nanomaterials Article Thermal Calcination-Based Production of SnO 2 Nanopowder: An Analysis of SnO Nanoparticle 2 Characteristics and Antibacterial Activities NaifMohammedAl-Hada1,* ID,HalimahMohamedKamari1,*,AnwarAliBaqer1,2, AbdulH.Shaari1,3andEliasSaion1 1 DepartmentofPhysics,FacultyofScience,UniversitiPutraMalaysia,Serdang43400,Selangor,Malaysia; [email protected](A.A.B.);[email protected](A.H.S.);[email protected](E.S.) 2 DepartmentofPhysics,FacultyofScienceforWomen,UniversityofBaghdad,Baghdad10071,Iraq 3 IinstituteforMathematicalResearch(INSPEM),UniversitiPutraMalaysia, Serdang43400,Selangor,Malaysia * Correspondence:[email protected](N.M.A.-H.);[email protected](H.M.K.); Tel.:+60-172-334-327(N.M.A.-H.);+60-123-906-630(H.M.K.) (cid:1)(cid:2)(cid:3)(cid:1)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7) Received:19March2018;Accepted:10April2018;Published:17April2018 Abstract: SnO nanoparticle production using thermal treatment with tin(II) chloride dihydrate 2 and polyvinylpyrrolidone capping agent precursor materials for calcination was investigated. SampleswereanalyzedusingX-raydiffraction(XRD),ScanningElectronMicroscopy(SEM),energy dispersive X-ray (EDX), transmission electron microscopy (TEM), Fourier Transform Infrared Spectroscopy(FT-IR),X-rayphotoelectronspectroscopy(XPS),diffuseUV-visreflectancespectra, photoluminescence(PL)spectraandtheelectronspinresonance(ESR).XRDanalysisfoundtetragonal crystalline structures in the SnO nanoparticles generated through calcination. EDX and FT-IR 2 spectroscopyphaseanalysisverifiedthederivationoftheSnandOintheSnO nanoparticlesamples 2 fromtheprecursormaterials. Anaveragenanoparticlesizeof4–15.5nmwasachievedbyincreasing calcinationtemperaturefrom500◦Cto800◦C,asconfirmedthroughTEM.Thevalencestateand surfacecompositionoftheresultingnanoparticlewereanalyzedusingXPS.DiffuseUV-visreflectance spectrawereusedtoevaluatetheopticalenergygapusingtheKubelka-Munkequation. Greater calcinationtemperatureresultedintheenergybandgapfallingfrom3.90eVto3.64eV.PLspectra indicatedapositiverelationshipbetweenparticlesizeandphotoluminescence. Magneticfeatures wereinvestigatedthroughESR,whichrevealedthepresenceofunpairedelectrons. Themagnetic fieldresonancedecreasesalongwithanincreaseoftheg-factorvalueasthecalcinationtemperature increasedfrom500◦Cto800◦C.Finally,EscherichiacoliATCC25922Gram(–ve)andBacillussubtilis UPMC1175Gram(+ve)wereusedforinvitroevaluationofthetinoxidenanoparticle’santibacterial activity. Thisworkindicatedthatthezoneofinhibitionof22mmhasgoodantibacterialactivity towardtheGram-positiveB.subtilisUPMC1175. Keywords: tinoxidenanoparticles;calcinationmethod;antibacterialactivity 1. Introduction Nanoscienceisplayingamajorroleintheresearchanddevelopmentofdevices,nanoplatforms, systemsandstructuresacrossnumerousareas[1–3],withanincreasingnumberofstudiesexploring theutilizationoffunctionalized,biodegradableandbiocompatiblenonmaterial[3,4]. Duetoitsspecific attributes, tinoxide(SnO )hasbeenappliedasasemiconductornanomaterialinseveraldifferent 2 studies. Tinoxide(orcassiterite)isclassifiedasaII–VIcompositesemiconductoronaccountofits Groups II and VI Periodic Table components, with 3.60 eV and 3.75 eV direct and indirect energy Nanomaterials2018,8,250;doi:10.3390/nano8040250 www.mdpi.com/journal/nanomaterials Nanomaterials2018,8,250 2of18 bandgaps[5–9]. Thestructuralattributesofnanoparticlesprovidenumerousbenefitsacrossagreat numberofapplications[10–12],withauniquetetragonalcrystallinestructureandmetaln-typeoxide demonstrating3.8eVand4.1eVdirectandindirectenergybandgaps[13]. Given the above points, SnO nanomaterials can be used with positive effect in a range of 2 applications [14–16], with the pellucidity shown in the observable solar spectrum having been utilized in optoelectronic devices such as solar photovoltaics [17–19]. Other attributes of the SnO nanostructure have been utilized for diodes, gas sensors, catalysis, antibacterial activities, 2 andbiomedicalpurposes[12,20–27]. SnO nanostructurepreparationcanbeachievedusingseveraldifferenttechniques.Theseinclude 2 theco-precipitation[26],sol-gel[28,29],solvothermaldecomposition[30,31],microwavehydrothermal synthesis[32,33]andprecipitation[34],techniques,aswellashydrothermalsynthesis[35,36],andthe polyol [37], solvothermal [38], and by microwave [39–41] methods. However, issues related to the complexity of the synthetic process, including the creation of effluent by-product, reagent toxicity, and longer reaction times, have made industrial SnO nanopowder generation difficult 2 toachieve,withthecreationofapurepowderproducthavingbeenentirelyunachievablethrough theaforementionedtechniques[42]. Adeepliteratureonthecurrentlyinvestigatedresearchtopichas beenreviewed. Therehasbeennopublishedresearchstudytocomeupwithsuchathermaltreatment ofSnO nanoparticlesrelatedtandemanalysisofantibacterialactivity. 2 Thenoveltyofthepresentmethodistointroduceseveralbenefitse.g.,flexible,easytohandleand permitsreproduciblequality. Itenablestheproductionofnanoparticleswiththedesiredproperties becauseitcanregulateparticlesizewithhighpuritynanoparticles. Inaddition,itmakesalimited useofchemicalswithnon-toxiceffluencesintothedrainagesystemandthereforeitdoesnotcause damagetotheenvironment[43–51]. Furthermore,ithasthepotentialproducttobeemployedona largescaleinindustrialandbiologicalapplications. Thisstudyaddressesthegapintheliteratureby usingbasicthermaltreatmenttechniquestoproduceanSnO nanopowderwithoutwasteproduction, 2 whichhasenvironmentaladvantages[52,53]. This paper discusses and explores the use of a novel thermal technique, wherein a precursor chloridemetallicionisusedwithapolyvinylpyrrolidone(PVP)cappingagentbeforecalcinationfor SnO nanoparticlesynthesisandtheproductionofapurenanopowder. Thisstudyalsoanalyzesthe 2 impact of temperature changes on the SnO nanopowder’s morphological, structural, and optical 2 characteristics. Thestructureoftheresultingproductisinvestigatedusingvariousanalyses, with antimicrobialactivityalsoanalyzed. 2. MaterialsandMethods 2.1. Materials Noadditionalpurificationtreatmentwasappliedtoanyofthematerialspriortotheexperiment, withallmaterialsbeingstandardresearch-gradechemicalsprovidedbySigma-Aldrich,St. Louis,MO, USA. Thespecificmaterials includedtin(II) chloridedihydrate SnCl ·2H O(M =225.65g/mol), 2 2 W 0.1HCl,polyvinylpyrrolidone(PVP)(C H NO) (Mw=58,000g/mol),anddeionizedwater. 6 9 n 2.2. Methodology Theinitialsolutionswerecreatedwith4gofPVPin100mLofdeionizedwater,withthesolutions thenincubatedat70◦Cwhilebeingvigorouslystirredfor2h. Atthe2hmark,0.2mmoloftin(II) chloridedihydratewasintroducedandmixedintothesolution. Theresultingsolutionswerepoured using a glass plate before being placed in the oven at a temperature of 80 ◦C for 24 h. The dried solutionwasthengroundintoapowderusingapestleandmortarfor30min. Calcinationatvarious temperatureswasthenconductedinaboxfurnaceoverthecourseof3h,producingthetinoxide nanoparticlesforanalysis. Nanomaterials2018,8,250 3of18 2.3. AnalysisofNanoparticleCharacteristics Severalmethodswereusedtocharacterizethetinoxidenanoparticles’morphological,structural, and optical attributes. For structural characterization, X-ray diffractometer (XRD Shimadzu 6000, Lelyweg1, Almelo, The Netherlands) was used with Cu Kα radiation at a 0.154 nm wavelength at the 2θ range of 4◦ and 80◦. Fourier-transform infrared (FT-IR) spectroscopy analysis was also performed at the 280–4000 cm−1 range. An accelerated voltage of 200 kV was used to obtain transmissionelectronmicroscopy(TEM)images,withanenergy-dispersiveX-ray(EDX)spectrometer (7533,OxfordInstruments,Oxford,UK)usedtoconductEDXspectroscopy. TheX-raysourcewas obtainedusingmonochromaticAl-Kα (hv=1486.6eV)at25.6Wwitha100µmbeamdiameterfor X-ray photoelectron spectroscopy (XPS) (ULVAC-PHI Quantera II, Ulvac-PHI, Inc., Tokyo, Japan). Additionally,widescananalysiswasconductedwithapassenergyof280eVwith1eVforeachstep, withnarrowscan/chemicalstatesanalysiscarriedoutwithapassenergyof112eVwith0.1eVfor eachstep. ModificationofbindingenergiesC–CandC–Hto284.8eVwasperformedtocorrectthe chargeatC1sbeforedeconvolution. Theopticalattributesofthenanoparticlewereanalyzedusinga UV-visspectrophotometer(ShimadzuUV-3600,Kyoto,Japan)ata200–800nmwavelengthatroom temperature. Photoluminescence(PL)wasanalyzedusingPerkinElmerspectrofluorometerLS-55, Waltham, MA, USA with a Xenon lamp at room temperature. Finally, analysis of colony-forming unitswasconductedusinganagarplateafterincubationtoassesstheantimicrobialactivityofthe SnO nanoparticle. 2 2.4. ExaminationofAntibacterialActivity Aninvitroantimicrobialanalysiswasperformedusingthediscdiffusiontechniquetoexplore theantibioticcapabilitiesoftheSnO nanoparticlesintheeventofbacterialattack. Thisallowsfora 2 comparisonoftheresistancetoantimicrobialcompounds. Thepreparednanoparticleswerealsotested withEscherichiacoliATCC25922Gram(−ve)andBacillussubtilisUPMC1175Gram(+ve). Here,apaper discwitha6mmdiameterwassuspendedin100mgofeachnanoparticlewith10mLofdeionized waterbeforebeingsubjectedtoincubationfordrying. Microbegrowthwasthenpermittedbyplacing papersontoplates,witha108-cellstandardizedmicrobecultureinaccordancewiththe0.5McFarland standard. Theplatesweresubjectto30–37◦Cinversion,witha48-hincubationperiodtoencourage bacteria growth. Following incubation, the plates were analyzed with inhibition zone diameters recorded(mm). Eachtestwentthroughthreeiterationswiththeaveragevaluetakenastheresult. MullerHintonagarmediahasbeenusedasnutrient,Streptomycin(100mg/mL)standardanddistilled waterhavebeenusedforeachbacteriumasapositiveandasnegativecontrols,respectively.Inaddition, theantibacterialtestforbulktinoxidehasbeencomparedwithpreparedtinoxidenanoparticles. 3. ResultsandDiscussion 3.1. MechanismofNanoparticles Nanoparticlegrowth,behaviorandmechanismsduringcalcinationareillustratedinFigure1. PVPwasoriginallyappliedtocomplexmetallicsaltsasastabilityagent, anditisfrequentlyused with amide groups of pyrrolidone rings as well as methylene groups for steric and electrostatic stabilization. Metallicionsweresuppressedduringthemixingstagetocapturethemwiththeamine group through ionic-dipole interaction within the polymeric chains. Due to the removal of H O 2 duringthedryingprocess,themetalliccationsbecomeimmobileinsidethepolymercavity. Organic materialsareconvertedintogases(e.g.,N ,NO,CO,CO )duringcalcination(from500◦Cto800◦C), 2 2 atwhichpointPVPalsoinfluencesthetinoxidenanoparticlenucleiformation. TheOstwaldripening phenomenonwouldarisewithoutPVP,causingthenanoparticletoexpandanddemonstrategreater surfaceenergy. Inthiscase,sterichindrancehasbeendeactivatedbyPVP,preventingtheaccumulation ofnanoparticles[54,55]. Therefore,theuseofPVPasapreventativeagentinthebreakdownofthe metalionsonthenanoparticlesurfacerendersPVPaneffectivetechniqueforminimizingnanoparticle gain[56–58]. Nanomaterials2018,8,250 4of18 Figure1.Nanoparticlegrowthmechanism. 3.2. XRDAnalysisStructuralAnalysis The results of the XRD analysis are illustrated in Figure 2, demonstrating the pre- and post-calcinationattributesoftheSnO nanoparticles. AsillustratedinFigure2a,thebroadspectrum 2 of the pre-calcination nanoparticles indicates the product’s amorphous-like behavior, as well as the non-development of the nanoparticles. The peaks shown in Figure 2b–e, on the other hand, demonstrate nanoparticle formation following calcination at 500 ◦C. The figures further illustrate thepositiveassociationbetweencalcinationandtheheight,sharpness,andnarrownessofthepeaks, indicatingthatthenanoparticlescrystalizeasthetemperatureincreases. AsillustratedintheTEM images,thisisduetothegradualincreaseofthecrystallinevolumetosurfaceratioduetothegrowth inparticlesize. ThecorrelationbetweentemperatureandcrystallinesizeisillustratedinTable1. CrystallitesizewasanalyzedusingBragg’slaw. TheSnO nanoparticleswerefoundtohavea 2 standardtetragonalstructure(JCPDS00-041-1445)[59,60],basedonthediffractionpeaks(110),(011), (020), (121), (220), (002), (130), (112), (031), (022) and (231) in the diffraction patterns. A range of 3–14mmincrystallitesizewasdeterminedforpeak(110)(thepeakwiththegreatestintensity)based onthefollowingScherrerequation: D=Kλ/βcosθ (1) whereKistheScherrerconstant(0.9),λistheX-rayirradiationwavelength(1.5418Å),andβisthe XRDpeakwidth(FWHM). Table1.XRD,TEMandenergybandgapresultsfortinoxidenanoparticlesatdifferenttemperature. Temperature(◦C) CrystalliteSize(nm) ParticleSize(nm) BandGab(Eg) 500 3 4±2 3.90 600 5 6.7±3 3.84 700 8 9.5±2 3.80 800 14 15.5±4 3.64 Nanomaterials2018,8,250 5of18 Figure2. NanoparticleXRDpatternspreparedat30◦C/roomtemperature(a). withcalcinationat 500◦C(b),600◦C(c),700◦C(d),and800◦C(e). 3.3. SEMAnalysis Thetinoxidenanoparticles’surfacemorphologywasanalyzedusingSEM,withthemicrographs foreachcalcinationtemperatureillustratedinFigure3. Asshown,thestructureofthenanoparticles isgrain-shapedandspherical,whichechoestheresultsofpreviouswork[61,62]. Itisevidentfrom Nanomaterials2018,8,250 6of18 theanalysisthatthenanoparticlestaketheshapeofalarge,near-sphericalgrainwithregularitiesat hightemperatures(Figure3a,b). Itappearsthattemperaturesof500–800◦Cduringcalcinationleadto greaternucleationandgrowthrates,asshowninFigure3b–d. Figure3.NanoparticleSEMimagesatcalciningtemperaturesof500◦C(a),600◦C(b),700◦C(c)and 800◦C(d). 3.4. EDXSpectrumAnalysis ToanalyzenanoparticlecompositionatvariouscalcinationtemperaturesEDXspectroscopywas conducted on the sample, with the results presented in Figure 4. Here, Sn: O peaks indicate the existenceofSn: Oelements,withTable2illustratingtheiratomicpercentages. Thepeakof0.3keV representsthecarbonfilmholderusedfortheanalysis. Theresultsconfirmthatthefinalnanopowder iscomprisedofpuretinoxide,withtheSn: Oatomicpercentageonlydeterminedinthefinalsample. Table2.EDXspectrashowingtheatomicpercentagesofSnandoxygenspecies. Spectrum InStats. O C Sn Total Spectrum1 Yes 60.43 4.00 35.57 100.00 Spectrum2 Yes 66.59 33.41 100.00 Spectrum3 Yes 64.40 35.60 100.00 Nanomaterials2018,8,250 7of18 Figure4.NanoparticleEDXspectrumat600◦Ccalcination. 3.5. TEMAnalysis NanoparticlemicrostructureanalysiswasperformedusingtheTEMtechnique. Asillustratedin Figure5,thenanoparticleswerefoundtohavearegularmorphology,withnanoparticlecharacteristics thenanalyzedatvariouscalcinationtemperatures(Figure5a–d). Theresultsconfirmthattheproduct morphology is spherical and homogeneous. The correlation between particle size and calcination temperature,asnotedpreviously,iscausedbytheaccrualofnearbyparticlesasthesurfacemeltsatthe highesttemperatures[63–65]. Theuseofthismethodfornanoparticleformationhasbeenshowntobe effective,withPVPimpactingparticlesizeduetoitssuppressivefunctiononparticleaccumulation. Thus,PVPisshowntobeastabilizerofparticlesize,supportingnucleation,particlesizegrowth,and particleregularity. PVPhasbeenusedpreviouslytocontrolparticlesizeandpreventnanoparticle accretion [55–58,66–68]. The results illustrated in Table 1 allow for a comparison of the XRD and TEManalyses,furtherhighlightingtherelationshipbetweencalcinationtemperatureandparticlesize (4–15.5mm). 3.6. FunctionalAnalysis Figure6illustratestheFTIRspectrumat280–4000cm−1 forthethermalcalcination-generated SnO nanoparticles. Thenanoparticlesandorganiccompoundsarereflectedintheabsorptionpeaks 2 showninFigure6a,withwavenumbersof3414cm−1assignedtoN–Hstretchingvibration,2945cm−1 toC–Hand1646cm−1 toC=O.The1428cm−1 absorptionpeakwasassignedtotheC–Hbending vibration(methylenegroup),withthe1277cm−1peakassignedtotheC–Nstretchingvibration[64]. The839cm−1 absorptionpeakrelatestotheC–Cringvibration,the639cm−1 peakstotheC–N=O bendingvibration[63],andthe540cm−1totheO–Sn–Ovibration. Itisbelievedthatthepurityofthe tinoxidenanoparticlesisthecauseofthesingleabsorptionpeak,aswellastheSnO nanoparticlewave 2 numberfluctuationbasedoncalcinationtemperature. Theenhancedcrystallinityofthenanoparticles supportsthispointregardingtheimpactofcalcination. Thesharperpeaks,representingincreased calcination,areillustratedinFigure6,withthesepeakssuggestingthatthetinoxideproductbecomes morecrystallineinstructurebecauseofincreasedcalcination. Nanomaterials2018,8,250 8of18 Figure5.NanoparticlesizedistributionhistogramandTEMmicrographsatcalcinationtemperatures of500◦C(a,a’)600◦C(b,b’)700◦C(c,c’)and800◦C(d,d’). Nanomaterials2018,8,250 9of18 Figure6.NanoparticleFTIRspectraatthe280–4500cm−1rangeatroomtemperature(a)500◦C(b), 600◦C(c),700◦C(d),and800◦C(e). 3.7. CompositionalAnalysis The Sn and O elements’ compositions phase and chemical state were analyzed using X-ray photoelectron spectroscopy (XPS). The existence of Sn, O and C elements is confirmed in the XPS resultsshowninFigure7a,withhigh-resXPSspectraforSn3d andSn3d showninFigure7b. 3/2 5/2 Thebindingenergiesof487.8eVforSn3d peakand494.9eVfortheSn3d peakareinlinewith 5/2 3/2 theresultspresentedinearlierresearch[19,27,69]. ThedeconvolutedO1sspectrumdemonstrates bindingenergiesof529.7eVand531.1eVfortwoformsofoxygen(Figure7c),whichhavebeenfound tobecorrelatedwithSnO [70,71]. Theresultsappeartoverifythepurityofthenanoparticleelements’ 2 oxidationstates. 3.8. UV-VisDiffuseReflectanceSpectra(DRS)Analysis Toidentifythenanoparticles’energybandgapsfromdiffusereflectancespectrafornanoparticle samplesproducedatvariouscalcinationtemperatures,theKubelka-Munkmethodwasused. This entailedplottingthesquareoftheKubelka-MunkfunctionF(R)2vs. energyandextendingthelinear part of the curve to F(R)2 = 0. This is demonstrated in Figure 8a–d with the process denoting the generationoftinoxidenanoparticles’directbandgapenergy. Theresultsindicatethatanincrease in calcination temperature is associated with a decrease in energy band gap value, likely due to a quantumsizeeffect. Itissuggestedthatthedecreaseinbandgapcouldbeduetotransitionsbetween Sn2+iond-shellelectrons’valanceandconductionbands[72]. Giventhis,itisdifficulttoeradicatethe particlesizeeffectonthebandgap. Itispossibletochangethebandstructureandmaterialattributes due to the reduction in the size of the particle with a reduction in band gap similarly resulting in greaterparticlesize. Thus,thepresenceofsmallerparticlesizescanbeassociatedwithoverlap,with s-electronandp-electronconductionbandsseparatinginhigherenergyconditions. Researchindicates lownuclearpotentialforelectronconductionataFermileveldistancefarfromthecenteroftheparticle, meaningthatabsorptionenergyandconductionbandenergywillbethesameinthecaseoftransitions withinthechosenquantumnumbers. Highercalcinationtemperatureswereassociatedwithlower bandgapvalues(Table1),anditissuggestedthattheriseintemperaturemaycauseanincremental increaseintheabsorptioncoefficientbecauseofanincreaseofdefectedstates. Electron-holepairsare producedthroughphotonabsorption,generatingafieldthatcouldchangetheopticalattributesand electronicstructureofnanoparticleproducts. Nanomaterials2018,8,250 10of18 Figure7.NanoparticleXPSspectraforsurvey(a),tin(b),andoxygen(c). Figure8.Nanoparticleenergybandgapatcalcinationtemperaturesof500◦C(a),600◦C(b),700◦C(c), and800◦C(d).
Description: