1111552233__99778899881111220099119922__ttpp..iinndddd 11 1144//99//2200 1111::0077 AAMM TTTThhhhiiiissss ppppaaaaggggeeee iiiinnnntttteeeennnnttttiiiioooonnnnaaaallllllllyyyy lllleeeefffftttt bbbbllllaaaannnnkkkk 1111552233__99778899881111220099119922__ttpp..iinndddd 22 1144//99//2200 1111::0077 AAMM Published by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. AN ANALYTIC THEORY OF MULTI-STREAM ELECTRON BEAMS IN TRAVELING WAVE TUBES Copyright © 2021 by World Scientific Publishing Co. Pte. Ltd. All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. ISBN 978-981-120-919-2 (hardcover) ISBN 978-981-120-920-8 (ebook for institutions) ISBN 978-981-120-921-5 (ebook for individuals) For any available supplementary material, please visit https://www.worldscientific.com/worldscibooks/10.1142/11523#t=suppl Desk Editor: Nur Syarfeena Binte Mohd Fauzi Typeset by Stallion Press Email: [email protected] Printed in Singapore SSyyaarrffeeeennaa -- 1111552233 -- AAnn AAnnaallyyttiicc TThheeoorryy ooff MMuullttii--ssttrreeaamm EElleeccttrroonn BBeeaammss..iinndddd 11 88//1100//22002200 22::2222::2288 ppmm October 13,2020 16:55 AnAnalyticTheoryofMulti-Stream... 9.61inx6.69in b3884-fm pagev For Tamar and Siranush v TTTThhhhiiiissss ppppaaaaggggeeee iiiinnnntttteeeennnnttttiiiioooonnnnaaaallllllllyyyy lllleeeefffftttt bbbbllllaaaannnnkkkk October 15,2020 15:44 AnAnalyticTheory ofMulti-Stream... 9.61inx6.69in b3884-fm pagevii Contents Dedication v Preface xv List of Symbols and Acronyms xvii I Review of the Theory and Its Key Elements 1 1 Introduction 3 2 Summary of the TWT-system Features and Effects 7 3 e-Beam and Multi-transmission Line Parameters 11 3.1 e-Beam Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 The MTL Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3 Recovering the MTL Matrices from Its Significant Parameters . . . . . 17 4 System Lagrangian, Field equations, Characteristic Equation and Eigenmodes 19 4.1 Matrix Polynomial Eigenvalue Problem. . . . . . . . . . . . . . . . . . 21 4.2 Characteristic Functions and Equations . . . . . . . . . . . . . . . . . 23 4.3 Characteristic Equations for Uncoupled e-Beam . . . . . . . . . . . . . 27 4.4 Eigenmodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.5 Characteristic and Admissible Velocities . . . . . . . . . . . . . . . . . 31 4.6 Values of the TWT Parameters Used for Plots. . . . . . . . . . . . . . 34 4.7 Infinite-Frequency Limit Approximation . . . . . . . . . . . . . . . . . 36 5 Wave-particle Interactions and Origins of Instability 39 5.1 Origins of Instability and Amplification . . . . . . . . . . . . . . . . . 40 5.1.1 Slow Wave and Its Negative Energy . . . . . . . . . . . . . . . 41 vii October 15,2020 15:44 AnAnalyticTheoryofMulti-Stream... 9.61inx6.69in b3884-fm pageviii viii AnAnalytic Theory of Multi-Stream Electron Beams inTraveling Wave Tubes 5.2 Our Theory on Wave-ParticleInteractions and Origins of Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.3 Our Views on Non-Fluid Aspects of Plasma . . . . . . . . . . . . . . . 44 6 Energy Transfer and Stream Velocities 47 6.1 Energy Transfer from the e-Beam to the MTL and Power Gain Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.2 Energy Balance and Stream Velocities . . . . . . . . . . . . . . . . . . 49 7 Instability Concepts and Their Graphical Representation 53 7.1 Dispersion-Instability Graph . . . . . . . . . . . . . . . . . . . . . . . . 55 7.2 Instability Concepts and Quantities . . . . . . . . . . . . . . . . . . . . 56 7.3 Space Charge, Debunching Effects . . . . . . . . . . . . . . . . . . . . 58 8 Instability Branches of the Characteristic Function 61 9 Circular Approximations to Sets of Admissible Phase Velocities 65 9.1 Type I Circular Approximations. . . . . . . . . . . . . . . . . . . . . . 65 9.2 Type II, III and IV circular approximations . . . . . . . . . . . . . . . 67 10 All-frequency Modal Branches 71 10.1 afm-Branches Involving Instability . . . . . . . . . . . . . . . . . . . . 73 10.1.1 afm-branches with negative wavenumbers . . . . . . . . . . . . 73 10.1.2 afm-branches with positive wavenumbers . . . . . . . . . . . . 74 11 Instability Phases via the Dispersion-Instability Graph 77 11.1 Instability Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 11.2 Instability Phase Transitions. . . . . . . . . . . . . . . . . . . . . . . . 78 12 Instability Structure of All-Frequency Modal Branches 81 12.1 Instability Structure for Negative Wavenumbers . . . . . . . . . . . . . 82 12.2 Instability Structure for Positive Wavenumbers . . . . . . . . . . . . . 83 12.3 Instability for Large Values of TWT-System Parameter . . . . . . . . 85 12.3.1 Negative wavenumbers . . . . . . . . . . . . . . . . . . . . . . 85 12.3.2 Positive wavenumbers . . . . . . . . . . . . . . . . . . . . . . . 85 13 Instability Nodes and the Degeneracy of the Characteristic Function 87 13.1 Onset of and Transition to Instability at its Nodes . . . . . . . . . . . 89 13.2 Instability for Small Values of TWT System Parameter. . . . . . . . . 91 13.2.1 Positive phase velocities . . . . . . . . . . . . . . . . . . . . . . 92 13.2.2 Negative phase velocities . . . . . . . . . . . . . . . . . . . . . 92 October 15,2020 15:44 AnAnalyticTheoryofMulti-Stream... 9.61inx6.69in b3884-fm pageix Contents ix 14 Instability at Critical States - The Third-Order Degeneracy 95 14.1 Third-Order Degeneracy of the Dispersion Relations at Critical States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 14.2 Dispersion-instability at critical states . . . . . . . . . . . . . . . . . . 100 15 Almost-Linear Unstable Modal Branches 107 16 Wave-packet Propagation and Amplification 111 16.1 Wave-PacketRepresentation in Dimensionless Variables . . . . . . . . 113 16.2 Wave-PacketRepresentation in Frequency Domain . . . . . . . . . . . 115 16.3 Features Special to an Exponentially Growing Wave-Packet . . . . . . 118 17 Single-Stream e-Beam and MTL 121 18 Multi-Stream e-Beam Coupled to a Single TL 127 19 MTL as an Approximation and TWT Observables 133 19.1 Recovering the MTL Coefficients through Nodal Velocities . . . . . . . 134 19.2 Recovering the MTL Coefficients through Modal Frequencies and Velocities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 20 Instability - Possibilities and Limitations 139 20.1 Effect of TWT Features on the Instability . . . . . . . . . . . . . . . . 141 20.2 Multi-Stream e-Beam TWT-System for small and large values of its parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 II Traveling Wave Tube Components 147 21 Multi-transmission Line 149 22 Multi-Stream e-Beam 153 22.1 Justification of the One-Dimensional Model . . . . . . . . . . . . . . . 155 22.2 Potential Form of the One-Dimensional Linear Model. . . . . . . . . . 156 22.3 Multi-stream e-Beam as a Dielectric Medium . . . . . . . . . . . . . . 158 22.4 Electron Beam Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . 160 22.5 e-Beam Eigenmodes, Dispersion Relations and Instability . . . . . . . 163 22.6 Bounds on e-Beam Characteristic Velocities . . . . . . . . . . . . . . . 165 22.7 e-Beam Energy Balance . . . . . . . . . . . . . . . . . . . . . . . . . . 167 22.8 Energy Balance for Eigenmodes . . . . . . . . . . . . . . . . . . . . . . 168 22.9 e-Beam Energy Balance when the Electric Potential is an Independent Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170