ebook img

an acoustic countermeasure to supercavitating torpedoes PDF

290 Pages·2009·14.77 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview an acoustic countermeasure to supercavitating torpedoes

AN ACOUSTIC COUNTERMEASURE TO SUPERCAVITATING TORPEDOES A Thesis Presented to The Academic Faculty by Peter J. K. Cameron In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Mechanical Engineering Georgia Institute of Technology May 2009 Copyright (cid:13)c 2009 by Peter J. K. Cameron AN ACOUSTIC COUNTERMEASURE TO SUPERCAVITATING TORPEDOES Approved by: Dr. P. H. Rogers, Committee Chair Dr. M. K. Smith School of Mechanical Engineering School of Mechanical Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. A. A. Ferri D. Trivett School of Mechanical Engineering School of Mechanical Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. M. Ruzzene Dr. B. T. Zinn School of Aerospace Engineering School of Aerospace Engineering Georgia Institute of Technology Georgia Institute of Technology Date Approved: May 11, 2009 ACKNOWLEDGEMENTS I would like to express my gratitude to Professor Peter H. Rogers, who, as my advisor, has guided me through and supported my research work. It has been a privilege to be his student and to be able to benefit from his expertise, experience, and insight. I would also like to thank my other committee members, Dr. Aldo A. Ferri, Dr. Massimo Ruzzene, Dr. Marc K. Smith, Dave Trivett, and Dr. Ben T. Zinn for their input and suggestions. I wish a special thanks to John Doane for countless and invaluable discussions, advice, and ideas throughout the duration of my dissertation work. Many thanks also go to Dave Gifford for his input, advice, help, and experience with various aspects of my experimental work. I am also very grateful to others in our research group for their interest in my work and the resulting discussions: Jayme Caspall, Jim Martin, Gregg Larson, Francois Guillot, and Michael Gray. I would like to thank my friends for support in all aspects of life as a gradu- ate student: James Hamlin, Suzanna Sayre, Melissa Deen Hallow, Rebecca Burnos, Kacey-Jane Ivey, Stephen Steinmann, Laura Stiltz, Nick Krizan, Eric Stockwell, Shai Birmaher, Gerald Lopez, Mike Leclerc, Mark Kiefert, Mark Gertrudes, and Neil Ferrier. I can not thank my family enough for their love and support: my parents, of course, Kenneth and Marie, and my three brothers, Kim, Jamie, and Michael. This work was entirely supported by Professor Peter H. Rogers through the Rae and Frank H. Neely Chair. iii TABLE OF CONTENTS ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii LIST OF SYMBOLS OR ABBREVIATIONS . . . . . . . . . . . . . . . . . . xvii GLOSSARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Introduction to Cavitation and Supercavitation . . . . . . . . . . . 2 1.3 Current Torpedo Countermeasures . . . . . . . . . . . . . . . . . . 5 1.4 Thesis Hypothesis: An Acoustic Countermeasure . . . . . . . . . . 6 1.5 Research Questions and Objectives . . . . . . . . . . . . . . . . . . 6 1.6 Research Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 II BACKGROUND AND SURVEY OF RELEVANT WORK . . . . . . . . 9 2.1 Supercavitation of Free Projectiles . . . . . . . . . . . . . . . . . . 10 2.1.1 Analytical Models for Cavity Prediction . . . . . . . . . . . 11 2.1.1.1 Garabedian’s Supercavity Shape Prediction Model 13 2.1.1.2 Logvinovich’s Supercavity Prediction Model . . . . 14 2.1.1.3 Some Other Supercavity Prediction Models . . . . 16 2.1.2 Numerical Modeling for Cavitation and Supercavitation . . 18 2.1.2.1 Boundry Element Methods . . . . . . . . . . . . . 19 2.1.2.2 Slender Body Theory . . . . . . . . . . . . . . . . 19 2.1.2.3 Computational Fluid Dynamics (CFD) . . . . . . 20 2.1.3 Projectile Dynamics . . . . . . . . . . . . . . . . . . . . . . 22 2.1.3.1 Forces on a Disk Shaped Cavitator . . . . . . . . . 23 iv 2.1.3.2 Forces on the Projectile Tail . . . . . . . . . . . . 26 2.1.3.3 Projectile Trajectory . . . . . . . . . . . . . . . . . 29 2.1.3.4 Projectile Dynamics Simulations . . . . . . . . . . 32 2.1.4 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . 34 2.2 Focused Acoustics in Water . . . . . . . . . . . . . . . . . . . . . . 36 2.2.1 Focused Signals . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.2.2 Acoustic Cavitation in Water . . . . . . . . . . . . . . . . . 38 2.2.2.1 Experimental Findings and Cavitation Theory . . 40 2.2.2.2 Detection of Acoustic Cavitation . . . . . . . . . . 42 2.2.3 Properties of Bubbly Water . . . . . . . . . . . . . . . . . . 44 2.2.4 Time Reversal Acoustics . . . . . . . . . . . . . . . . . . . . 47 III SIMULATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.1 Modeling the Supercavity Shape Around the Projectile . . . . . . . 51 3.2 Supercavitating Body Dynamics Simulation . . . . . . . . . . . . . 54 3.3 Effects of Imposed Pressures on A Supercavity . . . . . . . . . . . 62 3.3.1 Relevant Work in the Literature . . . . . . . . . . . . . . . 62 3.3.2 Investigation of an Externally Imposed Acoustic Signal . . . 64 IV EXPERIMENT DESIGN AND TESTING . . . . . . . . . . . . . . . . . 68 4.1 Apparatus Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.1.1 General Approach . . . . . . . . . . . . . . . . . . . . . . . 69 4.1.2 Water Tank . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.1.3 Firing Mechanism . . . . . . . . . . . . . . . . . . . . . . . 70 4.1.4 Projectiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.2 Experimental Measurements . . . . . . . . . . . . . . . . . . . . . . 78 4.2.1 Photography: Imaging and Measurement . . . . . . . . . . . 78 4.2.1.1 Photography: Imaging . . . . . . . . . . . . . . . . 78 4.2.1.2 Photography: Speed Measurement . . . . . . . . . 82 4.2.1.3 Photography: Cavity Shape Measurement . . . . . 82 v 4.2.2 Projectile Speed Measurement Using Electromagnetic Induc- tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.2.3 Measurement of Impact Location . . . . . . . . . . . . . . . 89 4.3 Apparatus Testing and Control Experiment Data . . . . . . . . . . 91 4.3.1 General Flight Characteristics . . . . . . . . . . . . . . . . . 92 4.3.2 Projectile Trajectory Data . . . . . . . . . . . . . . . . . . . 93 4.3.3 Projectile Speed Data . . . . . . . . . . . . . . . . . . . . . 99 4.3.4 Cavity Geometry . . . . . . . . . . . . . . . . . . . . . . . . 103 4.3.5 Summary of Control Shot Statistics . . . . . . . . . . . . . . 106 4.4 Acoustic Array Design and Sound Field Measurements . . . . . . . 107 4.4.1 General Array Design . . . . . . . . . . . . . . . . . . . . . 108 4.4.1.1 Geometric Configuration . . . . . . . . . . . . . . 108 4.4.1.2 Source Transducer Characterization . . . . . . . . 110 4.4.1.3 Power Supply . . . . . . . . . . . . . . . . . . . . . 113 4.4.2 Triggering the Acoustic Signal . . . . . . . . . . . . . . . . . 114 4.4.3 Sound Field in a Free Field Environment with a Low Ampli- tude Sound Pressure . . . . . . . . . . . . . . . . . . . . . . 115 4.4.3.1 Geometric Array Symmetry . . . . . . . . . . . . . 116 4.4.3.2 Measure of Array Focus and Tuning . . . . . . . . 117 4.4.3.3 Sound Field . . . . . . . . . . . . . . . . . . . . . 120 4.4.4 Sound Field in the Confined Environment with a Low Am- plitude Sound Pressure . . . . . . . . . . . . . . . . . . . . 125 4.4.4.1 Configuration . . . . . . . . . . . . . . . . . . . . . 127 4.4.4.2 Sound Field . . . . . . . . . . . . . . . . . . . . . 128 4.4.5 Summary of Sound Field Results for Linear Acoustic Ampli- tudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 4.4.6 Sound Field in the Confined Environment with a High Am- plitude Sound Pressure . . . . . . . . . . . . . . . . . . . . 138 V EXPERIMENTS AND RESULTS . . . . . . . . . . . . . . . . . . . . . 147 5.1 General Overview of Experiment Cases . . . . . . . . . . . . . . . . 148 vi 5.2 Notes on Statistical Measures and Inferences . . . . . . . . . . . . . 150 5.2.1 Target Impact Location Analysis . . . . . . . . . . . . . . . 150 5.2.1.1 Inferences Based on Coordinate Direction Standard Deviation . . . . . . . . . . . . . . . . . . . . . . . 150 5.2.1.2 Inferences Based on Circular Error Probable . . . 151 5.2.2 Projectile Speed Analysis . . . . . . . . . . . . . . . . . . . 151 5.3 Experiment Description and Results Presentation . . . . . . . . . . 152 5.3.1 Experiment Description and Results: Varying Signal Ampli- tude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 5.3.1.1 Experiment Description . . . . . . . . . . . . . . . 152 5.3.1.2 Sound Pressure Recordings . . . . . . . . . . . . . 154 5.3.1.3 Imaging . . . . . . . . . . . . . . . . . . . . . . . . 157 5.3.1.4 Cavity Dimensions . . . . . . . . . . . . . . . . . . 159 5.3.1.5 Target Impact Location . . . . . . . . . . . . . . . 166 5.3.1.6 Projectile Speed . . . . . . . . . . . . . . . . . . . 167 5.3.2 ExperimentDescriptionandResults: VaryingSignalFrequency171 5.3.2.1 Experiment Description . . . . . . . . . . . . . . . 171 5.3.2.2 Sound Pressure Recordings . . . . . . . . . . . . . 172 5.3.2.3 Imaging . . . . . . . . . . . . . . . . . . . . . . . . 172 5.3.2.4 Cavity Dimensions . . . . . . . . . . . . . . . . . . 173 5.3.2.5 Target Impact Location . . . . . . . . . . . . . . . 181 5.3.2.6 Projectile Speed . . . . . . . . . . . . . . . . . . . 183 5.4 Interpretation of the Experiment Results . . . . . . . . . . . . . . . 188 5.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 188 5.4.2 Further Investigation of the Results . . . . . . . . . . . . . . 189 5.4.3 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 5.4.3.1 The Hypothesis that Changes in Cavity Geometry Adversely Affect Projectile Accuracy . . . . . . . . 197 vii 5.4.3.2 TheHypothesisthatAcousticCavitationAltersthe Medium and Thus Adversely Affects Projectile Ac- curacy . . . . . . . . . . . . . . . . . . . . . . . . . 198 VI CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 6.1 Summary of the Work . . . . . . . . . . . . . . . . . . . . . . . . . 207 6.2 Discussion of the Research Questions . . . . . . . . . . . . . . . . . 208 6.3 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 210 6.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 6.4.1 Developments of the Current Work . . . . . . . . . . . . . . 211 6.4.1.1 Conducting Experiment Cases with a More Com- prehensive Range of Amplitudes . . . . . . . . . . 212 6.4.1.2 Conducting Experiment Cases with a More Com- prehensive Range of Frequencies . . . . . . . . . . 212 6.4.1.3 Subjecting the Cavity to an Asymmetric Pressure Field . . . . . . . . . . . . . . . . . . . . . . . . . 215 6.4.1.4 Optimization and Enhancement of the Effect . . . 215 6.4.2 Suggested Research Directions . . . . . . . . . . . . . . . . 216 6.4.2.1 Work Towards a Practical Application . . . . . . . 216 6.4.2.2 Fluid Models and Experiments . . . . . . . . . . . 218 APPENDIX A LOGVINOVICH’S MODEL FOR CAVITY SHAPE PREDIC- TION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 A.1 Logvinovich: Energy Approach . . . . . . . . . . . . . . . . . . . . 220 A.2 Logvinovich: Newtonian Approach . . . . . . . . . . . . . . . . . . 222 APPENDIX B PROJECTILE TECHNICAL DRAWINGS . . . . . . . . . 226 B.1 Projectile Design Used in the Experiments . . . . . . . . . . . . . . 226 B.2 Projectile Designs Tested but not Used in This Work . . . . . . . . 226 APPENDIX C DRAG COEFFICIENT DATA FROM KICENIUK 1954 FOR DISK CAVITATORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 APPENDIX D HYDROPHONE CALIBRATIONS . . . . . . . . . . . . . 235 D.1 ReciprocityCalibrationfortheHydrophone: B&K8103(SN:2206083) 236 viii D.2 Comparison Calibration for the Hydrophone: B&K 8100 (SN:1216465)240 D.3 Hydrophone Polarization . . . . . . . . . . . . . . . . . . . . . . . . 240 D.4 Hydrophone Calibration Curves Provided by the Manufacturer . . 242 APPENDIX E ITC 6135-1 TRANSDUCER TRANSMITTING VOLTAGE RESPONSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 APPENDIX F SAMPLE CONSECUTIVE FRAMES FROM A TYPICAL SHOT WITH NO IMPOSED ACOUSTIC PRESSURE . . . . . . . . . . 247 APPENDIX G SAMPLE CONSECUTIVE FRAMES FROM A TYPICAL SHOT WITH AN IMPOSED ACOUSTIC PRESSURE . . . . . . . . . . 248 APPENDIX H ACOUSTIC PRESSURE SIGNALS . . . . . . . . . . . . . 249 APPENDIX I TARGET IMPACT LOCATIONS . . . . . . . . . . . . . . 257 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 ix LIST OF TABLES 1 Statistics of manufactured projectile mass and dimensions . . . . . . 78 2 Polynomialcoefficientsforbestfitlinesandtheoreticalcurvesinfigure29105 3 Summary of control sample statistics . . . . . . . . . . . . . . . . . . 106 4 Summary of the array focal region in a free-field environment . . . . . 138 5 Approximate typical amplitudes for the attenuation levels discussed in the text. For plots of typical pressure measurements for each case see appendix H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 6 Average values of the measurements of cavity radius at the projectile tail that are presented in figure 57 . . . . . . . . . . . . . . . . . . . . 161 7 Measures of projectile accuracy for the experiment cases with ranging pressure amplitude at a signal frequency of 12 kHz . . . . . . . . . . 167 8 Drag coefficients calculated from measured speeds for the varying am- plitude experiments at 12 kHz . . . . . . . . . . . . . . . . . . . . . . 168 9 Summary of the experiment cases done . . . . . . . . . . . . . . . . . 171 10 Average values of the measurements of cavity radius at the projectile tail that are presented in figure 63. . . . . . . . . . . . . . . . . . . . 178 11 Average values of the measurements of cavity radius at the projectile tail that are presented in figure 64. . . . . . . . . . . . . . . . . . . . 178 12 Measures of projectile accuracy for the experiment cases with medium level acoustic pressure amplitude and ranging signal frequency . . . . 182 13 Measures of projectile accuracy for the experiment cases with low level acoustic pressure amplitude and ranging signal frequency . . . . . . . 182 14 Drag coefficients calculated from measured speeds for the varying fre- quency experiments at medium amplitude . . . . . . . . . . . . . . . 184 15 Drag coefficients calculated from measured speeds for the varying fre- quency experiments at low amplitude . . . . . . . . . . . . . . . . . . 187 16 Summary of the projectile accuracy results. . . . . . . . . . . . . . . 188 17 Measurements of circular error probable (CEP) for shots identified to have or not have an incidence of tail-slap in the recorded view. Exper- iment cases with an acoustic signal frequency of 12 kHz and at high, medium, and low amplitude. . . . . . . . . . . . . . . . . . . . . . . . 190 x

Description:
1.3 Current Torpedo Countermeasures 5. 1.4 Thesis 4.2.2 Projectile Speed Measurement Using Electromagnetic Induc- tion .
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.