ebook img

An Analysis of SnO2 Nanoparticle Characteristics and Antibacterial Acti PDF

18 Pages·2017·22.98 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview An Analysis of SnO2 Nanoparticle Characteristics and Antibacterial Acti

nanomaterials Article Thermal Calcination-Based Production of SnO 2 Nanopowder: An Analysis of SnO Nanoparticle 2 Characteristics and Antibacterial Activities NaifMohammedAl-Hada1,* ID,HalimahMohamedKamari1,*,AnwarAliBaqer1,2, AbdulH.Shaari1,3andEliasSaion1 1 DepartmentofPhysics,FacultyofScience,UniversitiPutraMalaysia,Serdang43400,Selangor,Malaysia; [email protected](A.A.B.);[email protected](A.H.S.);[email protected](E.S.) 2 DepartmentofPhysics,FacultyofScienceforWomen,UniversityofBaghdad,Baghdad10071,Iraq 3 IinstituteforMathematicalResearch(INSPEM),UniversitiPutraMalaysia, Serdang43400,Selangor,Malaysia * Correspondence:[email protected](N.M.A.-H.);[email protected](H.M.K.); Tel.:+60-172-334-327(N.M.A.-H.);+60-123-906-630(H.M.K.) (cid:1)(cid:2)(cid:3)(cid:1)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7) Received:19March2018;Accepted:10April2018;Published:17April2018 Abstract: SnO nanoparticle production using thermal treatment with tin(II) chloride dihydrate 2 and polyvinylpyrrolidone capping agent precursor materials for calcination was investigated. SampleswereanalyzedusingX-raydiffraction(XRD),ScanningElectronMicroscopy(SEM),energy dispersive X-ray (EDX), transmission electron microscopy (TEM), Fourier Transform Infrared Spectroscopy(FT-IR),X-rayphotoelectronspectroscopy(XPS),diffuseUV-visreflectancespectra, photoluminescence(PL)spectraandtheelectronspinresonance(ESR).XRDanalysisfoundtetragonal crystalline structures in the SnO nanoparticles generated through calcination. EDX and FT-IR 2 spectroscopyphaseanalysisverifiedthederivationoftheSnandOintheSnO nanoparticlesamples 2 fromtheprecursormaterials. Anaveragenanoparticlesizeof4–15.5nmwasachievedbyincreasing calcinationtemperaturefrom500◦Cto800◦C,asconfirmedthroughTEM.Thevalencestateand surfacecompositionoftheresultingnanoparticlewereanalyzedusingXPS.DiffuseUV-visreflectance spectrawereusedtoevaluatetheopticalenergygapusingtheKubelka-Munkequation. Greater calcinationtemperatureresultedintheenergybandgapfallingfrom3.90eVto3.64eV.PLspectra indicatedapositiverelationshipbetweenparticlesizeandphotoluminescence. Magneticfeatures wereinvestigatedthroughESR,whichrevealedthepresenceofunpairedelectrons. Themagnetic fieldresonancedecreasesalongwithanincreaseoftheg-factorvalueasthecalcinationtemperature increasedfrom500◦Cto800◦C.Finally,EscherichiacoliATCC25922Gram(–ve)andBacillussubtilis UPMC1175Gram(+ve)wereusedforinvitroevaluationofthetinoxidenanoparticle’santibacterial activity. Thisworkindicatedthatthezoneofinhibitionof22mmhasgoodantibacterialactivity towardtheGram-positiveB.subtilisUPMC1175. Keywords: tinoxidenanoparticles;calcinationmethod;antibacterialactivity 1. Introduction Nanoscienceisplayingamajorroleintheresearchanddevelopmentofdevices,nanoplatforms, systemsandstructuresacrossnumerousareas[1–3],withanincreasingnumberofstudiesexploring theutilizationoffunctionalized,biodegradableandbiocompatiblenonmaterial[3,4]. Duetoitsspecific attributes, tinoxide(SnO )hasbeenappliedasasemiconductornanomaterialinseveraldifferent 2 studies. Tinoxide(orcassiterite)isclassifiedasaII–VIcompositesemiconductoronaccountofits Groups II and VI Periodic Table components, with 3.60 eV and 3.75 eV direct and indirect energy Nanomaterials2018,8,250;doi:10.3390/nano8040250 www.mdpi.com/journal/nanomaterials Nanomaterials2018,8,250 2of18 bandgaps[5–9]. Thestructuralattributesofnanoparticlesprovidenumerousbenefitsacrossagreat numberofapplications[10–12],withauniquetetragonalcrystallinestructureandmetaln-typeoxide demonstrating3.8eVand4.1eVdirectandindirectenergybandgaps[13]. Given the above points, SnO nanomaterials can be used with positive effect in a range of 2 applications [14–16], with the pellucidity shown in the observable solar spectrum having been utilized in optoelectronic devices such as solar photovoltaics [17–19]. Other attributes of the SnO nanostructure have been utilized for diodes, gas sensors, catalysis, antibacterial activities, 2 andbiomedicalpurposes[12,20–27]. SnO nanostructurepreparationcanbeachievedusingseveraldifferenttechniques.Theseinclude 2 theco-precipitation[26],sol-gel[28,29],solvothermaldecomposition[30,31],microwavehydrothermal synthesis[32,33]andprecipitation[34],techniques,aswellashydrothermalsynthesis[35,36],andthe polyol [37], solvothermal [38], and by microwave [39–41] methods. However, issues related to the complexity of the synthetic process, including the creation of effluent by-product, reagent toxicity, and longer reaction times, have made industrial SnO nanopowder generation difficult 2 toachieve,withthecreationofapurepowderproducthavingbeenentirelyunachievablethrough theaforementionedtechniques[42]. Adeepliteratureonthecurrentlyinvestigatedresearchtopichas beenreviewed. Therehasbeennopublishedresearchstudytocomeupwithsuchathermaltreatment ofSnO nanoparticlesrelatedtandemanalysisofantibacterialactivity. 2 Thenoveltyofthepresentmethodistointroduceseveralbenefitse.g.,flexible,easytohandleand permitsreproduciblequality. Itenablestheproductionofnanoparticleswiththedesiredproperties becauseitcanregulateparticlesizewithhighpuritynanoparticles. Inaddition,itmakesalimited useofchemicalswithnon-toxiceffluencesintothedrainagesystemandthereforeitdoesnotcause damagetotheenvironment[43–51]. Furthermore,ithasthepotentialproducttobeemployedona largescaleinindustrialandbiologicalapplications. Thisstudyaddressesthegapintheliteratureby usingbasicthermaltreatmenttechniquestoproduceanSnO nanopowderwithoutwasteproduction, 2 whichhasenvironmentaladvantages[52,53]. This paper discusses and explores the use of a novel thermal technique, wherein a precursor chloridemetallicionisusedwithapolyvinylpyrrolidone(PVP)cappingagentbeforecalcinationfor SnO nanoparticlesynthesisandtheproductionofapurenanopowder. Thisstudyalsoanalyzesthe 2 impact of temperature changes on the SnO nanopowder’s morphological, structural, and optical 2 characteristics. Thestructureoftheresultingproductisinvestigatedusingvariousanalyses, with antimicrobialactivityalsoanalyzed. 2. MaterialsandMethods 2.1. Materials Noadditionalpurificationtreatmentwasappliedtoanyofthematerialspriortotheexperiment, withallmaterialsbeingstandardresearch-gradechemicalsprovidedbySigma-Aldrich,St. Louis,MO, USA. Thespecificmaterials includedtin(II) chloridedihydrate SnCl ·2H O(M =225.65g/mol), 2 2 W 0.1HCl,polyvinylpyrrolidone(PVP)(C H NO) (Mw=58,000g/mol),anddeionizedwater. 6 9 n 2.2. Methodology Theinitialsolutionswerecreatedwith4gofPVPin100mLofdeionizedwater,withthesolutions thenincubatedat70◦Cwhilebeingvigorouslystirredfor2h. Atthe2hmark,0.2mmoloftin(II) chloridedihydratewasintroducedandmixedintothesolution. Theresultingsolutionswerepoured using a glass plate before being placed in the oven at a temperature of 80 ◦C for 24 h. The dried solutionwasthengroundintoapowderusingapestleandmortarfor30min. Calcinationatvarious temperatureswasthenconductedinaboxfurnaceoverthecourseof3h,producingthetinoxide nanoparticlesforanalysis. Nanomaterials2018,8,250 3of18 2.3. AnalysisofNanoparticleCharacteristics Severalmethodswereusedtocharacterizethetinoxidenanoparticles’morphological,structural, and optical attributes. For structural characterization, X-ray diffractometer (XRD Shimadzu 6000, Lelyweg1, Almelo, The Netherlands) was used with Cu Kα radiation at a 0.154 nm wavelength at the 2θ range of 4◦ and 80◦. Fourier-transform infrared (FT-IR) spectroscopy analysis was also performed at the 280–4000 cm−1 range. An accelerated voltage of 200 kV was used to obtain transmissionelectronmicroscopy(TEM)images,withanenergy-dispersiveX-ray(EDX)spectrometer (7533,OxfordInstruments,Oxford,UK)usedtoconductEDXspectroscopy. TheX-raysourcewas obtainedusingmonochromaticAl-Kα (hv=1486.6eV)at25.6Wwitha100µmbeamdiameterfor X-ray photoelectron spectroscopy (XPS) (ULVAC-PHI Quantera II, Ulvac-PHI, Inc., Tokyo, Japan). Additionally,widescananalysiswasconductedwithapassenergyof280eVwith1eVforeachstep, withnarrowscan/chemicalstatesanalysiscarriedoutwithapassenergyof112eVwith0.1eVfor eachstep. ModificationofbindingenergiesC–CandC–Hto284.8eVwasperformedtocorrectthe chargeatC1sbeforedeconvolution. Theopticalattributesofthenanoparticlewereanalyzedusinga UV-visspectrophotometer(ShimadzuUV-3600,Kyoto,Japan)ata200–800nmwavelengthatroom temperature. Photoluminescence(PL)wasanalyzedusingPerkinElmerspectrofluorometerLS-55, Waltham, MA, USA with a Xenon lamp at room temperature. Finally, analysis of colony-forming unitswasconductedusinganagarplateafterincubationtoassesstheantimicrobialactivityofthe SnO nanoparticle. 2 2.4. ExaminationofAntibacterialActivity Aninvitroantimicrobialanalysiswasperformedusingthediscdiffusiontechniquetoexplore theantibioticcapabilitiesoftheSnO nanoparticlesintheeventofbacterialattack. Thisallowsfora 2 comparisonoftheresistancetoantimicrobialcompounds. Thepreparednanoparticleswerealsotested withEscherichiacoliATCC25922Gram(−ve)andBacillussubtilisUPMC1175Gram(+ve). Here,apaper discwitha6mmdiameterwassuspendedin100mgofeachnanoparticlewith10mLofdeionized waterbeforebeingsubjectedtoincubationfordrying. Microbegrowthwasthenpermittedbyplacing papersontoplates,witha108-cellstandardizedmicrobecultureinaccordancewiththe0.5McFarland standard. Theplatesweresubjectto30–37◦Cinversion,witha48-hincubationperiodtoencourage bacteria growth. Following incubation, the plates were analyzed with inhibition zone diameters recorded(mm). Eachtestwentthroughthreeiterationswiththeaveragevaluetakenastheresult. MullerHintonagarmediahasbeenusedasnutrient,Streptomycin(100mg/mL)standardanddistilled waterhavebeenusedforeachbacteriumasapositiveandasnegativecontrols,respectively.Inaddition, theantibacterialtestforbulktinoxidehasbeencomparedwithpreparedtinoxidenanoparticles. 3. ResultsandDiscussion 3.1. MechanismofNanoparticles Nanoparticlegrowth,behaviorandmechanismsduringcalcinationareillustratedinFigure1. PVPwasoriginallyappliedtocomplexmetallicsaltsasastabilityagent, anditisfrequentlyused with amide groups of pyrrolidone rings as well as methylene groups for steric and electrostatic stabilization. Metallicionsweresuppressedduringthemixingstagetocapturethemwiththeamine group through ionic-dipole interaction within the polymeric chains. Due to the removal of H O 2 duringthedryingprocess,themetalliccationsbecomeimmobileinsidethepolymercavity. Organic materialsareconvertedintogases(e.g.,N ,NO,CO,CO )duringcalcination(from500◦Cto800◦C), 2 2 atwhichpointPVPalsoinfluencesthetinoxidenanoparticlenucleiformation. TheOstwaldripening phenomenonwouldarisewithoutPVP,causingthenanoparticletoexpandanddemonstrategreater surfaceenergy. Inthiscase,sterichindrancehasbeendeactivatedbyPVP,preventingtheaccumulation ofnanoparticles[54,55]. Therefore,theuseofPVPasapreventativeagentinthebreakdownofthe metalionsonthenanoparticlesurfacerendersPVPaneffectivetechniqueforminimizingnanoparticle gain[56–58]. Nanomaterials2018,8,250 4of18 Figure1.Nanoparticlegrowthmechanism. 3.2. XRDAnalysisStructuralAnalysis The results of the XRD analysis are illustrated in Figure 2, demonstrating the pre- and post-calcinationattributesoftheSnO nanoparticles. AsillustratedinFigure2a,thebroadspectrum 2 of the pre-calcination nanoparticles indicates the product’s amorphous-like behavior, as well as the non-development of the nanoparticles. The peaks shown in Figure 2b–e, on the other hand, demonstrate nanoparticle formation following calcination at 500 ◦C. The figures further illustrate thepositiveassociationbetweencalcinationandtheheight,sharpness,andnarrownessofthepeaks, indicatingthatthenanoparticlescrystalizeasthetemperatureincreases. AsillustratedintheTEM images,thisisduetothegradualincreaseofthecrystallinevolumetosurfaceratioduetothegrowth inparticlesize. ThecorrelationbetweentemperatureandcrystallinesizeisillustratedinTable1. CrystallitesizewasanalyzedusingBragg’slaw. TheSnO nanoparticleswerefoundtohavea 2 standardtetragonalstructure(JCPDS00-041-1445)[59,60],basedonthediffractionpeaks(110),(011), (020), (121), (220), (002), (130), (112), (031), (022) and (231) in the diffraction patterns. A range of 3–14mmincrystallitesizewasdeterminedforpeak(110)(thepeakwiththegreatestintensity)based onthefollowingScherrerequation: D=Kλ/βcosθ (1) whereKistheScherrerconstant(0.9),λistheX-rayirradiationwavelength(1.5418Å),andβisthe XRDpeakwidth(FWHM). Table1.XRD,TEMandenergybandgapresultsfortinoxidenanoparticlesatdifferenttemperature. Temperature(◦C) CrystalliteSize(nm) ParticleSize(nm) BandGab(Eg) 500 3 4±2 3.90 600 5 6.7±3 3.84 700 8 9.5±2 3.80 800 14 15.5±4 3.64 Nanomaterials2018,8,250 5of18 Figure2. NanoparticleXRDpatternspreparedat30◦C/roomtemperature(a). withcalcinationat 500◦C(b),600◦C(c),700◦C(d),and800◦C(e). 3.3. SEMAnalysis Thetinoxidenanoparticles’surfacemorphologywasanalyzedusingSEM,withthemicrographs foreachcalcinationtemperatureillustratedinFigure3. Asshown,thestructureofthenanoparticles isgrain-shapedandspherical,whichechoestheresultsofpreviouswork[61,62]. Itisevidentfrom Nanomaterials2018,8,250 6of18 theanalysisthatthenanoparticlestaketheshapeofalarge,near-sphericalgrainwithregularitiesat hightemperatures(Figure3a,b). Itappearsthattemperaturesof500–800◦Cduringcalcinationleadto greaternucleationandgrowthrates,asshowninFigure3b–d. Figure3.NanoparticleSEMimagesatcalciningtemperaturesof500◦C(a),600◦C(b),700◦C(c)and 800◦C(d). 3.4. EDXSpectrumAnalysis ToanalyzenanoparticlecompositionatvariouscalcinationtemperaturesEDXspectroscopywas conducted on the sample, with the results presented in Figure 4. Here, Sn: O peaks indicate the existenceofSn: Oelements,withTable2illustratingtheiratomicpercentages. Thepeakof0.3keV representsthecarbonfilmholderusedfortheanalysis. Theresultsconfirmthatthefinalnanopowder iscomprisedofpuretinoxide,withtheSn: Oatomicpercentageonlydeterminedinthefinalsample. Table2.EDXspectrashowingtheatomicpercentagesofSnandoxygenspecies. Spectrum InStats. O C Sn Total Spectrum1 Yes 60.43 4.00 35.57 100.00 Spectrum2 Yes 66.59 33.41 100.00 Spectrum3 Yes 64.40 35.60 100.00 Nanomaterials2018,8,250 7of18 Figure4.NanoparticleEDXspectrumat600◦Ccalcination. 3.5. TEMAnalysis NanoparticlemicrostructureanalysiswasperformedusingtheTEMtechnique. Asillustratedin Figure5,thenanoparticleswerefoundtohavearegularmorphology,withnanoparticlecharacteristics thenanalyzedatvariouscalcinationtemperatures(Figure5a–d). Theresultsconfirmthattheproduct morphology is spherical and homogeneous. The correlation between particle size and calcination temperature,asnotedpreviously,iscausedbytheaccrualofnearbyparticlesasthesurfacemeltsatthe highesttemperatures[63–65]. Theuseofthismethodfornanoparticleformationhasbeenshowntobe effective,withPVPimpactingparticlesizeduetoitssuppressivefunctiononparticleaccumulation. Thus,PVPisshowntobeastabilizerofparticlesize,supportingnucleation,particlesizegrowth,and particleregularity. PVPhasbeenusedpreviouslytocontrolparticlesizeandpreventnanoparticle accretion [55–58,66–68]. The results illustrated in Table 1 allow for a comparison of the XRD and TEManalyses,furtherhighlightingtherelationshipbetweencalcinationtemperatureandparticlesize (4–15.5mm). 3.6. FunctionalAnalysis Figure6illustratestheFTIRspectrumat280–4000cm−1 forthethermalcalcination-generated SnO nanoparticles. Thenanoparticlesandorganiccompoundsarereflectedintheabsorptionpeaks 2 showninFigure6a,withwavenumbersof3414cm−1assignedtoN–Hstretchingvibration,2945cm−1 toC–Hand1646cm−1 toC=O.The1428cm−1 absorptionpeakwasassignedtotheC–Hbending vibration(methylenegroup),withthe1277cm−1peakassignedtotheC–Nstretchingvibration[64]. The839cm−1 absorptionpeakrelatestotheC–Cringvibration,the639cm−1 peakstotheC–N=O bendingvibration[63],andthe540cm−1totheO–Sn–Ovibration. Itisbelievedthatthepurityofthe tinoxidenanoparticlesisthecauseofthesingleabsorptionpeak,aswellastheSnO nanoparticlewave 2 numberfluctuationbasedoncalcinationtemperature. Theenhancedcrystallinityofthenanoparticles supportsthispointregardingtheimpactofcalcination. Thesharperpeaks,representingincreased calcination,areillustratedinFigure6,withthesepeakssuggestingthatthetinoxideproductbecomes morecrystallineinstructurebecauseofincreasedcalcination. Nanomaterials2018,8,250 8of18 Figure5.NanoparticlesizedistributionhistogramandTEMmicrographsatcalcinationtemperatures of500◦C(a,a’)600◦C(b,b’)700◦C(c,c’)and800◦C(d,d’). Nanomaterials2018,8,250 9of18 Figure6.NanoparticleFTIRspectraatthe280–4500cm−1rangeatroomtemperature(a)500◦C(b), 600◦C(c),700◦C(d),and800◦C(e). 3.7. CompositionalAnalysis The Sn and O elements’ compositions phase and chemical state were analyzed using X-ray photoelectron spectroscopy (XPS). The existence of Sn, O and C elements is confirmed in the XPS resultsshowninFigure7a,withhigh-resXPSspectraforSn3d andSn3d showninFigure7b. 3/2 5/2 Thebindingenergiesof487.8eVforSn3d peakand494.9eVfortheSn3d peakareinlinewith 5/2 3/2 theresultspresentedinearlierresearch[19,27,69]. ThedeconvolutedO1sspectrumdemonstrates bindingenergiesof529.7eVand531.1eVfortwoformsofoxygen(Figure7c),whichhavebeenfound tobecorrelatedwithSnO [70,71]. Theresultsappeartoverifythepurityofthenanoparticleelements’ 2 oxidationstates. 3.8. UV-VisDiffuseReflectanceSpectra(DRS)Analysis Toidentifythenanoparticles’energybandgapsfromdiffusereflectancespectrafornanoparticle samplesproducedatvariouscalcinationtemperatures,theKubelka-Munkmethodwasused. This entailedplottingthesquareoftheKubelka-MunkfunctionF(R)2vs. energyandextendingthelinear part of the curve to F(R)2 = 0. This is demonstrated in Figure 8a–d with the process denoting the generationoftinoxidenanoparticles’directbandgapenergy. Theresultsindicatethatanincrease in calcination temperature is associated with a decrease in energy band gap value, likely due to a quantumsizeeffect. Itissuggestedthatthedecreaseinbandgapcouldbeduetotransitionsbetween Sn2+iond-shellelectrons’valanceandconductionbands[72]. Giventhis,itisdifficulttoeradicatethe particlesizeeffectonthebandgap. Itispossibletochangethebandstructureandmaterialattributes due to the reduction in the size of the particle with a reduction in band gap similarly resulting in greaterparticlesize. Thus,thepresenceofsmallerparticlesizescanbeassociatedwithoverlap,with s-electronandp-electronconductionbandsseparatinginhigherenergyconditions. Researchindicates lownuclearpotentialforelectronconductionataFermileveldistancefarfromthecenteroftheparticle, meaningthatabsorptionenergyandconductionbandenergywillbethesameinthecaseoftransitions withinthechosenquantumnumbers. Highercalcinationtemperatureswereassociatedwithlower bandgapvalues(Table1),anditissuggestedthattheriseintemperaturemaycauseanincremental increaseintheabsorptioncoefficientbecauseofanincreaseofdefectedstates. Electron-holepairsare producedthroughphotonabsorption,generatingafieldthatcouldchangetheopticalattributesand electronicstructureofnanoparticleproducts. Nanomaterials2018,8,250 10of18 Figure7.NanoparticleXPSspectraforsurvey(a),tin(b),andoxygen(c). Figure8.Nanoparticleenergybandgapatcalcinationtemperaturesof500◦C(a),600◦C(b),700◦C(c), and800◦C(d).

Description:
UPMC 1175 Gram (+ve) were used for in vitro evaluation of the tin oxide nanoparticle's antibacterial toward the Gram-positive B. subtilis UPMC 1175. Freire, P.; Vasconcelos, I. Structural, morphological and optical properties of.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.