisre- longwithrespecttothechargingtimeofC1formaximum quiresthatcommonmoderangebeconsideredinchoosing accuracy(cid:46) an amplifier for these applications(cid:46) If the common mode Theamplifierusedmustbecompensatedforunitygainop- range requirements are in excess of the capability of the eration and it may be necessary to overcompensate be- amplifier(cid:44)twopowersuppliesmaybeused(cid:46)TheLH101may causeofthephaseshiftacrossR2duetoC1andtheampli- beusedwithasinglepowersupplysincethecommonmode fierinputcapacity(cid:46)Sincethisconnectionisusuallyusedat rangeisfromVatowithinapproximately2voltsofVb(cid:46) verylowswitchingspeeds(cid:44)slewrateisnotnormallyapracti- cal consideration and overcompensation does not reduce THERESETSTABILIZEDAMPLIFIER accuracy(cid:46) Theresetstabilizedamplifierisaformofchopper-stabilized amplifierandisshowninFigure21(cid:46)Asshown(cid:44)theamplifier isoperatedclosed-loopwithagainofone(cid:46) 7 R5eR1(cid:35)VbJ 10 V1l0 VOUTeV110V2 TL(cid:47)H(cid:47)6822–24 FIGURE22(cid:46)AnalogMultiplier THEANALOGMULTIPLIER mountthecellsinholesinanaluminumblockandtomount Asimpleembodimentoftheanalogmultiplierisshownin thelampmidwaybetweenthem(cid:46)Thismountingmethodpro- Figure22(cid:46) This circuit circumvents many of the problems videscontrolledspacingandalsoprovidesathermalbridge associated with the log-antilog circuit and provides three betweenthetwocellstoreducedifferencesincelltempera- quadrantanalogmultiplicationwhichisrelativelytempera- ture(cid:46)ThistechniquemaybeextendedtotheuseofFET’sor tureinsensitiveandwhichisnotsubjecttothebiascurrent otherdevicestomeetspecialresistanceorenvironmentre- errorswhichplaguemostmultipliers(cid:46) quirements(cid:46) CircuitoperationmaybeunderstoodbyconsideringA2asa Thecircuitasshowngivesaninvertingoutputwhosemagni- controlledgainamplifier(cid:44)amplifyingV2(cid:44)whosegainisde- tude is equal to one-tenth the product of the two analog pendentontheratiooftheresistanceofPC2toR5andby inputs(cid:46)InputV1isrestrictedtopositivevalues(cid:44)butV2may consideringA1asacontrolamplifierwhichestablishesthe assume both positive and negative values(cid:46) This circuit is resistanceofPC2asafunctionofV1(cid:46)Inthiswayitisseen restrictedtolowfrequencyoperationbythelamptimecon- thatVOUTisafunctionofbothV1andV2(cid:46) stant(cid:46) A1(cid:44) the control amplifier(cid:44) provides drive for the lamp(cid:44) L1(cid:46) R2andR4arechosentominimizeerrorsduetoinputoffset Whenaninputvoltage(cid:44)V1(cid:44)ispresent(cid:44)L1isdrivenbyA1 currentasoutlinedinthesectiondescribingthephotocell untilthecurrenttothesummingjunctionfromthenegative amplifier(cid:46)R3isincludedtoreducein-rushcurrentwhenfirst supplythroughPC1isequaltothecurrenttothesumming turningonthelamp(cid:44)L1(cid:46) junctionfromV1throughR1(cid:46)Sincethenegativesupplyvolt- THEFULL-WAVERECTIFIER age is fixed(cid:44) this forces the resistance of PC1 to a value ANDAVERAGINGFILTER proportional to R1 and to the ratio of V1 to Vb(cid:46) L1 also ThecircuitshowninFigure23istheheartofanaverage illuminatesPC2and(cid:44)ifthephotoconductorsarematched(cid:44) reading(cid:44)rmscalibratedACvoltmeter(cid:46)Asshown(cid:44)itisarecti- causesPC2tohavearesistanceequaltoPC1(cid:46) fierandaveragingfilter(cid:46)DeletionofC2removestheaverag- A2(cid:44)thecontrolledgainamplifier(cid:44)actsasaninvertingamplifi- ingfunctionandprovidesaprecisionfull-waverectifier(cid:44)and erwhosegainisequaltotheratiooftheresistanceofPC2 deletionofC1providesanabsolutevaluegenerator(cid:46) toR5(cid:46)IfR5ischosenequaltotheproductofR1andVb(cid:44) Circuitoperationmaybeunderstoodbyfollowingthesignal thenVOUTbecomessimplytheproductofV1andV2(cid:46)R5 pathfornegativeandthenforpositiveinputs(cid:46)Fornegative may be scaled in powers of ten to provide any required signals(cid:44)theoutputofamplifierA1isclampedtoa0(cid:46)7Vby outputscalefactor(cid:46) D1anddisconnectedfromthesummingpointofA2byD2(cid:46) PC1andPC2shouldbematchedforbesttrackingovertem- A2thenfunctionsasasimpleunity-gaininverterwithinput peraturesincetheT(cid:46)C(cid:46)ofresistanceisrelatedtoresistance resistor(cid:44)R1(cid:44)andfeedbackresistor(cid:44)R2(cid:44)givingapositivego- match for cells of the same geometry(cid:46) Small mismatches ingoutput(cid:46) maybecompensatedbyvaryingthevalueofR5asascale Forpositiveinputs(cid:44)A1operatesasanormalamplifiercon- factor adjustment(cid:46) The photoconductive cells should re- nectedtotheA2summingpointthroughresistor(cid:44)R5(cid:46)Ampli- ceiveequalilluminationfromL1(cid:44)aconvenientmethodisto fierA1thenactsasasimpleunity-gaininverterwithinput 8 TL(cid:47)H(cid:47)6822–25 FIGURE23(cid:46)Full-WaveRectifierandAveragingFilter resistor(cid:44)R3(cid:44)andfeedbackresistor(cid:44)R5(cid:46)A1gainaccuracyis with decreasing frequency(cid:46) When this network(cid:208)the Wien notaffectedbyD2sinceitisinsidethefeedbackloop(cid:46)Posi- Bridge(cid:208)isusedasapositivefeedbackelementaroundan tivecurrententerstheA2summingpointthroughresistor(cid:44) amplifier(cid:44) oscillation occurs at the frequency at which the R1(cid:44) and negative current is drawn from the A2 summing phaseshiftiszero(cid:46)Additionalnegativefeedbackisprovided pointthroughresistor(cid:44)R5(cid:46)SincethevoltagesacrossR1and tosetloopgaintounityattheoscillationfrequency(cid:44)tostabi- R5areequalandopposite(cid:44)andR5isone-halfthevalueof lize the frequency of oscillation(cid:44) and to reduce harmonic R1(cid:44)thenetinputcurrentattheA2summingpointisequalto distortion(cid:46) andoppositefromthecurrentthroughR1andamplifierA2 operatesasasumminginverterwithunitygain(cid:44)againgiving apositiveoutput(cid:46) ThecircuitbecomesanaveragingfilterwhenC2isconnect- edacrossR2(cid:46)OperationofA2thenissimilartotheSimple Low Pass Filter previously described(cid:46) The time constant R2C2shouldbechosentobemuchlargerthanthemaxi- mumperiodoftheinputvoltagewhichistobeaveraged(cid:46) CapacitorC1maybedeletedifthecircuitistobeusedas anabsolutevaluegenerator(cid:46)Whenthisisdone(cid:44)thecircuit outputwillbethepositiveabsolutevalueoftheinputvolt- age(cid:46) Theamplifierschosenmustbecompensatedforunity-gain operationandR6andR7mustbechosentominimizeout- puterrorsduetoinputoffsetcurrent(cid:46) SINEWAVEOSCILLATOR Anamplitude-stabilizedsine-waveoscillatorisshowninFig- ure24(cid:46) This circuit provides high purity sine-wave output down to low frequencies with minimum circuit complexity(cid:46) Animportantadvantageofthiscircuitisthatthetraditional (cid:42)SeeText tungsten filament lamp amplitude regulator is eliminated alongwithitstimeconstantandlinearityproblems(cid:46) Inaddition(cid:44)thereliabilityproblemsassociatedwithalamp TL(cid:47)H(cid:47)6822–26 FIGURE24(cid:46)WienBridgeSineWaveOscillator areeliminated(cid:46) TheWienBridgeoscillatoriswidelyusedandtakesadvan- The circuit presented here differs from the classic usage tage of the fact that the phase of the voltage across the only in the form of the negative feedback stabilization parallelbranchofaseriesandaparallelRCnetworkcon- scheme(cid:46)Circuitoperationisasfollows(cid:58)negativepeaksin nectedinseries(cid:44)isthesameasthephaseoftheapplied excessofb8(cid:46)25VcauseD1andD2toconduct(cid:44)charging voltageacrossthetwonetworksatoneparticularfrequency andthatthephaselagswithincreasingfrequencyandleads 9 C4(cid:46) The charge stored in C4 provides bias to Q1(cid:44) which Theintegratorthengeneratesanegative-goingrampwitha determinesamplifiergain(cid:46)C3isalowfrequencyroll-offca- rateofIa(cid:47)C1voltsperseconduntilitsoutputequalsthe pacitorinthefeedbacknetworkandpreventsoffsetvoltage negativetrippointofthethresholddetector(cid:46)Thethreshold andoffsetcurrenterrorsfrombeingmultipliedbyamplifier detectorthenchangestothenegativeoutputstateandsup- gain(cid:46) pliesanegativecurrent(cid:44)Ib(cid:44)attheintegratorsummingpoint(cid:46) Distortionisdeterminedbyamplifieropen-loopgainandby Theintegratornowgeneratesapositive-goingrampwitha theresponsetimeofthenegativefeedbackloopfilter(cid:44)R5 rateofIb(cid:47)C1voltsperseconduntilitsoutputequalsthe andC4(cid:46)Atrade-offisnecessaryindeterminingamplitude positivetrippointofthethresholddetectorwherethedetec- stabilization time constant and oscillator distortion(cid:46) R4 is toragainchangesoutputstateandthecyclerepeats(cid:46) chosen to adjust the negative feedback loop so that the Triangular-wavefrequencyisdeterminedbyR3(cid:44)R4andC1 FETisoperatedatasmallnegativegatebias(cid:46)Thecircuit andthepositiveandnegativesaturationvoltagesoftheam- shownprovidesoptimumvaluesforageneralpurposeoscil- plifierA1(cid:46)AmplitudeisdeterminedbytheratioofR5tothe lator(cid:46) combinationofR1andR2andthethresholddetectorsatu- rationvoltages(cid:46)Positiveandnegativerampratesareequal TRIANGLE-WAVEGENERATOR andpositiveandnegativepeaksareequalifthedetector Aconstantamplitudetriangular-wavegeneratorisshownin has equal positive and negative saturation voltages(cid:46) The Figure25(cid:46)Thiscircuitprovidesavariablefrequencytriangu- outputwaveformmaybeoffsetwithrespecttogroundifthe larwavewhoseamplitudeisindependentoffrequency(cid:46) invertinginputofthethresholddetector(cid:44)A1(cid:44)isoffsetwith respecttoground(cid:46) The generator may be made independent of temperature andsupplyvoltageifthedetectorisclampedwithmatched zenerdiodesasshowninFigure26(cid:46) The integrator should be compensated for unity-gain and thedetectormaybecompensatedifpowersupplyimped- ancecausesoscillationduringitstransitiontime(cid:46)Thecur- rentintotheintegratorshouldbelargewithrespecttoIbias formaximumsymmetry(cid:44)andoffsetvoltageshouldbesmall withrespecttoVOUTpeak(cid:46) TL(cid:47)H(cid:47)6822–27 FIGURE25(cid:46)Triangular-WaveGenerator Thegeneratorembodiesanintegratorasarampgenerator andathresholddetectorwithhysterisisasaresetcircuit(cid:46) Theintegratorhasbeendescribedinaprevioussectionand requires no further explanation(cid:46) The threshold detector is similartoaSchmittTriggerinthatitisalatchcircuitwitha largedeadzone(cid:46)Thisfunctionisimplementedbyusingpos- itive feedback around an operational amplifier(cid:46) When the amplifieroutputisineitherthepositiveornegativesaturated TL(cid:47)H(cid:47)6822–28 state(cid:44)thepositivefeedbacknetworkprovidesavoltageat FIGURE26(cid:46)ThresholdDetectorwithRegulatedOutput thenon-invertinginputwhichisdeterminedbytheattenua- tionofthefeed-backloopandthesaturationvoltageofthe TRACKINGREGULATEDPOWERSUPPLY amplifier(cid:46)Tocausetheamplifiertochangestates(cid:44)thevolt- A tracking regulated power supply is shown inFigure27(cid:46) ageattheinputoftheamplifiermustbecausedtochange Thissupplyisverysuitableforpoweringanoperationalam- polaritybyanamountinexcessoftheamplifierinputoffset plifier system since positive and negative voltages track(cid:44) voltage(cid:46) When this is done the amplifier saturates in the eliminatingcommonmodesignalsoriginatinginthesupply oppositedirectionandremainsinthatstateuntilthevoltage voltage(cid:46)Inaddition(cid:44)onlyonevoltagereferenceandamini- atitsinputagainreverses(cid:46)Thecompletecircuitoperation mumnumberofpassivecomponentsarerequired(cid:46) maybeunderstoodbyexaminingtheoperationwiththeout- putofthethresholddetectorinthepositivestate(cid:46)Thede- tectorpositivesaturationvoltageisappliedtotheintegrator summingjunctionthroughthecombinationR3andR4caus- ingacurrentIatoflow(cid:46) 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.