ebook img

An Antarctic Cretaceous theropod PDF

6 Pages·1996·2.3 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview An Antarctic Cretaceous theropod

ANANTARCTICCRETACEOUS THEROPOD R.E.MOLNAR, ALEJANDROLOPEZANGRIMAN&ZULMAGASPARINI Molnar, R.E., Lopez Angriman, A. & Gasparini, G. 1996 12 20: An Antarctic Cretaceous theropod.MemoirsoftheQueenslandMuseum39(3): 669-674.Brisbane.ISSN0079-8835. ThedistalpartofatheropodtibiahasbeenrecoveredfromtheConiacian-SantonianHidden Lake Fm. near Cape Lachmann, James Ross Island. The piece closely resembles the correspondingregioninMegalosaurusand,moreclosely,inPiatnitzkysaurus.Thissuggests that a persistently plesiomorphic tetanuran lineage inhabited the Antarctic. The relatively small size of the animal argues against a mean annual temperature below 15°C in its environment. Antarctica, theropod, LateCretaceous, biogeography, tetanuran. R.E. Molnar, Queensland Museum, P.O. Box 3300, South Brisbane, Queensland, 4I0J f Australia;AlejandroLdpezAngriman, BRIDAS,Av. L. N, Alem 1180, (1001)BuenosAires, Argentina; Zulma Gasparini, Depto. Paleontologia de Vertebrados, Museo de La Plata, (1900)LaPlata, Argentina;5July 1996. During the summerof 1988 one ofthe authors the corresponding part of the tibia in (A.L.A.) discovered a small bone in the Megalosaurus bucklandi, Piatnitzkysaurus Cretaceous deposits 4km north ofCol Crame, in floresiandPoekilopleuronbucklandii. Seenfrom the Cape Lachman region, northwestern James the front, the shaft is expanded laterally to form RossIsland(Fig. 1).Inabasininthenorthwestern a broadly rounded post-fibular flange, and sectoroftheWeddell Sea, theoriginoftheisland medially into an angularly truncate medial mal- is related to the opening of that sea during the leolus. A broad, flat-surfaced prominence breakup ofGondwanaland (Medina et al., 1992). proximomedially bounds the ascending process The specimenderivesfrom the middlesectionof and dorsal face of the astragalus, extending the Hidden Lake Fm., Gustav Gr. (Ineson et al., proximolaterally acrosstheanteriorfacefromthe (1B9u8a6t)o,isre&feLrorepdeztoAntghreimCaonn,ia1c9i9a2an)-.SaInttoisnitahne manegduilaaltimoanlsl.eoTlhuiss.iIststeedrgmeesdatrheemmaerdkieadl bbuyttsrheasrs.p firstCretaceousAntarctictheropodandtheoldest The posteriorface is almost flat but with a slight Cretaceoustetrapodfrom Antarcica. longitudinal concavity laterally. Above the post- Prior to Angnman's discovery, ornithischians fibular flange the surface of this concavity were the only Cretaceous dinosaurs known from abruptly slopes anteriorly to meet the anterior Antarctica (Gasparini et al., 1987; Olivero et al., surface ofthe shaft ata sharp edge. t1h9e9r1o;pHodosokferrometNael.w, 1Z9e9a1l)a.nTdh(eMoLlantearC&retWaicfefoeuns, The broken end reveals a central cavity sur- roundedby relativelythin-walledbone(Fig.2D). 1994) imply that theropods also lived in An- The shaft is tear-shaped in section at the break. tdairscctoivcaeraytvmeraitfiteismtehe(icrf.ocMcoulrnraern,ce1a98n9d)hebluptstfhiilsl Fcarvaigtmyenstusggoefstbotnheatintthheecsahlacfittewfaisll ocfrtuhsehecdentjruaslt outourknowledgeofAntarctic faunalevolution. A theropod is known from the Early Jurassic of abovethebrokenendbeforeorshortlyafterburial. Antarctica (Hammer& Hickerson, 1994). The distal end is slightly concave from the front Collection designations, ANSP, Academy of and triangular when viewed distally, with the Natural Sciences, Philadelphia; MLP, Depar- anteriorsurfaceforming thelongestedgeandthe tamentodePaleontologiaVertebrados,Museode inclined lateral edge the shortest. The distal sur- LaPlata, La Plata. face is shallowly concave in the middle, becom- ing mildlyconvexbothmedially andlaterally. DESCRIPTION The form of the anterior surface of the distal tibia (Fig. 2C) indicates that the ascending Th—e specimen (MLP: 89-XII-l-l) is the distal process of the astragalus was moderately low, end —representingprobably 10-15% ofthetotal relatively narrow and restricted to the lateral half length of a left tibia. The piece is complete ofthetibialshaft.Thustheastragaluswouldhave save forvery small portions oftheextremities of been unlike those ofornithomimosaurs or tyran- themedial malleolusandtheflangethatbacksthe nosaurs in form, but probably much like that of fibula. In general form it is (Fig. 2) is similar to Poekilopleuron bucklandii. 670 MEMOIRS OFTHEQUEENSLANDMUSEUM o C. LACHMAN 20 km Coelophysis and Dilophosaarus but present and angularinSyntarmy(Raath, 1969; Welles, 1984; Colbert, 1989). Early ceratosaurs, e.g., Coelophysis, (and herrerasaurs) lack an ascend- ing process and the astragalus interlocks with an offset distal surface ofthe tibia, the offset being ?MARAMBIO visible anteriorly (Padian, 1986, fig. 5.5). I Theneoceratosaurdistal tibia isknown only in Ceratosaurus and Xenotarsosaurus, where the distal expansion is approximately symmetrical and the fossa for the ascending process low. In 57'W Ceratosaurus the medial buttress is broad with the 'step' extending nearly horizontally at least 2/3 ofthe way across the shaft (about halfway in FIG. 1. MapofJamesRossIsland, showingwherethe the HiddenLake specimen) and the medial mal- theropodtibiawasfound(dot). C=Cape,I=Island. leolusdoesnotextendasfarproximallyalongthe shaft, so is more pointed in anterior view (Gil- IDENTIFICATION. The general form and rela- more, 1920); the distaltibiaofXenotarsosaurus is tively thin-walled hollow shaft indicate that this similar but with a broadly rounded malleolus tibia derives from a theropod. Dryosaurs have (Martinez et al., 1987). Dromaeosaurs (i.e., also been reported with thin-walled limbelements Deinonychus antirrhopus) have a broad, hig—h, (Chinsamy, 1995)anddryosaursorsimilarforms ascending process, lack the medial buttress are known from Late Cretaceous New Zealand & probably correlate—d with the broadening of the (Wiffen Molnar, 1989), hence probably in- ascendingprocess andhaveabroadlyrounded habitedAntarcticaatthistime. Howevernoother medial malleolus (Ostrom, 1969). Arctometatar- dinosaurs have the astragalar ascending process salian theropods also have a broad, high ascend- set into a depression of the anterior face of the ingprocessandlackthemedialbuttress,andhave distal tibia, dorsomedially bounded by an abrupt a nearly symmetrical distal end (in anterior or step or offset in the anterior face. This feature is posterior view) with no distinctive form to the characteristic of neotheropods (Sereno et al., medial malleolus (Welles & Long, 1974). Other T1h99e4)t,ruanncdateisnm'etdifaolunmdalilneohelrurseraalssaouroscc(uFrisg.in3)a. caoheilguhr,osbaruorasd(ea.gs.c,eCnadlianmgopsraoucreusss)asnidmilnaorlmyehdaivale rpersotbraibctleyd rgerporuepseonftsthaersotpagoedsin(Ttahbeleev1o)l,ubtuitonthoisf buttress but the medial malleolus is similar in distal tibial form (Fig. 3). silhouette, from in front, to that of the Hidden Lake tibia (Lydekker, 1891). There is little data The work on theropod astragali of Welles & available on oviraptorosaurs, butjudging from Long, 1974, (with the correction of Carpenter, Chirostenotes and Microvenator, the form is 1992) accords well with recent phylogenetic similar to that in arctometatarsalians, with the & analyses of theropods (Holtz, 1994; Russell exception that the fibular flange seems truncate Dong, 1993; Sereno et al., 1994). Ageneral ten- in the former genus (Ostrom, 1970; Currie & dencytowardincreasedheightandbreadthofthe Russell, 1988).Thesegnosaurdistaltibiaremains ascending process can be seen in the lineage unknown or undescribed. That of Yangchuano- leading to arctometatarsalians (Fig. 3). Further- saurus shows a low ascending process, a medial more, a survey of figured tibiae indicates that buttress different in form and an angular medial distal tibial form is reasonably distinctive forthe malleolus (Dong et al., 1983). In Sinraptor the recognised theropod groups (Table 1). ascending process is low and narrow, the medial The distal tibia of ceratosaurs is variable be- buttress essentially similar to that of cause ofthe evolution ofthe ankle in this group. Ceratosaurus, and with an angular medial mal- Indistalviewthetibia is notanteroposteriorly com- leolus (Currie & Zhao, 1993). In distal view the pressed in the Triassic and Early Jurassic forms, tibia is more anteroposteriorly compressed. Al- as it is in later ceratosaurs and tetanurans. The losaurushasabroader,higherascendingprocess, ascending process is absent or low and narrow, a narrower medial buttress, and a generally the medial buttress is absent in Coelophysis and similarmedial malleolusthatis, however,more Syntarsus but present in Dilophosaarus, and the medially projecting and more roundedinoutline medial malleolus is quite subdued or absent in (Gilmore, 1920; Madsen, 1976). ANANTARCTICCRETACEOUSTHEROPOD 671 D FIG. 2. The theropod distal tibia (MLP: 89-XII-l-l) from the Hidden Lake Fm., James Ross Island, in: A, posterior;B,medial;C,anterior;D,proximal;E,distal;andF, lateral views. mb=medialbuttress,mm=medial malleolus, pf=flangebehind Fibula, scale= 1cm. The distal tibiae of Megalosaurus bucklandi notoccurin PiatnitzkysaurusortheHidden Lake (Huxley, 1870; Hulke, 1879) andPoekilopleur—on tibia.Thereareslightdifferences: theHiddenLake bucklandii (Eudes-Desl—ongchamps, 1837) tibiaislesscompresseddistally, its fibularflange possibly related—forms Erectopus sup—erbus projects less and its medial buttress is slightly (Sauvage, 1882) ofuncertainaffinities —and broader than in P. floresi. Nonetheless, had the Piatnitzkysaurusfloresi (Bonap—arte, 1986) a Hidden Lake tibia been found instead in the plesiomorphic allosauroid are the most Canadon Asfalto Fm. (Callovian-Oxfordian) of similar. However, the tibiae of torvosaurids Argentina, itwouldlikelyhavebeenattributedto (specifically Afrovenator abakensis, Eustrepto- an immature Piatnitzkysaurus. spondylus oxoniensis and Torvosaurus tanneri), ThesimilarityoftheHiddenLaketibiatothose animals similar in other ways to megalosaurs, ofmegalosaurs and Piatnitzkysaurus, all Middle differinhavinganangularmedialmalleolus(e.g., Jurassic forms, and Erectopus, an Albian form, Britt, 1991). Of those with similar distal tibiae, impliesthattheHiddenLaketheropodrepresents the most similar is that of P. floresi, which a lineage probably derived from relatively matches that ofthe Hidden Lake theropod in t—he plesiomorphic megalosaur or primitive al- forms of the medial malleolus and buttress losauroid (butnotsinraptorid) stock, unrelatedto particularly the curve ofthe step adjacent—to the the lineages culminating in the more orless con- facetfor the astragalarascending process and temporaneous arctometatarsalians. Interestingly, the fibular flange. The distal tibiae of the pre- the only other known Antarctic theropod, the viously noted megalosaurs, and of Erectopus, EarlyJurassic Cryolophosaurusellioti (Hammer differ in that the fibular flange projects distally, & Hickerson, 1994), is also now thought to be a formingthedistalmostpartofthetibia.Thisdoes plesiomorphic allosauroid (Hammer, pers. 672 MEMOIRS OFTHEQUEENSLANDMUSEUM comm., 1996). Generic identifica- tion ofthe Hidden Lake specimen is not possible, unless more is Herrerasaurjda recovered. A _ Ccelophysidae DISCUSSION Dilophosaurus The Hidden Lake tibia is the Elaphrosaurus J same size as the distal end of the Xenotarsosaurus tibia of the ornithomimosaur Coelosaurus antiquus (ANSP THEROPODA Ceratosaurus 9222) which is about 40cm long Mbeudtitarless Torvosaurus 4 overall. Iftheproportionswerethe NEOTHEROPGDA same, then the Hidden Lake Megalosaurus p.b. theropod would have been about Anteroposteriorly 3-3.5m long. If, on the other hand compressea distal tibia Piatnitzkysaurus it was more robust, with the tibia Stnraptor HLt proportioned like those of Plat- nitzkysaurusfloresi, then it would Truncate medial malleolus-- Allosaurus havebeen about22-23cmlongand AVETHEttOPOC* Acrocanthosaurus the whole animal about 2.5-3m long. Assuming that it is from a Deinonychus mature animal, and we have no Ascending process broad & high Symmetrical Oviraptoridee reasonto thinkotherwise, in either development of malleolus & fibular fiange case it represents a moderately (loss of truncate mediCaOlEmLaUlRleOoSluAsU)RIA / Tyrannosauridae,' small theropod about the size ofa Loss of medial buttress? large Coelophysis. This theropod Troodontidas l.\ wouldhavebeen too smalltohave Ornithomimosauria beenectothermicandtohavelived underaclimatewithameanannual temperature of less than 15°C (cf. Molnar&Wiffen, 1994; Spotilaet FIG.3.Phylogeneticrelationshipsamongtheropods,withastragalarand al., 1991).ThissuggeststhatJames distal tibia! characters discussed in text assigned to nodes. A and B Ross Island enjoyed a rather mild indicate presumed reversals of character state: A, to uncompressed climate, at least in some places, distaltibia;B,toangular(ratherthantruncate)medialmalleolus.Along therightmarginarediagramsofthedistaltibiaeofthegeneraincluded, during the Coniacian-Santonian. with that for Poekilopleuron bucklandii (P.b.) added next to that for The specimen was found in the Megalosaurus, and that for the Hidden Lake theropod (HLt) next to middle section ofthe Hidden Lake Piatnitzkysaurus. Cladogram afterHoltz (1994), with the positions of Fm., in the level ofthe calcareous Sinraptor, following Sereno, et al. (1994), and Piatnitzkysaurus, fol- sand with abundant carbonised lowingMolnar,etal.(1990),added.(Tibialdiagramsredrawnfromdie material. Associated trace fossils literature,exceptfortheHidden LaketheropodandPiatnitzkysaurus). include Planolites sp. and Palaeophycus sp., and remains of logs without suggests that lineages deriving from Middle the borings ofTeredolites that are often found in Jurassic forms persisted in the Antarctic. the upper and lower levels of this formation (Buatois & Lopez Angnman, 1992b). The en- ACKNOWLEDGEMENTS vironment of deposition was a developing dis- The specimen was collected with the kind tributary plain in the central fan of a fan delta depositionalsystem(Buatois&LopezAngnman, logisticalassistanceoftheInstitutoAntarticoAr- gentino, and the participation of Drs Christian 1992a) into which, we infer, the specimen had Chemiglasov, Roberto Llorente and especially been transported afterdeath. Luis Buatois. We alsoappreciate the helpofFer- This tibia suggests a more primitive theropod, nando Novas (Museo Nacional de Ciencias or at least one with less advanced distal tibial Naturales,BuenosAires),JaimePowell(Instituto structure, than was common in the Late MiguelLillo,Tucuman),AlecRitchie(Australian CretaceousAsiamericaorSouthAmerica.Thusit Museum, Sydney) andH. Phillip Powell (Oxford . ANANTARCTICCRETACEOUSTHEROPOD 673 TABLE1.Theropoddistaltibialform.Inthelastcolumn,'lateral'indicatesthatthelateralflangeismorestrongly developed than themedial malleolus; 'symmetric' that flange andmalleolusareaboutequally developedand symmetrical inanteriorview; 'both* thatflangeandmalleolus areequallydevelopedbutnotsymmetrical Medialmalleolar Astragalarascendingprocess Distaltibial Taxa Medialbuttress development width height development Herrerasauridae slight absent narrow low slight Coelophysidae slight absent narrow lows light Dilophosaurus slight present narrow low lateral Elaphrosaurus angular ? ?' 7 symmetric Xenotarsosaurus rounded ? moderate low symmetric Ceratosaurus angular present moderate low both Ton'osaurus angular present moderate low lateral Megalosaurus truncate present moderate low lateral Piatnitzkysaurus truncate present ? ? lateral Sinraptor angular present moderate low lateral AHosaurus truncate present moderate low lateral Acrocanthosaurus truncate present ? <) both Deinonychus rounded absent broad high symmetric Oviraptoridae slight loworabsent broad •} both Avimimus slight absent broad high symmetric Tyrannosauridae rounded absent broad high symmetric Troodontidae slight absent broad high symmetric Ornithomimidae slight absent broad high symmetric Welles&Long(1974)describetheastragalarascendingprocessofElaphrosaurusbambergiashighandbroad,citing Janensch(1925).HoweveritisnotclearfromJanenschthattheascendingprocessisactuallypreservedsothismaybean inference.Hencetheproportionsarehereconsideredtobeunknown. University Museum, Oxford) who made avail- Pp. 239-262. In, Rinaldi, C. (ed.) 'Geologfadela able theropod material in theircare, and Angela Isla James Ross'. (Instituto Antartico Argentino: Milner (British Museum) for hypsilophodontian BuenosAires). material. Don Baird (Princeton University) BRUT, B.B. 1991. Theropods of Dry Mesa Quarry (Morrison Formation, Late Jurassic), Colorado, providedacastofthetibiaofCoelosauruswhich with emphasis on the osteology of Torvosaurus washelpful and Jim Farlow (University of tanneri. Brigham Young University Geology Indiana/Purdue University), William Hammer Studies, 37: 1-72. (Augustana College) and Tom Holtz, Jr(Univer- CARPENTER, K. 1992. Tyrannosaurids (Dinosauria) sityofMaryland)allprovidedhelpfulcomments. of Asia and North America. Pp. 250-268. In, We much appreciate all theirassistance. Mateer, N. & Chen P.J. (eds) 'Aspects of Non- marineCretaceousGeology'.(ChinaOceanPress: LITERATURE CITED Beijing). COLBERT, E.H. 1989. The Triassic dinosaur BONAPARTE, J.F. 1986. Les Dinosaures (Car- Coelophysis.BulletinoftheMuseumofNorthern nosaures, Allosaurides, Sauropodes, Arizona"57: 1-174. C&iosaurides) du Jurassique moyen de Cerro CURRIE,P.J.,&RUSSELL,DA. 1988.Osteologyand Cdndor(Chubut, Argentine), (part 1).Annalcsde relationshipsofChirostenotespergracilis(Sauris- PalSontologie(Vert.-Invert.),72: 247-289. chia,Theropoda)fromtheJudithRiver(Oldman) BUATOIS, L.A., & LOPEZ ANGRIMAN, A. 1992a. Formation ofAlberta, Canada. Canadian Journal Evoluci6ndesistemasdeposicionalesenelGrupo ofEarth Sciences, 25: 972-986. Gustav,CretacicodelaIslaJamesRoss,Ant&rtida. CURRIE, P. J. & ZHAO, X. 1993. A new carnosaur Pp. 263-297. In, Rinaldi,C. (ed.) 'Geologfadela (Dinosauria,Theropoda)fromtheJurassicofXin- IslaJames Ross*. (Instituto Antartico Argentine*: jiang,People'sRepublicofChina.CanadianJour- BuenosAires). nal ofEarth Sciences, 30: 2037-2081. BUATOIS, L.A. & LOPEZ ANGRIMAN, A. 1992b. DONG, Z., ZHANG, S. & ZHOU, Y. 1983. The Trazasf6silesysistemasdeposicionalesdelGrupo dinosaurian remains from Sichuan Basin, China. Gustav,CretacicodelaIslaJamesRoss,Antdrtida. PalaeontologiaSinica, 162: 1-145. 674 MEMOIRS OFTHEQUEENSLANDMUSEUM EUDES-DESLONGCHAMPS, J.-A. 1837. Memoire Geological Society Special Publication, 47: 131- sur le Poikilopleuron bucklandii, grand saurien 140. fossile, interm6diare entre les crocodiles et les MOLNAR, R.E., KURZANOV, S.M. & DONG, Z. Iezards.M£moiredelasociete*LinneennedeNor- 1990.Camosauria.Pp. 169-209.In,Weishampel, mandie,6: 37-146. D.B., Dodson, P. & Osm61ska, H. (eds) 'The GASPARINI, Z., OLIVERO, E., SCASSO, R. & Dinosauria*. (University of California Press: RINALDI, C. 1987. Un ankylosaurio (Reptilia, Berkeley). Omithischia)CampanianoenelcontinenteAntar- MOLNAR, R.E. & WIFFEN, J. 1994. A Late tico. AnaisdoXCongressoBrasileirodePaleon- Cretaceous polar dinosaur fauna from New tologia, 131-141. Zealand. CretaceousResearch, 15: 689-706. GILMORE, C.W. 1920. Osteology ofthe carnivorous OLIVERO, E.. GASPARINI, Z., RINALDI, C. & DinosauriaintheUnitedStatesNationalMuseum, SCASSO, R. 1991. First record of dinosaurs in with special reference to the generaAntrodemus Antarctica (Upper Cretaceous, James Ross Is- (Allosaurus)andCeratosaurus.UnitedStatesNa- land): palaeogeographical implications. Pp. 617- tionalMuseum,Bulletin, 110: 1-159. 622. In,Thomson, M.,Crame, J. &Thomson,J., HAMMER, W.R. & HICKERSON, W.J. 1994. A (eds) 'Geological Evolution of Antarctica'. crested theropod dinosaur from Antarctica. (CambridgeUniversity Press: Cambridge). Science,264: 828-830. OSTROM, J.H., 1969. Osteology ofDeinonychusan- HOLTZ,T.R.,Jr1994.Thephylogeneticpositionofthe tirrhopus, an unusual theropod from the Lower Tyrannosauridae: implications for theropod sys- Cretaceous of Montana. Bulletin, Peabody tematics.JournalofPaleontology,68: 1100-1117. MuseumofNatural History, 30: 1-165. HOOKER,J.J.,MILNER,A.C.&SEQUEIRA,S.E.K. 1970.StratigraphyandpaleontologyoftheCloverly 1991. An ornithopod dinosaur from the late Formation (Lower Cretaceous) of the Bighorn CretaceousofWestAntarctica.AntarcticScience, Basin area, Wyoming and Montana. Bulletin, 3: 331-332. Peabody MuseumofNatural History, 35: 1-234. HULKE,J.W. 1879.NoteonPoikilopleuronbucklandi PADIAN,K. 1986.OnthetypematerialofCoelophysis of Eudes-Deslongchamps (pere) identifying it Cope (Saurischia: Theropoda) and a new with Megalosaurusbucklandi. QuarterlyJournal specimen from the Petrified Forest of Arizona oftheGeologicalSocietyofLondon,35:233-238. (LateTriassic: Chinle Formation). Pp. 45-60. In, HUXLEY, T.H. 1870. On the classification of the Padian, K. (ed.) 'The Beginning of the Age of DinosauriawithobservationsoftheDinosauriaof Dinosaurs'. (Cambridge University Press: New the Trias. Quarterly Journal of the Geological York). SocietyofLondon,26: 31-50. RAATH, M.A., 1969. A new coelurosaurian dinosaur INESON, J., CRAME, J. & THOMSON, M. 1986. fromtheForestSandstoneofRhodesia.Arnoldia, Lithostratigraphy oftheCretaceousstrataofwest 4: 1-25. James Ross Island, Antarctica. Cretaceous Re- RUSSELL,D.A.&DONG,Z. 1993.The affinitiesofa search^: 141-159. new theropod from the Alxa Desert, InnerMon- JANENSCH, W. 1925. Die Coelurosaurier und golia,People'sRepublicofChina.CanadianJour- Theropoden der Tendaguru-Schichten Deutsch- nalofEarthSciences, 30: 2107-2127. Ostafrikas. Palaeontographica(Suppl. 7) 1: 1-99. SAUVAGE, H.E. 1882. Recherches sur les reptiles LYDEKKER, R. 1891. On certain ornithosaurian and trouves dans le Gault de Test du Basin de Paris. dinosaurian remains. Quarterly Jounral of the MemoiresdelaSociete"geologiquedeFrance,(3), GeologicalSociety ofLondon,47: 41-44. 4: 439-442. MADSEN,J. H.,Jr 1976.Allosaurusfragilis:arevised SERENO, PC, WILSON, J.A., LARSSON, H.C.E., osteology. Utah Geological and Mineral Survey, DUTHEIL, D.B. & SUES, H.-D. 1994. Early Bulletin, 1091: 1-163. Cretaceous dinosaurs from the Sahara. Science, MARTINEZ, R., GIMENEZ, O., RODRIGUEZ, J. & 266:267-271. BOCHATEY,G.1987.Xenotarsosaurusbonapartei SPOTILA, JR., O'CONNOR, M.P., DODSON, P. & nov. gen. et sp. (Camosauria, Abelisauridae), un PALADINO, F.V. 1991. Hot and cold running nuevo Theropoda de laFormacion Bajo Barreal, dinosaurs: bodv size, metabolism and migration. Chubut, Argentina.ActasIVCongresoArgentino Modern Geology 16: 203-227. de Paleontologfay Bioestratigrafia,23-31. WELLES, S.P. 1984. Dilophosaurus wetherilli MEDINA, F, BUATOIS, L., &LOPEZANGRIMAN, (Dinosauria, Theropoda). Osteology and com- A. 1992. EstratigrafiadelGrupoGustaven laIsla parisons. Palaeontographica,A, 185: 85-180. James Ross, Antirtida. Pp. 167-192. In, Rinaldi, WELLES, S.P. & LONG, R.A. 1974. The tarsus of C.(ed.)'GeologfadelaIslaJamesRoss'.(Instituto theropod dinosaurs. Annals ofthe South African AntarticoArgentino: BuenosAires). Museum,64: 191-218. MOLNAR, R.E. 1989. Terrestrial tetrapods in WIFFEN, J. & MOLNAR, R.E. 1989. An ornithopod Cretaceous Antarctica. In, Crame, J.A. (ed.) dinosaur from New Zealand. Geobios, 22:531- 'Origins and Evolution of the Antarctic Biota*, 536.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.